首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Shlevin E  Saguy IS  Mahrer Y  Katan J 《Phytopathology》2003,93(10):1247-1257
ABSTRACT Structural (space) solarization of a closed, empty greenhouse for sanitation involves dry heating to 60 degrees C and higher and low relative humidity (RH), under a fluctuating temperature and RH regime. Survival of inocula of Fusarium oxysporum f. sp. radicis-lycopersici and Sclerotium rolfsii during structural solarization was studied for 4 years (total of 12 experiments) in an attempt to develop a dynamic model for expressing the thermal inactivation of the pathogens. After 20 days of exposure, the populations of F. oxysporum f. sp. radicis-lycopersici and S. rolfsii were reduced by 69 to 95% and by 47.5 to 100%, respectively. The Weibull distribution model was applied to describe pathogen survival. The Weibull rate parameter, b, was found to follow an exponential (for F. oxysporum f. sp. radicis-lycopersici) and the Fermi (for S. rolfsii) functions at constant temperatures. To improve the applicability of the model, fluctuating conditions of both temperature and RH were utilized. The Weibull distribution derivative, expressed as a function of temperature and moisture, was numerically integrated to estimate survival of inocula exposed to structural solarization. Deviations between experimental and calculated values derived from the model were quite small and the coefficient of determination (R (2)) values ranged from 0.83 to 0.99 in 9 of 12 experiments, indicating that ambient RH data should be considered. Structural solarization for sanitation could be a viable component in integrated pest management programs.  相似文献   

2.
The effects of pre-planting solarization or fumigation with metham-sodium of sand-mulched soil on fusarium wilt of watermelon in plastic house culture were investigated at Almeria, south-eastern Spain. In two trials, 2 months' solarization increased the average maximum soil temperature by c. 5°C to 44-48° C at 10 cm depth and by 4-5° C to 40-42° C at 20-30 cm. The amount of Fusarium oxysporum in the upper 15 cm of a naturally infested soil was reduced by solarization and by fumigation. During the 9 months following treatment, the F. oxysporum population stabilized at a low level in soil solarized for 2 months, but fluctuated in soil solarized for 1 month and increased in fumigated soil. The amount of wilt in watermelon sown into this soil after treatment was generally low; plants growing in solarized or fumigated soil suffered less wilt than plants in untreated soil but the differences were not significant. In a soil artificially infested with the highly pathogenic race 2 of F. oxysporum f. sp. niveum, F. oxysporum populations were greatly reduced following solarization or fumigation, and fluctuated erratically thereafter. Solarization for 2 months completely controlled wilt in watermelon and gave a fruit yield almost five times that of plants in untreated soil. Solarization for 1 month only slowed disease development slightly but gave a yield more than twice that in untreated soil. Fumigation with metham-sodium retarded disease development considerably and tripled fruit yield. Plant performance was significantly better in soil solarized for 2 months than in uninfested control soil, suggesting beneficial effects of this treatment additional to wilt control.  相似文献   

3.
ABSTRACT A controlled laboratory system for simulating soil solarization, with and without organic amendment, was developed and validated using physical, chemical, and biological parameters. The system consists of soil containers that are exposed to controlled and constant aeration, and to temperature fluctuations that resemble those occurring during solarization at various depths. This system enables a separate analysis of volatiles and other components. We recorded a sharp decrease in oxygen concentration in the soil atmosphere followed by a gradual increase to the original concentration during solarization in the field and heating in the simulation system of soil amended with wild rocket (Diplotaxis tenuifolia) or thyme (Thymus vulgaris). The combined treatment of organic amendment and solarization (or heating in the controlled system) was highly effective at controlling populations of Fusarium oxysporum f. sp. radicis-lycopersici. Changes in soil pH, enzymatic activities, and microbial populations followed, in most cases, trends which were similar under both solarization and the heating system, when exposed to controlled aerobic conditions. The reliability and validity of the system in simulating physical, chemical, and biological processes taking place during solarization is demonstrated.  相似文献   

