首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ObjectiveTo compare anaesthesia induced with either alfaxalone or ketamine in horses following premedication with xylazine and guaifenesin.Study designRandomized blinded cross-over experimental study.AnimalsSix adult horses, five Standardbreds and one Thoroughbred; two mares and four geldings.MethodsEach horse received, on separate occasions, induction of anaesthesia with either ketamine 2.2 mg kg?1 or alfaxalone 1 mg kg?1. Premedication was with xylazine 0.5 mg kg?1 and guaifenesin 35 mg kg?1. Incidence of tremors/shaking after induction, recovery and ataxia on recovery were scored. Time to recovery was recorded. Partial pressure of arterial blood oxygen (PaO2) and carbon dioxide (PaO2), arterial blood pressures, heart rate (HR) and respiratory rates were recorded before premedication and at intervals during anaesthesia. Data were analyzed using Wilcoxon matched pairs signed rank test and are expressed as median (range).ResultsThere was no difference in the quality of recovery or in ataxia scores. Horses receiving alfaxalone exhibited a higher incidence of tremors/shaking on induction compared with those receiving ketamine (five and one of six horses respectively). Horses recovered to standing similarly [28 (24–47) minutes for alfaxalone; 22 (18–35) for ketamine] but took longer to recover adequately to return to the paddock after alfaxalone [44 (38–67) minutes] compared with ketamine [35 (30–47)]. There was no statistical difference between treatments in effect on HR, PaO2 or PaCO2 although for both regimens, PaO2 decreased with respect to before premedication values. There was no difference between treatments in effect on blood pressure.Conclusions and clinical relevanceBoth alfaxalone and ketamine were effective at inducing anaesthesia, although at induction there were more muscle tremors after alfaxalone. As there were no differences between treatments in relation to cardiopulmonary responses or quality of recovery, and only minor differences in recovery times, both agents appear suitable for this purpose following the premedication regimen used in this study.  相似文献   

2.
Seven Thoroughbred horses were castrated under total intravenous anesthesia (TIVA) using propofol and medetomidine. After premedication with medetomidine (5.0 μg/kg, intravenously), anesthesia was induced with guaifenesin (100 mg/kg, intravenously) and propofol (3.0 mg/kg, intravenously) and maintained with constant rate infusions of medetomidine (0.05 μg/kg/min) and propofol (0.1 mg/kg/min). Quality of induction was judged excellent to good. Three horses showed insufficient anesthesia and received additional anesthetic. Arterial blood pressure changed within an acceptable range in all horses. Decreases in respiratory rate and hypercapnia were observed in all horses. Three horses showed apnea within a short period of time. Recovery from anesthesia was calm and smooth in all horses. The TIVA-regimen used in this study provides clinically effective anesthesia for castration in horses. However, assisted ventilation should be considered to minimize respiratory depression.  相似文献   

3.
4.
Forty-eight horses subjected to elective surgery were randomly assigned to three groups of 16 horses. After premedication with 0.1 mg/kg acepromazine intramuscularly and 0.6 mg/kg xylazine intravenously, anaesthesia was induced either with 2 g thiopentone in 500 ml of a 10 per cent guaifenesin solution, given intravenously at a dose of 1 ml/kg (group TG), or with 100 mg/kg guaifenesin and 2.2 mg/kg ketamine given intravenously (group KG), or with 0.06 mg/kg midazolam, and 2.2 mg/kg ketamine given intravenously (group KM). Anaesthesia was maintained with isoflurane. The mean (sd) end tidal isoflurane concentration (per cent) needed to maintain a light surgical anaesthesia (stage III, plane 2) was significantly lower in group KM (0.91 [0.03]) than in groups TG (1.11 [0.03]) and KG (1.14 [0.03]). The mean (sd) arterial pressure (mmHg) was significantly lower in group KG (67.4 [2.07]) than in groups TC (75.6 [2.23]) and KM (81.0 [2.16]). There were no significant differences in the logarithm of the heart rate, recovery time or quality of recovery between the three induction groups. However, pronounced ataxia was observed in the horses of group KM, especially after periods of anaesthesia lasting less than 75 minutes.  相似文献   

