首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 341 毫秒
1.
Nearly 5700 plants of 14 cultivated and 8 wildAllium species and varieties from the Netherlands and other parts of the world, were tested for infection with aphid-borne potyviruses by ELISA, electron microscope decoration tests and/or inoculation onto test plants. This resulted in the detection of two known viruses, viz. leek yellow stripe virus (LYSV) and onion yellow dwarf virus (OYDV), and the discovery and characterization of two new viruses, viz. shallot yellow stripe virus (SYSV) and Welsh onion yellow stripe virus (WoYSV), and of six strains of these viruses. ‘Garlic mosaic’, ‘barlic yellow streak’, ‘onion mosaic’, ‘shallot mosaic’, ‘shallot X’, and ‘shallot yellows’ viruses, incompletely described in the literature, are now reidentified as well-known viruses or as strains or mixtures of such viruses. ‘Garlic yellow stripe virus’ is also a complex containing a potyvirus possibly differing from the viruses found in this survey. The symptoms of the potyviruses studied varied widely and ranged from mild to severe chlorotic to yellow striping of leaves, and they are of little diagnostic importance.LYSV was found in vegetatively propagated pearl onion (A. ampeloprasum var.sectivum) from Europe and Asia. It has decreased in leek crops (A. ampeloprasum var.porrum) in the Netherlands since the 1970, apparently due to resistance in new cultivars. OYDV was common in onion (A. cepa var.cepa) from the former USSR and North Africa, and in European cultivars of shallot (A. cepa var.ascalonicum), with the exception of the highly resistant ‘Santé’, but was not detected during this survey in Asian shallot. European samples of ever-ready onion (A. cepa var.perutile), multiplier onion (A. cepa var.aggregatum) and tree onion (A. cepa var.viviparum) contained OYDV. It was also found in sand leek (A. scorodoprasum) from european gene collections. A strain of OYDV from onion and shallot in Morocco and Spain was virulent on onion and shallot cultivars resistant to common OYDV, as reported early for a similar isolate in the USA.Asian shallot appeared generally infected with the new SYSV, similar to OYDV in host range and symptoms but serologically distinct. It was not detected in onion and shallot from Europe or North Africa. A virulent strain of this virus caused striping in sap-inoculated garlic (A. sativum) and Formosan lily (Lilium formosanum). The new WoYSV, infecting Welsh onion in Indonesia and Japan, was earlier described in Japan as OYDV from rakkyo and Welsh onion. It appeared serologically closely related to SYSV and distantly to OYDV, but differed in its host range.Host-specific strains of LYSV and OYDV were detected in garlic, wild garlic (A. longicuspis), an unidentifiedAllium species (suffix-G), and great-headed garlic (A. ampeloprasum var.holmense) (suffix-GhG)., LYSV-G and OYDV-G infected on average 45% and 73%, respectively, of the garlic samples of worldwide origin. Symptoms of isolates of both strains varied in severity, implying the necessity of serological tests for disease diagnosis and health certification. LYSV-GhG was the cause of yellow striping in 93% of the great-headed garlic plants tested, mainly from the Mediterranean area. One sample was also infected with OYDV-GhG.Many samples from vegetatively propagated crops grown from non-certified planting stock contained a few plants free of potyviruses, implying the possibility to obtain healthy (and possibly resistant) selections of such cultivars avoiding meristem-tip culture. Cross-protection of garlic sets by a mild potyvirus isolate seems to be an alternative to the use of vulnerable virus-free sets.Generally, viruses and virus strains could not be transmitted to anyAllium species other than their natural host, except to the highly susceptible crow garlic (A. vineale). This species, and other predominantly vegetatively propagating wildAllium spp. (field garlic,A. oleraceum; ramsons,A. ursinum; sand leek), were found not to be reservoirs of viruses that might infectAllium crops in the netherlands. Streaking in vegetatively propagated wild leeks (A. ampeloprasum and closely related species) originating from the Mediterranean area and Asia was due to an undescribed miteborne virus. The survey confirmed that spread of potyviruses inAllium crops in the Netherlands is from planting sets, and from a neighbouring crop only if of the same species.  相似文献   