4.
ABSTRACT Fusarium oxysporum f. sp. ciceris and the root-lesion nematode Pratylenchus thornei coinfect chickpeas in southern Spain. The influence of root infection by P. thornei on the reaction of Fusarium wilt-susceptible (CPS 1 and PV 61) and wilt-resistant (UC 27) chickpea cultivars to F. oxysporum f. sp. ciceris race 5 was investigated under controlled and field conditions. Severity of Fusarium wilt was not modified by coinfection of chickpeas by P. thornei and F. oxysporum f. sp. ciceris, in simultaneous or sequential inoculations with the pathogens. Root infection with five nematodes per cm(3) of soil and 5,000 chlamydospores per g of soil of the fungus resulted in significantly higher numbers of propagules of F. oxysporum f. sp. ciceris with the wilt-susceptible cultivar CPS 1, but not with the wilt-resistant one. However, infection with 10 nematodes per cm(3) of soil significantly increased root infection by F. oxysporum f. sp. ciceris in both cultivars, irrespective of fungal inoculum densities (250 to 2,000 chlamydospores per g of soil). Plant growth was significantly reduced by P. thornei infection on wilt-susceptible and wilt-resistant chickpeas in controlled and field conditions, except when shorter periods of incubation (45 days after inoculation) were used under controlled conditions. Severity of root necrosis was greater in wilt-susceptible and wilt-resistant cultivars when nematodes were present in the root, irrespective of length of incubation time (45 to 90 days), densities of nematodes (5 and 10 nematodes per cm(3) of soil), fungal inocula, and experimental conditions. Nematode reproduction on the wilt-susceptible cultivars, but not on the wilt-resistant one, was significantly increased by F. oxysporum f. sp. ciceris infections under controlled and field conditions.  相似文献   

5.
Rekah Y  Shtienberg D  Katan J 《Phytopathology》2000,90(12):1322-1329
ABSTRACT Fusarium oxysporum f. sp. radicis-lycopersici, the causal agent of Fusarium crown and root rot of tomato, and F. oxysporum f. sp. basilici, the causal agent of Fusarium wilt in basil, are soilborne pathogens capable of producing conspicuous masses of macroconidia along the stem. The role of the airborne propagules in the epidemics of the disease in tomato plants was studied. In the field, airborne propagules of F. oxysporum f. sp. radicis-lycopersici were trapped with a selective medium and their prevalence was determined. Plants grown in both covered and uncovered pots, detached from the field soil, and exposed to natural aerial inoculum developed typical symptoms (82 to 87% diseased plants). The distribution of inoculum in the growth medium in the pots also indicated the occurrence of foliage infection. In greenhouse, foliage and root inoculations were carried out with both tomato and basil and their respective pathogens. Temperature and duration of high relative humidity affected rate of colonization of tomato, but not of basil, by the respective pathogens. Disease incidence in foliage-inoculated plants reached 75 to 100%. In these plants, downward movement of the pathogens from the foliage to the crown and roots was observed. Wounding enhanced pathogen invasion and establishment in the foliage-inoculated plants. The sporulation of the two pathogens on stems, aerial dissemination, and foliage infection raise the need for foliage protection in addition to soil disinfestation, in the framework of an integrated disease management program.  相似文献   

6.
N. Ioannou 《Phytoparasitica》2000,28(3):248-256
Preplant soil fumigation with methyl bromide (MB) is presently standard practice in greenhouse tomato production. Since this compound is scheduled to be phased out by 2005, the possibility of using solarization as an alternative soil disinfestation method was examined in four greenhouse tomato trials. Solarization was applied for 8 weeks in July-August, using transparent polyethylene sheets for soil mulching, and compared with MB fumigation applied in September, before planting, at 80 g/m2. Solarization raised the maximum soil temperature by 9°C and reduced the population density ofFusarium spp. in soil by 91–98%. Similar reductions of soil inoculum (95–99%) were obtained with MB fumigation. Both methods provided effective control of Fusarium wilt, Verticillium wilt and corky root rot on tomato plants. MB fumigation was in addition highly effective against root-knot nematodes, whereas nematode control with solarization did not exceed 50%. Both treatments resulted in similar fruit yield increases, ranging within 90–140% compared with plants grown in untreated soil. During the second cropping season following soil treatment, solarization exhibited two times higher residual effectiveness against vascular wilt diseases compared with MB fumigation. The latter treatment, however, was superior to solarization in its residual effectiveness against root-knot nematodes and to a lesser extent against corky root rot. Fruit yields from solarized and MB-fumigated soil during the second cropping season were higher than those obtained from untreated soil by approximately 35% and 60%, respectively. In Cyprus, solarization appears to be an effective alternative to MB fumigation in greenhouse tomato production, especially if integrated with other approaches enabling more effective nematode control.  相似文献   

