首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT The distribution and frequency of the Cr2 gene for resistance to white pine blister rust (Cronartium ribicola) in western white pine (Pinus monticola) was surveyed in natural populations of the host by inoculation of open-pollinated seedlings from 687 individual seed parents from throughout most of the species' range. Because Cr2 is dominant and results in a conspicuous hypersensitive reaction (HR) in pine needles, the phenotype can readily be detected in offspring of susceptible seed parents fertilized by unknown Cr2 donors in the ambient pollen cloud. Gametic frequencies of Cr2 were thus determined as the proportion of total challenged seedlings that were pollen receptors exhibiting the Cr2 phenotype. Zygotic frequencies, the proportion of seed parents with progeny that segregated in Mendelian ratios for the Cr2 phenotype to the total number of parents, were a complementary, though less precise, measure. Cr2 frequency was rare overall, ranging from 0.004 to 0.008 in the Sierra Nevada to about 0.001 in the central Cascade Range; it was undetectable further north in the Cascades, as well as in the Rocky Mountains and Coast Mountains of the United States and Canada. The diminishing frequency of Cr2 from the southern and central Sierra Nevada northward mirrors that of Cr1 in sugar pine (P. lambertiana) and points to this region as the origin of both genes. We rationalize that this coincidence may have resulted from protection that these genes may have conferred on both species to an endemic pine stem rust congeneric with C. ribicola (C. occidentale) in recent geologic epochs.  相似文献   

2.
ABSTRACT We assayed the distribution and frequency of two genes of the blisterpathogen with specific virulence to major resistance genes in sugar pine and western white pine in inoculum from extensive parts of the hosts' ranges. The genes, vcr1 and vcr2, differentially neutralize the cognate resistance alleles Cr1 and Cr2 of the two respective hosts and are clearly marked by their interaction phenotypes. Basidiospores from each inoculum source were cast over Cr1 and Cr2 host genotypes simultaneously, and interaction phenotypes scored when developed. vcr1 was confined to sites with high concentrations of Cr1 (mostly plantations) where frequencies tended toward fixation. vcr2 showed a similar tendency, except high frequencies were occasionally observed from natural and planted stands of western white pine with very low frequencies of Cr2. Otherwise, no pattern was evident for either allele: frequencies were very erratic from site to site within short distances (<1 to 7 km) of each other and oscillated with high amplitudes at the same sites measured in consecutive years. Intense selection for virulence by Cr alleles occurs locally, but spread of vcr alleles over the landscape is mitigated by remarkably low gene flow. Absence of heterozygotes among single telia inoculum on Cr2 genotypes indicated cytoplasmic inheritance of vcr2, similar to vcr1(previously reported).  相似文献   

3.
ABSTRACT The fine-level genetic structure of the white pine blister rust agent, Cronartium ribicola, was investigated by sampling multiple monokaryotic spermogonia directly on cankers in four eastern Canadian white pine (Pinus strobus) plantations and assessing genetic variability, using random amplified polymorphic DNA (RAPD) markers. Ninety-eight percent of the cankers surveyed contained a single DNA haplotype, suggesting spermogonia within cankers are the result of clonal reproduction. A single canker contained two haplotypes that were divided between the upper and lower parts of the canker, suggesting it represented two confluent cankers. In contrast, genotypic diversity was high among cankers. Thirty-seven haplotypes were found among forty-three cankers sampled, and an analysis of molecular variance indicated that 93% (P < 0.001) of the total genetic diversity was attributable to sampling of different cankers, strongly suggesting that multiple infections do not take place in the white pine blister rust pathosystem, i.e., a canker is the result of infection by a single genotype. This result is in contrast with the high level of genetic diversity previously reported among dikaryotic aecidia within cankers and is consistent with the hypothesis that variability in the aecidial stage is the result of outcrossing between resident spermogonia and alien spermatia. The genetic structure of the spermogonial stage, which is the vegetative extension of infection by basidiospores and, therefore, the indirect result of meiosis, was consistent with random mating; the observed genotypic diversity was not significantly different (P > 0.05) from the genotypic diversity expected under the assumption of panmixis. The results indicate that monokaryotic cankers can be genotyped by sampling a single unopened spermogonia per canker.  相似文献   

