首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In June 1995, a disease causing round to irregular-shaped, water-soaked, brown to blackish brown spots on mealycup sage (Salvia farinacea Benth.) was found in Atsugi-shi, Kanagawa Prefecture, Japan. The symptoms were seen only on leaves, not on neither flower petals or stems. The disease was also found in Setagaya-ku, Tokyo, Memambetsu-cho, Hokkaido and Shimoda-shi and Matsuzaki-cho, Shizuoka. An Alternaria sp. was frequently isolated from these diseased plants. The isolates were severely pathogenic to mealycup sage and caused lesions on the inoculated leaves. The isolates were also weakly pathogenic on scarlet sage (S. splendens Sellow ex Roem. and Schult.) but not on any other Labiatae plants tested. Based on morphological characteristics, such as size of conidia, chain number, and the short beak on conidia, the causal fungus was identified as Alternaria alternata (Fr.) Keissler. This report is the first on a mealycup sage disease caused by A. alternata. Because the symptom was restricted to the leaf, the common name of Alternaria leaf spot was proposed. Received 30 August 2002/ Accepted in revised form 18 November 2002  相似文献   

2.
山茱萸褐斑病病原鉴定   总被引:1,自引:0,他引:1  
 山茱萸(Cornus officinalis)为山茱萸科(Cornaceae)山茱萸属植物, 其成熟干燥果肉(俗称枣皮)为我国常用名贵中药材。河南省南阳市(西峡、内乡和南召等县)为我国山茱萸主产区之一, 仅西峡县截止1990年已发展到500万株, 年产枣皮315万kg, 产值达4 200万元, 居全国首位。近年, 作者对西峡县山茱萸产区进行病害调查时发现, 由链格孢菌(Alternaria sp.)引起的山茱萸褐斑病发生普遍, 该病严重发生时可致植株95%以上叶片枯死, 落果率高达87%, 造成山茱萸大幅减产, 给当地果农带来严重经济损失。迄今, 未见链格孢菌引起的山茱萸病害报道。本研究对该病的病原菌进行分离鉴定, 以期为病害的防控提供依据。  相似文献   

3.
A new disease of peach (Prunus persica Batsch var. vulgaris Maxim.), causing brown, sunken lesions and brownish to blackish brown spots with cracks on peach fruits, was found in Okayama prefecture, Japan, in 1995. The disease was observed not only on peach fruits but also on twigs and leaves. An Alternaria sp. was consistently isolated from these diseased fruits, twigs and leaves. The isolates were pathogenic to peach fruits and leaves. Based on the morphological characteristics, the causal fungus was identified as Alternaria alternata (Fr.) Keissler. After cross-inoculation with isolates from peach, Japanese pear and apple, the isolates were found to be pathogenic only to their original host. This is the first report on a peach disease caused by a host-specific A. alternata; therefore, the common name of black spot (`Kokuhanbyo' in Japanese) was proposed. Received 25 June 1999/ Accepted in revised form 12 October 1999  相似文献   

4.
Geraniums (Pelargonium spp.) are traditional ornamental plants largely cultivated in Europe and northern America. Vegetative propagation makes them prone to viral infections, which have detrimental effects on crop production and quality. Asymptomatic samples collected in Spain were tested for a range of viruses using ELISA. The tobamovirus, Tobacco mosaic virus (TMV), the cucumovirus, Cucumber mosaic virus (CMV), and several viruses in the family Tombusviridae, namely, Pelargonium line pattern virus (PLPV), Pelargonium flower break virus (PFBV), and Pelargonium leaf curl virus (PLCV), were detected either singly or in combination in 59.2% of 800 samples. PLPV and PFBV infections were confirmed by dot-blot hybridisation. The most relevant viral infection found on Spanish asymptomatic geraniums was by Pelargonium line pattern virus (PLPV). Symptoms did not develop for 3 years on most of the PLPV infected geranium plants under greenhouse conditions.  相似文献   

5.
Leaf blotch and fruit spot of apple caused by Alternaria species occur in apple orchards in Australia. However, there is no information on the identity of the pathogens and whether one or more Alternaria species cause both diseases in Australia. Using DNA sequencing and morphological and cultural characteristics of 51 isolates obtained from apple leaves and fruit with symptoms in Australia, Alternaria species groups associated with leaf blotch and fruit spot of apples were identified. Sequences of Alternaria allergen a1 and endopolygalacturonase gene regions revealed that multiple Alternaria species groups are associated with both diseases. Phylogenetic analysis of concatenated sequences of the two genes resulted in four clades representing A. arborescens and A. arborescens‐like isolates in clade 1, A. tenuissima/A. mali isolates in clade 2, A. alternata/A. tenuissima intermediate isolates in clade 3 and A. longipes and A. longipes‐like isolates in clade 4. The clades formed using sequence information were supported by colony characteristics and sporulation patterns. The source of the isolates in each clade included both the leaf blotch variant and the fruit spot variant of the disease. Alternaria arborescens‐like isolates were the most prevalent (47%) and occurred in all six states of Australia, while A. alternata/A. tenuissima intermediate isolates (14%) and A. tenuissima/A. mali isolates (6%) occurred mostly in Queensland and New South Wales, respectively. Implications of multiple Alternaria species groups on apples in Australia are discussed.  相似文献   