2.
本研究为明确吉林和黑龙江省毛葱病毒病发生率,从两省5个地区共采集255份毛葱样品。根据毛葱4种主要病毒基因组序列设计特异性引物,对胡葱黄条病毒Shallot yellow stripe virus(SYSV)和青葱X病毒Shallot virus X (SVX)、洋葱黄矮病毒Onion yellow dwarf virus (OYDV)和葱潜隐病毒Shallot latent virus (SLV)进行双重RT-PCR检测。结果表明,229份样品检出病毒,带毒率为89.8%,SLV的检出率最高,达87.06%,OYDV次之,为36.86%,SYSV检出率偏低,为0.78%;同时存在病毒复合侵染,其中双病毒复合侵染为SLV和OYDV,检出率为33.3%;三病毒复合侵染为SYSV、OYDV和SLV,检出率为0.78%,未发现4种病毒复合侵染。本研究为吉林和黑龙江种植区毛葱病毒病防治提供了参考依据。  相似文献   

3.
Surveys to identify virus diseases affecting garlic ( Allium sativum ), onion ( Allium cepa ) and Persian leek ( Allium ampeloprasum var. persicum ) were conducted from 1999 to 2002. Surveys covered different regions of Iran (Tehran [different vegetable markets, farmer fields and cultivation areas], Noushahr, Chalous, Roudbar, Sari, Hamadan, Touyserkan, Ghazvin and Jiroft). A total of 2045 (1285 garlic, 525 onion and 230 leek) samples showing symptoms of virus infection were collected and tested by ELISA; and in some cases tests were also confirmed by immunoelectron microscopy (IEM) for the presence of Allium viruses. ELISA results showed that the following viruses were detected: Onion yellow dwarf virus (OYDV), Leek yellow stripe virus (LYSV) (genus Potyvirus , family Potyviridae ), Garlic common latent virus (GarCLV), Shallot latent virus (SLV) (genus Carlavirus ), Garlic virus D (GarV-D), Garlic virus B (GarV-B) and Garlic virus C type (GarV-C) (genus Allexivirus ). None of the samples reacted with antibodies to Shallot yellow stripe virus (SYSV) genus Potyvirus , family Potyviridae ), Shallot virus X (ShVX) and Garlic virus A (GarV-A, genus Allexivirus ). GarCLV, SLV, GarV-D, GarV-B and GarV-C are reported for the first time from Allium crops in Iran.  相似文献   

4.
Since 1970 yellow stripe disease of leek (Allium porrum) has developed epidemically in the south-eastern part of the Netherlands coincident with increasing year-around cultivation of the crop. Many autumn and winter crops now become totally infected. Apparently similar attacks, first reported in Germany in 1937, are increasingly attracting attention in various European countries. This paper describes the leek yellow stripe virus (LYSV) as a new potyvirus related to onion yellow dwarf virus (OYDV), which was so far incompletely described. LYSV is hardly infectious to onion (A. cepa) and shallot (A. ascalonicum) and OYDV behaves similarly on leek. The leek virus further differs from OYDV in not being infectious toA. fistulosum and in causing distinct local lesions onChenopodium amaranticolor andC. quinoa. The two viruses closely resemble each other in external symptoms in their respective hosts, in persistence of infectivity in expressed sap, and in particle morphology and length (LYSV 820 nm; OYDV 833 nm). Intracytoplasmic inclusion bodies slightly differ. Further biophysical characters of the two viruses, such as sedimentation coefficient (OYDV 143 S), buoyant density in CsCl (LYSV 1.326; OYDV 1.306, or 1.258 in Cs2SO4), and molecular mass of coat protein subunit (LYSV 34000; OYDV 30000 dalton), are characteristic of the potyvirus group, but do not assist in judging their relationships. Serologically they are only distantly related if at all. The leek virus is not seed-borne. It is aphid-transmitted in the non-persistent manner and its main epidemic build-up is during late summer and autumn. The sole sources of infection are nearby leek crops. Awaiting the development of resistant leek cultivars, it is advised to avoid sowing leek seed beds and planting spring crops near overwintering leek, and to remove infected plants showing up during summer.  相似文献   