4.
ABSTRACT Multilocus haplotypes (MLHs) were derived for the spermogonial (monokaryotic haploid) stage of Cronartium ribicola, the causal agent of white pine blister rust. Six random amplified polymorphic DNA loci and three single-strand conformational polymorphism markers were analyzed for 246 rust samples collected from two heavily infected white pine plantations. All cankers sampled were spatially located within the plantations. The hypothesis that spores are not locally disseminated was supported by the absence of any spatial clustering in the distribution of the MLHs. A large number of MLHs was found at both sites and the haplotypic diversity was close to the maximum (one) in both populations. All measures of recombination were not different from expectations under a scenario of sexual recombination. Genetic differentiation between the two sites was very low (theta = 0.023), yet it was significantly different from zero (P < 0.01). This analysis is in agreement with a scenario of extensive sexual recombination followed by some long-distance dispersal.  相似文献   

5.
Cronartium ribicola, the causal agent of white pine blister rust, has been devastating to five-needled white pines in North America since its introduction nearly a century ago. However, dynamic and complex interactions occur among C. ribicola, five-needled white pines, and the environment. To examine potential evolutionary influences on genetic structure and diversity of C. ribicola in western United States, population genetic analyses of C. ribicola were conducted using amplified fragment length polymorphism (AFLP) molecular markers. The fungus was sampled at six sites. Collections for two of the six sites were from separate plantings of resistant-selected western white pine and sugar pine. Heterozygosity based on polymorphic loci among populations ranged from 0.28 to 0.40, with resistant-selected plantations at the extremes. Genetic differentiation was also highest between these two populations. Principal coordinates analysis and Bayesian assignment placed most isolates that are putative carriers of virulence to major-gene resistance into a discernable cluster, while other isolates showed no clustering by site or host species. These results indicate that C. ribicola in western North America is not genetically uniform, despite its presumed single site of introduction and relatively brief residence. Moreover, major-gene resistance appears to have imposed strong selection on the rust, resulting in reduced genetic diversity. In contrast, no evidence of selection was observed in C. ribicola from hosts that exhibit only multigenic resistance.  相似文献   

6.
White pine blister rust in north america: past and prognosis   总被引:1,自引:0,他引:1  
Kinloch BB 《Phytopathology》2003,93(8):1044-1047
ABSTRACT After a full century in North America, the blister rust epidemic has yet to stabilize, continuing to spread into warmer and drier areas previously considered climatically inhospitable. The disease apparently has no environmental limits wherever white pines and Ribes spp. cohabit and will eventually become pandemic. Although much timber value has been lost, more severe long-term damage is disruption caused to ecosystems by altered patterns of natural succession. During the last half of the century just past, development of genetic resistance superceded other direct control measures-mainly Ribes spp. eradication and antibiotics-which proved ineffective and/or unfeasible in large areas of the white pine range, especially in the West. Several mechanisms of complete (major gene) and partial resistance are common to at least several white pine species. Although North American populations of rust have low genetic variability overall, rust genotypes with specific virulence to major resistance genes exist in some local demes at high frequencies. The challenge will be to package and deploy resistance genes in ways that will dampen sudden increases in rust races of wide virulence. New introductions of blister rust from its gene center in Asia remain the gravest threat to genetic improvement programs.  相似文献   

7.
ABSTRACT We propose a method for defining DNA markers linked to Cronartium quercuum f. sp. fusiforme avirulence (Avr) genes. However, before this method can be successfully employed, a spore competition study was needed to determine the genetic composition of single pycnial drops and multiple drops on single galls when using the standard inoculation procedure, whether virulent (avr1) basidiospores ever predispose some resistant (Fr1/fr1) trees to infection by avirulent (Avr1) basidiospores, and whether avr1 and Avr1 basidiospores equally infect susceptible (fr1/fr1) trees. Results of this study suggest that multiple infections within a single gall are common using the concentrated basidiospore system, resulting on average in >4 infection events per tree. Due to multiple infections within a single gall, an individual pycnial drop cannot be assumed to consist of spores from only a single haploid pycnium. Roughly 57% of the drops harvested were found to consist of more than one haploid genotype, most likely due to the physical mixing of spores from genetically different pycnia. Most importantly, although multiple infections do occur in the formation of a single gall, there is no evidence to suggest that the genetics of the proposed gene-for-gene interaction are compromised. Only avr1 basidiospores were observed to cause infection on Fr1/fr1 trees, whereas both avr1 and Avr1 basidiospores were observed to cause infection on fr1/fr1 trees, albeit not at equal frequencies.  相似文献   