5.
To evaluate clinical usefulness of xylazine (1.0 mg/kg)-midazolam (20 microg/kg)-propofol (3.0 mg/kg) anesthesia in horses, 6 adult Thoroughbred horses were examined. The quality of induction varied from poor to excellent and 5 out of 6 horses presented myotonus in the front half of the body. However, paddling immediately after induction observed in other reports of equine propofol anesthesia was not observed. Recovery time was 35.3 +/- 9.3 min and the quality of recovery was calm and smooth in all horses. Respiration rate decreased after induction and hypoxemia was observed during lateral recumbency. Heart rate also decreased after induction, however mean arterial blood pressure was maintained above approximately 100 mmHg.  相似文献   

6.
Objective  We hypothesized that propofol can produce rapidly-reversible, dose-dependent standing sedation in horses.
Study design  Prospective randomized, blinded, experimental trial.
Animals  Twelve healthy horses aged 12 ± 6 years (mean ± SD), weighing 565 ± 20 kg, and with an equal distribution of mares and geldings.
Methods  Propofol was administered as an intravenous bolus at one of three randomized doses (0.20, 0.35 and 0.50 mg kg−1). Cardiovascular and behavioral measurements were made by a single investigator, who was blinded to treatment dose, at 3 minute intervals until subjective behavior scores returned to pre-sedation baseline values. Continuous data were analyzed over time using repeated-measures anova and noncontinuous data were analyzed using Friedman tests.
Results  There were no significant propofol dose or temporal effects on heart rate, respiratory rate, vertical head height, or jugular venous blood gases (pHv, PvO2, PvCO2). The 0.35 mg kg−1 dose caused mild sedation lasting up to 6 minutes. The 0.50 mg kg−1 dose increased sedation depth and duration, but with increased ataxia and apparent muscle weakness.
Conclusions and clinical relevance  Intravenous 0.35 mg kg−1 propofol provided brief, mild sedation in horses. Caution is warranted at higher doses due to increased risk of ataxia.  相似文献   

7.
8.
9.
10.
Propofol is a potentially useful intravenous anesthetic agent for total intravenous anesthesia (TIVA) in horses. The purpose of this study was to compare the anesthetic and cardiorespiratory effects of TIVA following the administration of propofol alone(P–TIVA) and ketamine–medetomidine–propofol (KM–P–TIVA) in adult horses. The carotid artery was translocated to a subcutaneous position during TIVA with P–TIVA (n = 6) or KM–P–TIVA (n = 6). All horses were premedicated with medetomidine [0.005 mg kg–1, intravenously (IV)]. Anesthesia was induced with midazolam (0.04 mg kg–1 IV) and ketamine (2.5 mg kg IV). All horses were orotracheally intubated and breathed 100% oxygen. The KM drug combination (ketamine 40 mg mL–1 and medetomidine 0.05 mg mL–1) was infused at a rate of 0.025 mL kg–1 hour–1. Subsequently, a loading dose of propofol (0.5 mg kg–1, bolus IV) was administered to all horses; surgical anesthesia (determined by horse response to incision and surgical manipulation, positive response being purposeful or spontaneous movement of limbs or head) was maintained by varying the propofol infusion rate as needed. Arterial blood pressure and HR were also monitored. Both methods of producing TIVA provided excellent general anesthesia for the surgical procedure. Anesthesia time was 115 ± 17 (mean ± SD) and 112 ± 11 minutes in horses anesthetized with KM–P–TIVA and P–TIVA, respectively. The infusion rate of propofol required to maintain surgical anesthesia with KM–P–TIVA was significantly less than for P–TIVA (mean infusion rate of propofol during anesthesia; KM–P–TIVA 0.15 0.02 P–TIVA 0.23 ± 0.03 mg kg–1 minute–1, p = 0.004). Apnea occurred in all horses lasting 1–2 minutes and intermittent positive pressure ventilation was started. Cardiovascular function was maintained during both methods of producing TIVA. There were no differences in the time to standing after the cessation of anesthesia (KM–P–TIVA 62 ± 10 minutes versus P–TIVA 87 ± 36 minutes, p = 0.150). The quality of recovery was good in KM–P–TIVA and satisfactory in P–TIVA. KM–P–TIVA and P–TIVA produced clinically useful general anesthesia with minimum cardiovascular depression. Positive pressure ventilation was required to treat respiratory depression. Respiratory depression and apnea must be considered prior to the use of propofol in the horse.  相似文献   