5.
Serological analysis (ELISA, immunoblotting, and immunoelectron microscopy) of the partially purified virus preparations obtained from shallot plants (selection sample no. 83) inoculated with the Mongolian isolate of onion yellow dwarf potyvirus (OYDV) revealed neither an OYDV coat protein antigen nor virions decorated by the corresponding antiserum. At the same time, these preparations contained many flexuous filamentous virus particles (FFVP) with a modal length of 780 nm. It is suggested that shallot no. 83 is resistant at least to the Mongolian isolate of OYDV, while the discovered FFVPs are the virions of some other viral agent. The nature and origin of a new virus are now under study in this laboratory  相似文献   

6.
Plant virus eradication is a prerequisite for the use of virus-free propagules for sustainable crop production. In contrast, virus preservation is required for all types of applied and basic research of viruses. Shoot tip cryopreservation can act as a double-edged strategy, facilitating either virus eradication or virus preservation in cryoderived plants. Here, we tested the efficacies of shoot tip cryopreservation for virus eradication and preservation in shallot (Allium cepa var. aggregatum). In vitro stock shallot shoots infected with onion yellow dwarf virus (OYDV) and shallot latent virus were thermotreated for 0, 2, and 4 weeks at a constant temperature of 36℃ before shoot tip cryopreservation. Results showed that viruses were preserved in recovered shoots when thermotherapy was not applied. Although thermotherapy lowered the regrowth levels of cryotreated shoot tips, the efficiency of virus eradication increased from 5% to 54%. Immunolocalization of OYDV and histological observation of cryotreated shoot tips showed the high frequency of virus preservation was due to the viral invasion of cells close to the apical meristem and the high proportion of cells surviving. Four weeks of thermotherapy drastically decreased the distribution of OYDV, as well as the percentage of surviving cells within the shoot tips, thereby promoting virus eradication. Virus-free plants obtained from combining thermotherapy with cryotherapy showed significantly improved vegetative growth and bulb production. The present study reports how thermotherapy can act as a trigger to facilitate either the safe preservation of Allium viruses or the production of virus-free shallot plants.  相似文献   

7.
A survey identified viruses infecting garlic, leek and onion crops and wild Allium species in Greece. Virus identification was based on ELISA, immunoelectron microscopy, and occasionally on RT-PCR. Samples of cultivated Allium species were collected from five districts, whereas samples of twenty-seven wild Allium species were also collected from all over Greece. Onion yellow dwarf virus (OYDV) and Leek yellow stripe virus (LYSV) were identified in 98.5% and 83.7% of all samples, respectively, and were found in all regions. Allexiviruses were also detected in all regions and their incidence ranged from 62.5% to 70.5% (depending on region and type of allexivirus). Garlic common latent virus (GCLV) was detected in samples from Arcadia (97.6%) and Evia (18.0%) and in one field in Larissa (23.0%). Shallot latent virus (SLV) was found only in two areas (Evros and Theva) and in fields planted with imported propagative material, from Iran and China. The incidence of virus-like symptoms in leek crops ranged from 10.0% to 90.0% in different regions and fields and all symptomatic plants were found to be infected by LYSV. Onion yellow dwarf virus was only found in seven symptomatic onion samples from southern Greece. Allium ampeloprasum spp. ampeloprasum and Allium flavum, were the only wild Allium species found to be infected with LYSV. Finally Turnip mosaic virus (TuMV) was found in A. sphaerocephalon, A. guttatum, A. subhirsutum, and A. neapolitanum.  相似文献   

8.
Protocols for producing virus-free Allium plants require an indexing system that is more sensitive than DAS-ELISA and can detect low virus concentrations in infected plants. In the present work, degenerate primers were designed and a one-step IC-RT-PCR protocol was developed to differentiate between Leek yellow stripe virus (LYSV) and Onion yellow dwarf virus (OYDV) in single and mixed infections in several Allium spp. A 566-bp band was observed for LYSV, a 489-bp band for OYDV in single infections, and two bands of the same sizes in mixed infections in different species of Alliaceae. A 508-bp band of Shallot yellow stripe virus and a 594-bp band of Turnip mosaic virus were also amplified with the same primers. RT-nested-PCR was also conducted directly in microtitre plate wells after negative or questionable reactions were produced in an ELISA experiment. The detection limit of the DAS-ELISA for LYSV was 16.5–27.3 ng ml−1. The RT-nested-PCR done after DAS-ELISA was 102 times more sensitive than the DAS-ELISA alone. In parallel, an IC-RT-nested-PCR in microcentrifuge tubes was 104 times more sensitive than the DAS-ELISA. The DAS-ELISA-RT-nested-PCR enables the initial screening of samples by DAS-ELISA to eliminate a high percentage of virus-positive plants, considerably reducing the number of plants to analyze further by RT-PCR.  相似文献   