7.
Effect of mixed and single crops on disease suppressiveness of soils   总被引:1,自引:0,他引:1  
ABSTRACT The effect of mixed cropping on disease suppressiveness of soils was tested for two cropping systems, Brussels sprouts-barley and triticale-white clover. Disease suppressiveness of field soils was evaluated in bioassays for the soilborne pathogens Rhizoctonia solani, Fusarium oxysporum f. sp. lini, and Gaeumannomyces graminis var. tritici. For both cropping systems, mixed cropping did not enhance disease suppressiveness of the soils. In some cases, soil cropped to barley alone was significantly more suppressive to F. oxysporum f. sp. lini than soils cropped to Brussels sprouts or the mixture of Brussels sprouts and barley. Analyses of the diversity of the indigenous bacterial and fungal microflora by denaturing gradient gel electrophoresis of amplified 16S- and 18S-rDNA fragments, respectively, revealed, in most cases, no significant differences between mixed and mono-cropped soils. In conclusion, in this study, mixed cropping of soils with Brussels sprouts and barley or with triticale and white clover did not enhance microbial diversity or disease suppressiveness of soils to three different soilborne plant pathogens.  相似文献   

8.
Soil solarization is not broadly adopted as a soil deinfestation method mainly because of its long duration (4–6 weeks). We present evidence showing that the duration of solarization can be reduced to nearly half using impermeable plastics and/or low doses of methyl bromide, while still ensuring effective control of Fusarium oxysporum f. sp. cucumerinum. Chlamydospores of a pathogenic isolate of F. o. cucumerinum, formed in sterile soil, were inserted into nylon mesh envelopes and incorporated into the soil prior to treatment at 20‐ and 30‐cm soil depths. Soil treatments included untreated control, soil solarization with polyethylene or impermeable plastics (LMG), and soil solarization with polyethylene or impermeable plastics plus 20 g m?2 methyl bromide. According to the effects on artificial inocula of F. o. cucumerinum checked at weekly intervals for 4 weeks, soil solarization with impermeable plastics was most effective in destroying pathogen populations even two weeks after soil covering.  相似文献   

9.
Fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceris can be managed by risk assessment and use of resistant cultivars. A reliable method for the detection and quantification of F. oxysporum f. sp. ciceris in soil and chickpea tissues would contribute much to implementation of those disease management strategies. In this study, we developed a real-time quantitative polymerase chain reaction (q-PCR) protocol that allows quantifying F. oxysporum f. sp. ciceris DNA down to 1 pg in soil, as well as in the plant root and stem. Use of the q-PCR protocol allowed quantifying as low as 45 colony forming units of F. oxysporum f. sp. ciceris per gram of dry soil from a field plot infested with several races of the pathogen. Moreover, the q-PCR protocol clearly differentiated susceptible from resistant chickpea reactions to the pathogen at 15 days after sowing in artificially infested soil, as well as the degree of virulence between two F. oxysporum f. sp. ciceris races. Also, the protocol detected early asymptomatic root infections and distinguished significant differences in the level of resistance of 12 chickpea cultivars that grew in that same field plot infested with several races of the pathogen. Use of this protocol for fast, reliable, and cost-effective quantification of F. oxysporum f. sp. ciceris in asymptomatic chickpea tissues at early stages of the infection process can be of great value for chickpea breeders and for epidemiological studies in growth chambers, greenhouses and field-scale plots.  相似文献   

10.
ABSTRACT Structural solarization of greenhouses for sanitation by closing them involves dry heating to 60 degrees C and higher with a consequent low relative humidity (RH) ( approximately 15%), thus requiring an extended period for thermal inactivation of pathogens. In an attempt to enhance pathogen control by increasing moisture during the hot hours of the day, various regimes of inoculum moistening were studied. However, wetting inoculum of Fusarium oxysporum f. sp. melonis and F. oxysporum f. sp. radicis-lycopersici resulted in less effective pathogen control compared with that of dry heating. Fifty percent effective dose (ED(50)) values of thermal inactivation of wetted and dry inoculum for the former pathogen were 18 and 7 days, respectively, and for the latter, a respective 9 and 4 days. This was because wetting resulted in inoculum cooling due to evaporation, which eventually led to its drying. A model describing the drying of wet inoculum in a wetted greenhouse, based on the fact that there was an approximately 10 degrees C difference between greenhouse and ambient temperatures, was proposed. A double-tent system reduced this difference to 1 to 2 degrees C, reduced moisture loss, and led to improved inoculum inactivation of F. oxysporum f. sp. radicis-lycopersici. Thus, the ED(50) value of thermal inactivation was reduced from 15 days to 1 day, because this system provided both high temperature ( approximately 60 degrees C) and high RH ( approximately 100%), resulting in effective wet heating.  相似文献   