11.
Guaifenesin is an expectorant commonly used in performance horses to aid in the clearance of mucus from the airways. Guaifenesin is also a centrally acting skeletal muscle relaxant and as such is a prohibited drug with withdrawal necessary prior to competition. To the authors' knowledge, there are no reports in the literature describing single or multiple oral administrations of guaifenesin in the horse to determine a regulatory threshold and related withdrawal time. Therefore, the objective of the current study was to describe the pharmacokinetics of guaifenesin following oral administration in order to provide data upon which appropriate regulatory recommendations can be established. Nine exercised Thoroughbred horses were administered 2 g of guaifenesin orally BID for a total of five doses. Blood samples were collected immediately prior to drug administration and at various times postadministration. Serum guaifenesin concentrations were determined and pharmacokinetic parameters calculated. Guaifenesin was rapidly absorbed (Tmax of 15 min) following oral administration. The Cmax was 681.3 ± 323.8 ng/mL and 1080 ± 732.8 following the first and last dose, respectively. The serum elimination half‐life was 2.62 ± 1.24 h. Average serum guaifenesin concentrations remained above the LOQ of the assay (0.5 ng/mL) by 48 h postadministration of the final dose in 3 of 9 horses.  相似文献   

12.
We examined the influence of propofol infusion on cardiovascular system at the rate of 0.14, 0.20 and 0.30 mg/kg/min in six adult Thoroughbred horses. The cardiovascular parameters were heart rate (HR), mean arterial pressure (MAP), mean right atrial pressure (MRAP), stroke volume (SV), cardiac output (CO), systemic vascular resistance (SVR), pre-ejection period (PEP) and ejection time (ET). In order to keep the ventilation conditions constantly, intermittent positive pressure ventilation was performed, and the partial arterial CO(2) pressure was maintained at 45 to 55 mmHg during maintenance anesthesia. SV showed a significant dose-dependent decrease however, CO did not show significant change. SVR decreased significantly at higher dose. PEP was prolonged and PEP/ET increased significantly at the highest dose. From these results, it became clear that SV decreases dose-dependently due to decrease of cardiac contractility during anesthesia with continuous propofol infusion in horses. On the other hand, since MAP and CO did not show significant changes, total intravenous anesthesia with propofol was suggested to be suitable for long-term anesthesia in horses.  相似文献   