9.
While testing several samples of onion and of vegetatively propagated garlic, sand leek and shallot from a number of countries, virus isolates with unusually flexuous particles were obtained by mite (Aceria tulipae) or sap transmissions. No aphid-borne poty-or carlavirus was transmitted by mites, and mite-borne virus isolates could not be transmitted by aphids. The mite-borne isolates did not react with antisera to aphid-borne potyviruses ofAllium spp. or with the Agdia potyvirus group monoclonal. In contrast to the mite-borne onion and garlic mosaic viruses reported in the literature, our mite-borne isolates induced no visible or only very mild symptoms inAllium spp., except isolates from shallot ‘Santé’ which caused diffuse striping. Heavily mite-infested test plants or plant samples showed streaking and malformation due to mite feeding (tangle-top). The mite-borne virus isolates could be classified with test plants and a discriminating antiserum into three groups, representing two viruses and a strain of one of them. They are tentatively named onion mite-borne latent virus (OMbLV), garlic strain of this virus (OMbLV-G), and shallot mite-borne latent virus (SMbLV). Mite transmission, length of virus particles (ca. 700 to 800 nm), and the presence of granular inclusion bodies in infected tissue indicate that the viruses belong to the mite-borne genusRymovirus of the familyPotyviridae. OMbLV from shallot and onion, and OMbLV-G from garlic and sand leek, can be assayed onChenopodium murale but differ in their natural hosts. They are very common. SMbLV, to whichC. murale does not react, was isolated from shallot originating from Asia and Russia.  相似文献   

10.
ABSTRACT Because there were no previous reports on the molecular characterization of Potato virus V (PVV, genus Potyvirus, family Potyviridae), the complete genomic sequence of PVV isolate Dv42 was determined. The length of the single-stranded messenger-polarity RNA genome was 9,851 nt (nucleotides), followed by a poly(A) tail. The genome contained a 5'-terminal nontranslated region (5'-NTR; 204 nt), a single open reading frame (nucleotides 205-9406; 3,067 amino acids), and a 3'-NTR that was unusually long (446 nt) compared with that of Potato virus Y (PVY; 331-nt 3'-NTR), Potato virus A (PVA; 207-nt 3'-NTR), and other potyviruses that naturally infect Solanaceae species. Phylogenetic analysis with the cylindrical inclusion protein-encoding and coat protein (CP)-encoding regions indicated that PVV Dv42 was most closely related to Pepper mottle virus and PVY, respectively. Seven PVV isolates (including Dv42) collected from cultivated potatoes in the Netherlands, the United Kingdom, and Norway from 1964 to 1997 were uniform in serological properties and symptomatology in indicator hosts that could distinguish strains of PVY and PVA. The nucleotide sequences of the 5'-NTR, P1, CP, and 3'-NTR regions of the PVV isolates were determined and were 94.6 to 99.5, 96.3 to 98.8, 96.4 to 98.7, and 96.3 to 99.6% identical, respectively. The amino acid similarities for the P1 and CP were 95.8 to 98.6 and 96.0 to 97.8%, respectively. Phylogenetic analysis of the CP sequences of PVV revealed no significant grouping, in contrast to PVY and PVA, which were grouped largely according to the previously recognized strains based on host responses. However, the relatively few differences in the P1 sequences of PVV were correlated with the different countries of origin. Hence, the PVV isolates infecting potatoes in Europe seem to vary little genetically and may belong to a single strain.  相似文献   