11.
ABSTRACT Soil solarization was shown to be cost effective, compatible with other pest management tactics, readily integrated into standard production systems, and a valid alternative to preplant fumigation with methyl bromide under the tested conditions. Solarization using clear, photoselective, or gas-impermeable plastic was evaluated in combination with metham sodium, 1,3-dichloropropene + chloropicrin, methyl bromide + chloropicrin, pebulate, or cabbage residue. Strip solarization, applied to 20-cm-high, 0.9-m-wide beds, was conducted to achieve compatibility with standard production practices and resulted in soil temperatures 2 to 4 degrees C above those temperatures resulting when using conventional flatbed solarization. Soil temperatures were 1 to 2 degrees C higher at the edges of the raised beds, eliminating any border effects associated with solarization. Following a 40- to 55-day solarization period, the plastic was painted white and used as a production mulch for a subsequent tomato crop. The incidence of Southern blight and the density of Paratrichodorus minor and Criconemella spp. were lower (P < 0.05) in solarized plots. No differences (P < 0.05) in the incidence of Fusarium wilt and the density of nutsedge and Helicotylenchus spp. were observed between plots receiving solarization and plots fumigated with a mixture of methyl bromide + chloropicrin. The severity of root galling was lower (P < 0.05) when soil solarization was combined with 1,3-dichloropropene + chloropicrin (16.2 + 3.4 g/m(2)) and a gas-impermeable film. The incidence of bacterial wilt was not affected by soil treatments. Marketable yields in plots using various combinations of soil solarization and other tactics were similar (P < 0.05) to yields obtained in plots fumigated with methyl bromide + chloropicrin. The results were validated in several large scale field experiments conducted by commercial growers.  相似文献   

12.
Xue AG 《Phytopathology》2003,93(3):329-335
ABSTRACT Pea root rot complex (PRRC), caused by Alternaria alternata, Aphanomyces euteiches, Fusarium oxysporum f. sp. pisi, F. solani f. sp. pisi, Mycosphaerella pinodes, Pythium spp., Rhizoctonia solani, and Sclerotinia sclerotiorum, is a major yield-limiting factor for field pea production in Canada. A strain of Clonostachys rosea (syn. Gliocladium roseum), ACM941 (ATCC 74447), was identified as a mycoparasite against these pathogens. When grown near the pathogen, ACM941 often was stimulated to produce lateral branches that grew directly toward the pathogen mycelium, typically entwining around the pathogen mycelium. When applied to the seed, ACM941 propagated in the rhizosphere and colonized the seed coat, hypocotyl, and roots as the plant developed and grew. ACM941 significantly reduced the recovery of all fungal pathogens from infected seed, increased in vitro seed germination by 44% and seedling emergence by 22%, and reduced root rot severity by 76%. The effects were similar to those of thiram fungicide, which increased germination and emergence by 33 and 29%, respectively, and reduced root rot severity by 65%. When soil was inoculated with selected PRRC pathogens in a controlled environment, seed treatment with ACM941 significantly increased emergence by 26, 38, 28, 13, and 21% for F. oxysporum f. sp. pisi, F. solani f. sp. pisi, M. pinodes, R. solani, and S. sclerotiorum, respectively. Under field conditions from 1995 to 1997, ACM941 increased emergence by 17, 23, 22, 13, and 18% and yield by 15, 6, 28, 6, and 19% for the five respective pathogens. The seed treatment effects of ACM941 on these PRRC pathogens were greater or statistically equivalent to those achieved with thiram. Results of this study suggest that ACM941 is an effective bioagent in controlling PRRC and is an alternative to existing chemical products.  相似文献   