8.
Shi AN  Leath S  Murphy JP 《Phytopathology》1998,88(2):144-147
ABSTRACT A major gene for resistance to wheat powdery mildew (Blumeria graminis f. sp. tritici = Erysiphe graminis f. sp. tritici) has been successfully transferred into hexaploid common wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) from wild einkorn wheat (Triticum monococcum subsp. aegilopoides, 2n = 2x = 14, AA). NC96BGTA5 is a germ plasm line with the pedigree Saluda x 3/PI427662. The response patterns for powdery mildew resistance in NC96BGTA5 were tested with 30 differential isolates of B. graminis f. sp. tritici, and the line was resistant to all tested isolates. The analyses of P(1), P(2), F(1), F(2), and BC(1)F(1) populations derived from NC96BGTA5 revealed two genes for wheat powdery mildew resistance in the NC96BGTA5 line. One gene, Pm3a, was from its recurrent parent Saluda, and the second was a new gene introgressed from wild einkorn wheat. The gene was determined to be different from Pm1 to Pm21 by gene-for-gene and pedigree analyses. The new gene was identified as linked to the Pm3a gene based on the F(2) and BC(1)F(1) populations derived from a cross between NC96BGTA5 and a susceptible cultivar NK-Coker 68-15, and the data indicated that the gene was located on chromosome 1A. It is proposed that this new gene be designated Pm25 for wheat powdery mildew resistance in NC96BGTA5. Three random amplified polymorphic DNA markers, OPX06(1050), OPAG04(950), and OPAI14(600), were found to be linked to this new gene.  相似文献   

9.
10.
Kerber ER  Aung T 《Phytopathology》1999,89(6):518-521
ABSTRACT The common wheat cultivar Thatcher and the backcross derivative Canthatch are moderately or fully susceptible to several races of stem rust because of a suppressor on chromosome 7DL that inhibits the expression of the relevant resistance gene(s). The incorporation of leaf rust resistance gene Lr34 into 'Thatcher' is known to enhance stem rust resistance. The effect of this gene in a 'Canthatch' background and its relationship with the 7DL suppressor were determined by replacing chromosome 7D of 'Canthatch' with 7D of 'Chinese Spring', which possesses Lr34 on the short arm. 'Canthatch' nullisomic 7D was crossed with 'Chinese Spring', followed by a succession of backcrosses to the nullisomic recurrent parent. Homozygous resistant disomic and monosomic substitution lines were recovered that exhibited the same resistant reaction as that of 'Thatcher' possessing Lr34 and as that of 'Canthatch' nullisomic 7D, in which the 7DL suppressor is absent. The results indicate that, in 'Canthatch', Lr34 permits expression of resistance genes normally inhibited by the 7DL suppressor. Furthermore, it is likely that, in 'Thatcher' and 'Thatcher' back-cross derivatives, Lr34 inactivates the 7DL suppressor.  相似文献   

11.
The effect of RUS, a major quantitative resistance (QR) factor inherited from Populus trichocarpa, was assessed in two Populus deltoides × P. trichocarpa F1 progenies against eight isolates of Melampsora larici‐populina, the causal agent of Eurasian poplar rust. Six isolates were identified on which RUS had no significant effect. The first RUS‐defeating isolate identified suggested a pre‐existing potential to overcome RUS in the pathogen’s populations. The P. deltoides genetic background made no difference either to the ability of a given isolate to overcome RUS or to the relative and absolute aggressiveness of the isolates. This study illustrates how extreme the isolate‐specificity of QR can be. It also yields insights into the relationship between size of uredinia and sporulation rate, discussing the epidemiological significance of spore production per mm2 uredinium.  相似文献   

12.
Singh  Park  & McIntosh 《Plant pathology》1999,48(5):567-573
A resistant phenotype similar to that conferred in wheat by the complementary genes Lr27  +  Lr31 was produced in the progeny of intercrosses of cultivars carrying Lr27 and a line possessing Lr12 . This confirms that Lr12 is either completely linked with Lr31 or is the same gene. On the basis of these findings and that Lr31 is located on chromosome 4BS, it is concluded that Lr12 must also be located on 4BS. Adult-plant genetic tests confirm that the Australian wheat cultivar Timgalen carries Lr12 , and stocks with Lr12 alone were established from this cultivar.  相似文献   

13.
ABSTRACT Leaf and stripe rusts, caused by Puccinia triticina and P. striiformis, respectively, are globally important fungal diseases of wheat that cause significant annual yield losses. A gene that confers slow rusting resistance to leaf rust, designated as Lr46, has recently been located on wheat chromosome 1B. The objectives of our study were to establish the precise genomic location of gene Lr46 using molecular approaches and to determine if there was an association of this locus with adult plant resistance to stripe rust. A population of 146 F(5) and F(6) lines produced from the cross of susceptible 'Avocet S' with resistant 'Pavon 76' was developed and classified for leaf rust and stripe rust severity for three seasons. Using patterns of segregation for the two diseases, we estimated that at least two genes with additive effects conferred resistance to leaf rust and three to four genes conferred resistance to stripe rust. Bulked segregant analysis and linkage mapping using amplified fragment length polymorphisms with the 'Avocet' x 'Pavon 76' population, F(3) progeny lines of a single chromosome recombinant line population from the cross 'Lalbahadur' x 'Lalbahadur (Pavon 1B)', and the International Triticeae Mapping Initiative population established the genomic location of Lr46 at the distal end of the long arm of wheat chromosome 1B. A gene that is closely linked to Lr46 and confers moderate levels of adult plant resistance to stripe rust is identified and designated as Yr29.  相似文献   