11.
12.
Carlavirus isolates from cultivated Allium species represent three viruses   总被引:3,自引:0,他引:3  
From 12 cultivated and mostly vegetatively propagatedAllium species and varieties tested for carlavirus infections, 94 virus isolates were obtained which varied greatly on indicator hosts.Chenopodium amaranticolor, C. quinoa, Celosia argentea var.plumosa Geisha,Nicotiana hesperis accession 67A andN. occidentalis accession P1 proved valuable for detection, isolation and propagation of part of the isolates. The latter three species are new experimental hosts for carlaviruses ofAllium species. Other isolates could only be transmitted toAllium species such as crow garlic (A. vineale) leek (A. ampeloprasum var.porrum) and onion (A. cepa var.cepa). The isolates were grouped into three viruses by differential hosts and host reactions and their reaction with four antisera.Shallot latent virus (SLV) was found in ever-ready onion (A. cepa var.perutile), grey shallot (unidentifiedAllium species), multiplier onion (A. cepa var.aggregatum), pearl onion (A. ampeloprasum var.sectivum), rakkyo (A. chinense), shallot (A. cepa var.ascalonicum), and Welsh onion (A. fistulosum). Virus isolates from garlic and Asian shallot, fully reacting with antiserum to SLV but differing in host reactions from the SLV type-isolate, are now described as garlic strain (SLV-G) and Asian shallot strain of the virus, respectively. The garlic latent virus from garlic described in Japan is now considered identical with SLV-G.A carlavirus almost universal in garlic, and also found in great-headed garlic (A. ampeloprasum var.holmense), in an unidentifiedAllium species, and occasionally in leek, did not react with the antisera to SLV and the Japanese garlic latent virus, and is now described as the new garlic common latent virus (GCLV). It appeared identical to a virus erroneously identified in Germany as garlic latent virus.The new Sint-Jan's-onion latent virus (SjoLV) from Utrechtse Sint-Jan's onion (unidentifiedAllium species) from the Netherlands and similar crops originating from other countries, did not induce reactions in test plants and could only be detected by electron microscope decoration tests. It reacted equally wellwith the antisera to SLV and GCLV. It was also present together with SLV in ever-ready onion, pearl onion, rakkyo, shallot, and Welsh onion. Garlic latent virus reported in Japan from hosts other than garlic should be regarded as SLV, SjoLV, or a mixture of these viruses.The carlaviruses were not detected in wild plants of ramsons (A. ursinum), and of the predominantly vegetatively propagated crow garlic (A. vineale), field garlic (A. oleraceum), and sand leek (A. scorodoprasum), collected in the Netherlands.Severe reactions in the indicator hosts incidentally revealed soil-borne viruses in shallot (the nepovirusesArabis mosaic virus (ArMV) and tomato black ring virus) and crow garlic (ArMV and the tobravirus tobacco rattle virus). Tobacco necrosis virus (necrovirus) was detected in roots of shallot.  相似文献   

13.
Onion yellow dwarf virus (OYDV) was detected in cloves and aerial bulblets of garlic (Allium sativum) at levels as high as or higher than in leaves of plants grown from tested cloves. It is recommended to test bulblets or a few cloves per bulb before planting to determine if all cloves of a bulb are virus-free. This aids in early detection and allows a more thorough testing of stock than field testing.  相似文献   

14.
Cucurbit potyviruses were collected in the field in Israel and subcultured in indicator plants in a greenhouse. Partial characterization of the Israeli cucurbit potyviruses was done on the basis of host reaction using cucurbits, peas andChenopodium spp. as hosts. Further classification of potyviruses was done by enzyme-linked immunosorbent assay (ELISA) and serological specific electron microscopy (SSEM). By these methods it was possible to identify three of the four isolates as strains of the zucchini yellow mosaic virus, while the fourth was identified as watermelon mosaic virus-2. Two of the ZYMV isolates were nonaphid-transmissible following prolonged mechanical transmission in a greenhouse. Both of these isolates were found to produce helper components capable of assisting the transmission of virions from a transmissible isolate but not those of their own.  相似文献   