13.
木霉对土传病原真菌的拮抗作用   总被引:100,自引:2,他引:100  
 分别在体外及温室测定了筛选菌株哈茨木霉Trichoderma harzianum(T82)和Tricho-derma sp.(NF9)对土传病原真菌的拮抗作用。体外测定表明,木霉菌株T82和NF9对白绢病菌Sclerotium rolfsii,立枯丝核菌Rhizoctonia solani,瓜果腐霉Pythium aphanidermatum刺腐霉P.spinosum和尖镰孢Fusarium oxysporum在对崎培养中的拮抗系数分别为2或2~3和2。温室测定表明,用0、6%(W/W)T82麸皮培养物(107cfu/g)处理土壤。在人工接种白绢病菌,立枯丝核菌及瓜果腐霉20天后,黄瓜发病率分别比未用木霉处理的对照减少46、5%,28.4%和81。2%;用T82和NF9木霉孢子悬浮液(108cfu/ml)处理黄瓜种子,人工接种白绢病菌11天后,黄瓜成苗率分别比未用木霉处理的对照增加14%的20%。分别在光学显微镜和扫描电镜下观察到木霉T82对白绢病菌菌丝和菌核的重寄生以及木霉T82和NF9对立枯丝核菌菌丝的缠绕。穿入及寄生。作者认为重寄生可能是试验木霉菌株T82和NF9对白绢病菌和立枯丝核菌的主要拮抗机制。  相似文献   

14.
Fusarium wilt and crown rot of sweet basil, caused by Fusarium oxysporum f.sp. basilici (F.o.ba.), is widespread in Israel. Affected plants show a variety of symptoms, including vascular wilt as well as crown rot, and masses of macroconidia on stem surfaces. We used vegetative compatibility to determine whether F.o.ba. isolates associated with various symptoms and sources are genetically related. All 119 isolates previously described as F.o.ba., and 42 additional F. oxysporum isolates which had not been tested for pathogenicity, belonged to a single vegetative compatibility group (VCG). The various symptoms are therefore induced by a single pathogenic form which appears to be a specific clone of F. oxysporum. The isolates of F.o.ba. from Israel were vegetatively compatible with eight isolates of F.o.ba. from Italy and the USA, but not with nonpathogenic isolates of F. oxysporum from basil, or with F.o. lycopersici or F.o. radicis-lycopersici from tomato. We conclude that the population of F.o.ba. in Israel belongs to the common VCG of this pathogen described in the USA, and which includes American and Italian isolates.  相似文献   

15.
香蕉枯萎病拮抗菌的筛选及其作用机制研究   总被引:15,自引:0,他引:15  
通过分离和筛选,从香蕉园或者其他果园的土壤中分离获得13株对香蕉枯萎病菌(Fusarium oxysporum f.sp.cubense)具有抑制作用的拮抗菌,并对部分拮抗菌抑制病菌菌丝生长和孢子萌发进行了试验。结果表明,拮抗菌株d4、d5、B3和p发酵液对香蕉枯萎病菌生长具有显著的抑制作用,在平板上产生的抑菌圈直径为21.75~34.75 mm,抑菌效果具有持续稳定性,对孢子萌发的抑制率为90.49%~97.18%;拮抗菌对病菌的作用表现为对菌丝的消融、菌丝细胞的泡囊化、抑制病菌分生孢子的萌发、孢子芽管的扭曲。  相似文献   

16.
ABSTRACT Fusarium wilt of cotton is a serious fungal disease responsible for significant yield losses throughout the world. Evolution of the causal organism Fusarium oxysporum f. sp. vasinfectum, including the eight races described for this specialized form, was studied using multigene genealogies. Partial sequences of translation elongation factor (EF-1alpha), nitrate reductase (NIR), phosphate permase (PHO), and the mitochondrial small subunit (mtSSU) rDNA were sequenced in 28 isolates of F. oxysporum f. sp. vasinfectum selected to represent the global genetic diversity of this forma specialis. Results of a Wilcoxon Signed-Ranks Templeton test indicated that sequences of the four genes could be combined. In addition, using combined data from EF-1alpha and mtSSU rDNA, the phylogenetic origin of F. oxysporum f. sp. vasinfectum within the F. oxysporum complex was evaluated by the Kishino-Hasegawa likelihood test. Results of this test indicated the eight races of F. oxysporum f. sp. vasinfectum appeared to be nonmonophyletic, having at least two independent, or polyphyletic, evolutionary origins. Races 3 and 5 formed a strongly supported clade separate from the other six races. The combined EF-1alpha, NIR, PHO, and mtSSU rDNA sequence data from the 28 isolates of F. oxysporum f. sp. vasinfectum recovered four lineages that correlated with differences in virulence and geographic origin: lineage I contained race 3, mostly from Egypt, and race 5 from Sudan; lineage II contained races 1, 2, and 6 from North and South America and Africa; lineage III contained race 8 from China; and lineage IV contained isolates of races 4 and 7 from India and China, respectively.  相似文献   