14.
The main goal of the present work was to characterize the rust resistance (RR) gene present in the Mesoamerican common bean cultivar Ouro Negro, temporarily named Ur‐OuroNegro or Ur‐ON, which is the main RR source used in Brazil. The RR spectrum presented by cv. Ouro Negro was compared with those of other bean lines harbouring known RR genes when inoculated with nine selected races of Uromyces appendiculatus, the causal agent of bean rust. In addition, all bean lines were screened with molecular markers linked to Ur‐ON in order to identify additional evidence for the presence of alleles for this locus in the screened RR sources. The allelic relationships of Ur‐ON were tested with previously characterized RR genes from lines resistant to at least one race of the pathogen. Allelism tests were also carried out between cv. Ouro Negro and cvs CNC and CSW 643, important RR sources in Brazil harbouring unnamed RR genes. The results showed that the major dominant gene conditioning RR in cv. Ouro Negro is positioned at a locus distinct from those with which it was compared. It is proposed that this gene – or complex gene locus – is unique and be designated Ur‐14.  相似文献   

15.
Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat   总被引:1,自引:0,他引:1  
ABSTRACT Wheat (Triticum aestivum) cultivar Pavon 76 carries slow-rusting resistance to leaf rust that has remained effective in Mexico since its release in 1976. 'Pavon 76' was crossed with two leaf rust-susceptible wheat cultivars, Jupateco 73S and Avocet S, and between 118 and 148 individual F(2) plant-derived F(3) and F(5) lines were evaluated for adult-plant leaf rust resistance at two field sites in Mexico during different seasons. Evaluation of F(1) plants and parents indicated that the slow-rusting resistance was partially dominant. Segregation in the F(3) and F(5) indicated that the resistance was based on two genes with additive effects. Monosomic analysis was carried out to determine the chromosomal locations of the resistance genes. For this purpose, two or three backcross-derived cytogenetic populations were developed by crossing 'Pavon 76' with a monosomic series of adult-plant leaf rust-susceptible cultivar Lal-bahadur. Evaluation of such BC(2)F(3) and BC(3)F(3) lines from 16 confirmed 'Lalbahadur' monosomics indicated that one slow-rusting gene was located in chromosome 1B of 'Pavon 76'. This gene, designated as Lr46, is the second named gene involved in slow-rusting resistance to leaf rust in wheat.  相似文献   

16.
The stem rust resistance gene Rpg1 has protected North American barley cultivars from significant yield losses for over 65 years. The remarkable durability of this gene warrants further study as to its possible origin and allelic variation. Eight Swiss barley (Hordeum vulgare) landraces and eight wild barley (H. vulgare subsp. spontaneum) accessions from diverse geographic regions were analyzed to uncover new alleles of Rpg1 and learn about its possible origin. The two germplasm groups included accessions that were resistant and susceptible to Puccinia graminis f. sp. tritici pathotype MCCF. Allele-specific primers were utilized to amplify 1 kbp overlapping fragments spanning the Rpg1 gene and sequenced if a polymerase chain reaction (PCR) fragment was generated. Variation among the PCR products revealed significant polymorphisms among these Hordeum accessions. Landraces and wild barley accessions susceptible to pathotype MCCF exhibited the highest degree of Rpg1 polymorphism. One resistant landrace (Hv672) and one resistant wild barley accession (WBDC040) yielded all seven Rpg1-specific PCR fragments, but only landrace Hv672 coded for an apparently functional Rpg1 as determined by comparison to previously characterized resistant and susceptible alleles and also resistance to HKHJ, a stem rust pathotype that can specifically detect Rpg1 in the presence of other resistance genes. Accessions resistant to stem rust pathotype MCCF, but completely lacking Rpg1-specific PCR amplification and hybridization with an Rpg1-specific probe, suggested the presence of stem rust resistant gene(s) different from Rpg1 in the Hordeum germplasm pool. Some Rpg1 alleles that retained the ability to autophosphorylate did not confer resistance to Puccinia graminis f. sp. tritici pathotype MCCF, confirming our previous observations that autophosphorylation is essential, but not sufficient for disease resistance. Thus, the RPG1 protein plays a complex role in the stem rust disease resistance-signaling pathway.  相似文献   