13.
Reasons for performing study: Studies have demonstrated the clinical usefulness of propofol for anaesthesia in horses but the use of a concentrated solution requires further investigation. Objectives: To determine the anaesthetic and cardiorespiratory responses to a bolus injection of 10% propofol solution in mature horses. Methods: Three randomised crossover experimental trials were completed. Trial 1: 6 horses were selected randomly to receive 10% propofol (2, 4 or 8 mg/kg bwt i.v.). Trial 2: 6 horses received 1.1 mg/kg bwt i.v. xylazine before being assigned at random to receive one of 5 different doses (1–5 mg/kg bwt) of 10% propofol. Trial 3: 6 horses were sedated with xylazine (0.5 mg/kg bwt, i.v.) and assigned randomly to receive 10% propofol (3, 4 or 5 mg/kg bwt, i.v.); anaesthesia was maintained for 60 min using an infusion of 1% propofol (0.2‐0.4 mg/kg bwt/min). Cardiorespiratory data, the quality of anaesthesia, and times for induction, maintenance and recovery from anaesthesia and the number of attempts to stand were recorded. Results: Trial 1 was terminated after 2 horses had received each dose of 10% propofol. The quality of induction, anaesthesia and recovery from anaesthesia was judged to be unsatisfactory. Trial 2: 3 horses administered 1 mg/kg bwt and one administered 2 mg/kg bwt were not considered to be anaesthetised. Horses administered 3–5 mg/kg bwt i.v. propofol were anaesthetised for periods ranging from approximately 10–25 min. The PaO2 was significantly decreased in horses administered 3–5 mg/kg bwt i.v. propofol. Trial 3: The quality of induction and recovery from anaesthesia were judged to be acceptable in all horses. Heart rate and rhythm, and arterial blood pressure were unchanged or decreased slightly during propofol infusion period. Conclusions: Anaesthesia can be induced with a 10% propofol solution and maintained with a 1% propofol solution in horses administered xylazine as preanaesthetic medication. Hypoventilation and hypoxaemia may occur following administration to mature horses. Potential relevance: Adequate preanaesthetic sedation and oxygen supplementation are required in horses anaesthetised with propofol.  相似文献   

14.
Septic arthritis in horses is a serious disease which can become life-threatening. In case the infection can be eliminated before irreversible joint damage occurs, complete recovery is possible. This article gives an overview of the literature concerning etiology, diagnosis and strategies of therapy in cases of septic arthritis in adult horses, with special reference to novel options of treatment.  相似文献   

15.
Objective-To compare the anesthetic and cardiorespiratory effects of total IV anesthesia with propofol (P-TIVA) or a ketamine-medetomidine-propofol combination (KMP-TIVA) in horses. Design-Randomized experimental trial. Animals-12 horses. Procedure-Horses received medetomidine (0.005 mg/kg [0.002 mg/lb], IV). Anesthesia was induced with midazolam (0.04 mg/kg [0.018 mg/lb], IV) and ketamine (2.5 mg/kg [1.14 mg/lb], IV). All horses received a loading dose of propofol (0.5 mg/kg [0.23 mg/lb], IV), and 6 horses underwent P-TIVA (propofol infusion). Six horses underwent KMP-TIVA (ketamine [1 mg/kg/h {0.45 mg/lb/h}] and medetomidine [0.00125 mg/kg/h {0.0006 mg/lb/h}] infusion; the rate of propofol infusion was adjusted to maintain anesthesia). Arterial blood pressure and heart rate were monitored. Qualities of anesthetic induction, transition to TIVA, and maintenance of and recovery from anesthesia were evaluated. Results-Administration of KMP IV provided satisfactory anesthesia in horses. Compared with the P-TIVA group, the propofol infusion rate was significantly less in horses undergoing KMP-TIVA (0.14 +/- 0.02 mg/kg/min [0.064 +/- 0.009 mg/lb/min] vs 0.22 +/- 0.03 mg/kg/min [0.1 +/- 0.014 mg/lb/min]). In the KMP-TIVA and P-TIVA groups, anesthesia time was 115 +/- 17 minutes and 112 +/- 11 minutes, respectively, and heart rate and arterial blood pressure were maintained within acceptable limits. There was no significant difference in time to standing after cessation of anesthesia between groups. Recovery from KMP-TIVA and P-TIVA was considered good and satisfactory, respectively. Conclusions and Clinical Relevance-In horses, KMP-TIVA and P-TIVA provided clinically useful anesthesia; the ketamine-medetomidine infusion provided a sparing effect on propofol requirement for maintaining anesthesia.  相似文献   