17.
本文测定了枯草芽胞杆菌SNUB16发酵液无菌滤液的抗菌谱及无菌滤液对尖镰孢和棉花枯萎病菌孢子萌发和菌丝生长的影响。结果表明,枯草芽胞杆菌SNUB16发酵液无菌滤液对23株真菌有抗菌作用,尤其对植物病原真菌尖镰孢、棉花枯萎病菌、玉米大斑病菌、辣椒炭疽病菌和小麦根腐病菌有显著抗菌作用。发酵液无菌滤液可使尖镰孢及棉花枯萎病菌孢子萌发率下降,芽管顶端、菌丝末端及菌丝中央发生畸形的球状结构,菌丝干重减少,菌丝细胞损伤,使细胞内物质外泄。  相似文献   

18.
ABSTRACT Fusarium oxysporum f. sp. canariensis causes Fusarium wilt disease on the Canary Island date palm (Phoenix canariensis). To facilitate disease management, a polymerase chain reaction diagnostic method has been developed to rapidly detect the pathogen. A partial genomic library of F. oxysporum f. sp. canariensis isolate 95-913 was used to identify a DNA sequence diagnostic for a lineage containing all tested isolates of F. oxysporum f. sp. canariensis. Two oligonucleotide primers were designed and used to amplify a 567-bp fragment with F. oxysporum f. sp. canariensis DNAs. DNA from 61 outgroup isolates did not amplify using these primers. Once the primers were shown to amplify a 0.567-kb fragment from DNA of all the F. oxysporum f. sp. canariensis isolates tested, a rapid DNA extraction procedure was developed that led to the correct identification of 98% of the tested F. oxysporum f. sp. canariensis isolates.  相似文献   

19.
农抗120防治西瓜枯萎病的机制   总被引:14,自引:0,他引:14  
研究了农抗120对西瓜枯萎病菌和西瓜幼苗的作用。结果表明,农抗120对西瓜枯萎病菌孢子的萌发和菌丝的形态无明显影响,对孢子的形成和菌丝生长有一定抑制作用,能够提高西瓜幼苗抗枯萎病菌毒素致萎的能力和幼苗体内过氧化物酶活性。说明农抗120的防病机制是通过抑制病原菌和提高植株抗病性而起作用的。  相似文献   

20.
ABSTRACT Development of Fusarium wilt in upland cotton (Gossypium hirsutum) usually requires infections of plants by both Meloidogyne incognita and Fusarium oxysporum f. sp. vasinfectum. In this study, the soil densities of M. incognita and F. oxysporum f. sp. vasinfectum and the incidence of Fusarium wilt in three field sites were determined in 1982-1984. Multiple regression analysis of percent incidence of Fusarium wilt symptoms on population densities of M. incognita and F. oxysporum f. sp. vasinfectum yielded a significant fit (R (2) = 0.64) only on F. oxysporum f. sp. vasinfectum. Significant t-values for slope were also obtained for the interaction of M. incognita and F. oxysporum f. sp. vasinfectum, but densities of M. incognita and F. oxysporum f. sp. vasinfectum were also related on a log(10) scale. The physiological time of appearance of first foliar symptoms of Fusarium wilt, based on a degree-days threshold of 11.9 degrees C (53.5 degrees F), was used as a basis for determining disease progress curves and the phenology of cotton plant growth and development. Effects of Fusarium wilt on plant height and boll set were determined in three successive years. Increases in both of these plant characteristics decreased or stopped before foliar symptoms were apparent. Seed cotton yields of plant cohorts that developed foliar wilt symptoms early in the season (before 2,000 F degree-days) were variable but not much different in these years. This contrasted with cohorts of plants that first showed foliar symptoms late in the season (after 2,400 F degree-days) and cohorts of plants that showed no foliar symptoms of wilt. Regression analyses for 1982-1984 indicated moderate to weak correlations (r = 0.16-0.74) of the time of appearance of the first foliar symptoms and seed cotton yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号