17.
ABSTRACT Crown rust of barley, caused by Puccinia coronata var. hordei, occurs sporadically and sometimes may cause yield and quality reductions in the Great Plains region of the United States and Canada. The incompletely dominant resistance allele Rpc1 confers resistance to P. coronata in barley. Two generations, F(2) and F(2:3), developed from a cross between the resistant line Hor2596 (CIho 1243) and the susceptible line Bowman (PI 483237), were used in this study. Bulked segregant analysis combined with random amplified polymorphic DNA (RAPD) primers were used to identify molecular markers linked to Rpc1. DNA genotypes produced by 500 RAPD primers, 200 microsatellites (SSRs), and 71 restriction fragment length polymorphism (RFLP) probes were applied to map Rpc1. Of these, 15 RAPD primers identified polymorphisms between resistant and susceptible bulks, and 62 SSR markers and 32 RFLP markers identified polymorphisms between the resistant and susceptible parents. The polymorphic markers were applied to 97 F(2) individuals and F(2:3) families. These markers identified 112 polymorphisms and were used for primary linkage mapping to Rpc1 using Map Manager QT. Two RFLP and five SSR markers spanning the centromere on chromosome 3H and one RAPD marker (OPO08-700) were linked with Rpc1 and, thus, used to construct a 30-centimorgan (cM) linkage map containing the Rpc1 locus. The genetic distance between Rpc1 and the closest marker, RAPD OPO08-700, was 2.5 cM. The linked markers will be useful for incorporating this crown rust resistance gene into barley breeding lines.  相似文献   

18.
为了筛选小麦抗叶锈病资源和发掘新的抗叶锈病基因,对由抗病波斯小麦Ps5与感病粗山羊草Ae38合成的双二倍体Am3进行了单体分析。将中国春单体和二体分别与Am3杂交,测定杂交F1植株的染色体条数以及F1、F2群体对叶锈病的抗/感病性。结果表明:在18℃条件下,Am3对小麦叶锈菌致病类型DHS/GD的抗病性由1对隐性抗病基因控制,该基因来自四倍体亲本波斯小麦Ps5,具有剂量效应,位于5A染色体上。  相似文献   

19.
Breeding cereals for rust resistance in Australia   总被引:2,自引:0,他引:2  
R. F. Park 《Plant pathology》2008,57(4):591-602
Rust diseases have caused significant losses to Australian cereal crops, and continue to pose a serious threat. Because Australian cereal crop yields are generally low, genetic resistance remains the most economical means of rust control. Resistant cultivars also contribute significantly to reducing over-summer rust survival. A policy of releasing only rust resistant wheats in northern New South Wales and Queensland has resulted in industry-wide protection from rust in this region for the past 40 years. The Australian Cereal Rust Control Program conducts annual pathogenicity surveys for all cereal rust pathogens, undertakes genetic research to identify and characterize new sources of resistance, and provides a germplasm screening and enhancement service to all Australian cereal breeding groups. These three activities are interdependent, and are closely integrated with particular emphasis on linking pathology and genetics to ensure breeding outcomes. Recent changes in the wheat rust pathogens, including the development of virulences for Yr17 , Lr24 , Lr37 and Sr38 resistance genes, and the introduction of a new pathotype of the wheat stripe rust pathogen, have provided new and significant challenges for wheat rust resistance breeding. Similar challenges exist in breeding barley and oats for rust resistance. Examples are discussed to illustrate the ways in which rust isolates are providing information that can be used in breeding for rust resistance. In future, as more markers linked to durable rust resistance sources become available, it is likely that the use of marker-assisted selection will become more common-place in rust resistance breeding.  相似文献   

20.
小麦抗条锈病基因Yr24的SSR标记   总被引:12,自引:0,他引:12  
 抗性鉴定表明,含有抗小麦条锈病基因Yr24的近等基因系Yr24/3*Avocet S对我国流行的条锈菌小种CY30、CY31和CY32均具有良好的抗性。遗传学分析证明,Yr24/3*Avocet S的抗条锈病性状为显性遗传。利用Yr24/3*Avocet S×感病品种铭贤169的F2群体进行SSR分析,筛选到2个位于目的基因两侧的标记Xgwm273和Xgwm11,遗传距离分别为6.1和7.1 cM。双侧分子标记的建立可为标记辅助选择育种提供更有力的分子选择工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号