15.
Mechanical inoculation tests and ELISA with sap from garlic plants used for sanitation by meristem-tip culture revealed four viruses, viz. garlic common latent virus (GCLV) (carlavirus), the garlic strains of leek yellow stripe virus (LYSV-G), onion yellow dwarf virus (OYDV-G) (aphid-borne potyviruses), and onion mite-borne latent virus (OMbLV-G) (taxonomically unassigned virus). The same tests performed on explants grownin vitro showed elimination efficiencies of 100% for LYSV-G, 92% for OYDV-G, 62% for GCLV, and less then 54% for OMbLV-G.Meristem tips excised from garlic cloves and bulbils, 0.15–1.0 mm in size, were tested for regeneration and efficiency of virus elimination after transfer to Murashige and Skoog medium. Successful regeneration into plantlets was obtained with 71% of the meristems from cloves and 72% of those from bulbils, but virus elimination was easiest from cloves: 38% of all explants from cloves and 25% of those from bulbils were virus-free. The efficiency of elimination increased with increasing weight of the cloves, irrespective of the virus. Small tip size seemed to favour virus elimination, but sizes smaller than 0.4 mm led to increasing failure of regeneration.Micropropagation was most successful when cytokinins were omitted from the medium and the garlic shoot was split. Multiplication factors of 3–6 were obtained.  相似文献   

16.
17.
Bhat  Varma  Pappu  Rajamannar  Jain  & Praveen 《Plant pathology》1999,48(5):648-654
A potyvirus (eggplant mottle virus, EMoV) causing mosaic mottling in eggplant ( Solanum melongena ) was characterized on the basis of biological, serological and partial nucleotide sequence properties. EMoV infected Chenopodium amaranticolor and members of the Solanaceae. Polyclonal antiserum against EMoV showed antigenic relationship with henbane mosaic potyvirus (HMV) and potato Y potyvirus (PVY). Virus-specific antibodies directed to the N-terminal region of EMoV cross-reacted only with PVY. Determination and comparison of nucleotide sequence of the coat protein (CP) and the 3'-untranslated region (UTR) of EMoV with other potyviruses showed that the level of homology was highest with PVY isolates. Comparative sequence analyses of the CP amino acid and 3'-UTR sequences with distinct PVY isolates placed EMoV within the PVYO subgroup.  相似文献   

18.
Inoculation of a range of Allium species and two non-alliaceous species with isolates of Cladosporiumallii-cepae and C. allii , obtained from onion and leek, respectively, demonstrated that the two pathogens had distinct host ranges. Conidia of C. allii-cepae, applied either dry or in aqueous suspension, infected A. altaicum, A. fistulosum (Japanese bunching onion), A. cepa (bulb onion), A. cepa var. ascalonicum (shallot), A. galanthum, A. pskemense and A. vavilovii . Dry conidia of C. allii applied at a high concentration caused atypical necrosis on A. altaicum, A. fistulosum, A. cepa var. ascalonicum, A. galanthum, A. pskemense, A. vavilovii, A. sativum (garlic), A. ampeloprasum and A. porrum (leek). Only A. ampeloprasum and A. porrum became typically infected following inoculation with conidia applied dry at low concentration or in aqueous suspension. Isolates of C. allii from leek failed to infect A. vineale, the type host. The length of conidia of a single isolate of C. allii-cepae varied significantly on different Allium spp.  相似文献   

19.
 大麦黄矮病毒PAV株系由麦长管蚜和禾谷缢管蚜传毒。本研究通过RT-PCR、克隆和序列测定后,确认所得到的我国小麦PAV分离物的外壳蛋白基因片段由600个核苷酸组成,编码199个氨基酸。序列同源性比较结果显示,与BYDV的其它株系典型分离物的外壳蛋白基因同源性最高为74.5%,而与国外发表的PAV 8个分离物的CP基因核苷酸同源性为81%左右,且同源性比较的分值也较其它株系高。氨基酸序列的比较中,仅在46到60位氨基酸差别较大。  相似文献   

20.
New mite-borne virus isolates from rakkyo,shallot and wild leek species   总被引:2,自引:0,他引:2  
Flexuous viruses were transmitted from rakkyo (Allium chinense) and wild leek species (especiallyA. commutatum) to plants of crow garlic (A. vineale), by transfer of dry bulb mites. By electron microscope decoration tests using three antisera and by inoculations onto test plants, it was concluded that from each of the two natural host species at least two viruses were isolated. The viruses from wild leeks are both pathogenic onAllium spp. and may be of economic importance. Decoration tests on a virus mixture from shallot obtained earlier, revealed another new mite-borne virus in this species. The mite-borne viruses ofAllium spp. appear to be very common; they are largely diverse and their identification remains difficult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号