16.
On 74 occasions, 54 horses and 6 foals were anesthetized with xylazine and ketamine or xylazine, guaifenesin, and ketamine, with or without butorphanol. On 64 occasions, anesthesia was prolonged for up to 70 minutes (34 +/- 15 min) by administration of 1 to 9 supplemental IV injections of xylazine and ketamine at approximately a third the initial dosage. All horses except 5 were positioned in lateral recumbency, and oxygen was insufflated. In adult horses, the time from induction of anesthesia to the first supplemental xylazine and ketamine injection was 13 +/- 4 minutes and the time between supplemental injections was 12.1 +/- 3.7 minutes. These results were consistent with predicted plasma ketamine concentration calculated from previously published pharmacokinetic data for ketamine in horses. Respiratory and heart rates and coccygeal artery pressure remained consistent for the duration of anesthesia. The average interval between the last injection of ketamine and assumption of sternal position was approximately 30 minutes, and was the same regardless of the number of supplemental injections. The time to standing was significantly longer (P less than 0.05) in horses given 2 supplemental injections, compared with those not given any or only given 1, but was not longer in horses given 3 supplemental injections. Recovery was considered unsatisfactory in 5 horses, but did not appear to be related to prolongation of anesthesia.  相似文献   

17.
The purpose of this study was to describe clinical, hematological and fecal PCR results from 161 horses involved in outbreaks associated with ECoV. The outbreaks happened at four separate boarding facilities between November 2011 and April 2012 in the States of CA, TX, WI and MA. Following the molecular detection of ECoV in the feces from the initial index cases, the remaining herdmates were closely observed for the development of clinical signs. Fecal samples were collected from sick and healthy horses for the PCR detection of ECoV. All four outbreaks involved primarily adult horses. Fifty-nine horses developed clinical signs with 12–16 sick horses per outbreak. The main clinical signs reported were anorexia, lethargy and fever. Four horses from 3 different outbreaks were euthanized or died due to rapid progression of clinical signs. The cause of death could not be determined with necropsy evaluation in 2 horses, while septicemia secondary to gastrointestinal translocation was suspected in 2 horses. Blood work was available from 10 horses with clinical disease and common hematological abnormalities were leucopenia due to neutropenia and/or lymphopenia. Feces were available for ECoV testing by real-time PCR from 44 and 96 sick and healthy horses, respectively. 38/44 (86%) horses with abnormal clinical signs tested PCR positive for ECoV, while 89/96 (93%) healthy horses tested PCR negative for ECoV. The overall agreement between clinical status and PCR detection of ECoV was 91%. The study results suggest that ECoV is associated with self-limiting clinical and hematological abnormalities in adult horses.  相似文献   

18.
19.
20.
Pharmacokinetics of acyclovir in adult horses   总被引:2,自引:0,他引:2  
Objective: To determine the pharmacokinetics of acyclovir administered intravenously (IV) and orally to healthy adult horses. Design: Random cross‐over with an approximate 1‐week washout period between trials. Setting: University veterinary medical teaching hospital. Animals: Six healthy adult research herd horses. Interventions and main results: Acyclovir was administered IV (10 mg/kg in 1 L isotonic crystalloid solution over 60 minutes) and orally (20 mg/kg) to healthy adult horses. Plasma samples were obtained and acyclovir concentrations were determined by high‐pressure liquid chromatography. Peak concentration (mean±SD) for IV acyclovir was 13.74±5.88 μg/mL at the completion of the 1‐hour infusion. The half‐life of the distribution phase (α) was 0.16 hours while the half‐life of the elimination phase (β) was 9.6 hours. The steady‐state volume of distribution was 3.93±1.21 L/kg. We were unable to measure pharmacokinetics after PO acyclovir as plasma concentrations were below the lower limits of detection in all 6 horses. Conclusions: IV administration of acyclovir to healthy adult horses achieves concentrations within the sensitivity range described for equine herpes virus‐type 1. The oral bioavailability of acyclovir in horses is low and additional studies are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号