6.
ABSTRACT Two different pathotypes of Alternaria alternata cause Alternaria brown spot of tangerines and Alternaria leaf spot of rough lemon. The former produces the host-selective ACT-toxin and the latter produces ACR-toxin. Both pathogens induce similar symptoms on leaves or young fruits of their respective hosts, but the host ranges of these pathogens are distinct and one pathogen can be easily distinguished from another by comparing host ranges. We isolated strain BC3-5-1-OS2A from a leaf spot on rough lemon in Florida, and this isolate is pathogenic on both cv. Iyokan tangor and rough lemon and also produces both ACT-toxin and ACR-toxin. Isolate BC3-5-1-OS2A carries both genomic regions, one of which was known only to be present in ACT-toxin producers and the other was known to exist only in ACR-toxin producers. Each of the genomic regions is present on distinct small chromosomes, one of 1.05 Mb and the other of 2.0 Mb. Alternaria species have no known sexual or parasexual cycle in nature and populations of A. alternata on citrus are clonal. Therefore, the ability to produce both toxins was not likely acquired through meiotic or mitotic recombination. We hypothesize that a dispensable chromosome carrying the gene cluster controlling biosynthesis of one of the host-selective toxins was transferred horizontally and rearranged by duplication or translocation in another isolate of the fungus carrying genes for biosynthesis of the other host-selective toxin.  相似文献   

7.
The pathogenicity of Alternaria spp. isolated from wheat leaves collected in regions where alternaria leaf blight has been reported was compared with that of IMI reference isolates of A. triticina and A. alternata using two durum and two bread wheat genotypes. To identify isolates putatively corresponding to A. triticina , morphological and DNA sequence analyses based on ribosomal DNA from the internal transcribed spacer (ITS) region (ITS1, 5·8S rRNA gene, ITS2) and toxicity bioassays of culture filtrate were combined. Glasshouse inoculations provided reliable information to assess the pathogenicity of A. triticina isolates on wheat. Alternaria leaf blight symptoms were produced by the A. triticina isolates only on durum wheat cv. Bansi, while A. alternata , A. tenuissima and A. arborescens isolates were found to be nonpathogenic on the wheat cultivars tested. Alternaria triticina isolates were distinguished from other Alternaria species by Simmons and Roberts' sporulation pattern 6 and two to three conidia per sporulation unit associated with primary conidia bearing long (> 7  µ m) apical secondary conidiophores. Phylogenetic analysis also proved effective at discriminating wheat-pathogenic A. triticina from other nonpathogenic Alternaria species. Alternaria triticina isolates yielded longer ITS sequences than A. alternata , A. tenuissima and A. arborescens isolates, leading to clear-cut differences as visualized with agarose gel electrophoresis. Additionally, only culture filtrates of A. triticina isolates caused nonspecific necrotic lesions on leaves of 3-week-old wheat plants.  相似文献   

8.
云南蓝莓叶斑病的病原菌鉴定   总被引:1,自引:0,他引:1  
<正>蓝莓(Vaccinium spp.)属于杜鹃花科(Ericaceae)越橘属(Vaccinium)多年生小浆果类果树,广泛应用于医药、保健、化妆品和环境保护等领域,联合国粮农组织将其果实列为世界五大健康食品之一。我国已有10多个省份开始大面积的蓝莓商业化栽培[1],这也是南方酸性土丘陵地区值得发展的经济作物。随着栽培面积的不断扩大,蓝莓病害日趋突出,严重影响和制约蓝莓产业的发展。  相似文献   

9.
研究UV-B辐射增强对灯盏花(Erigeron breviscapus)叶斑病致病菌—链格孢菌(Alternaria alternata)的生长、生理及其致病力的影响,并探讨链格孢菌对UV-B辐射的响应机制。结果表明,UV-B辐射增强可延缓链格孢菌的生长,导致菌丝生长率、产孢量、纤维素酶活性及可溶性蛋白含量均显著降低(p0.05),链格孢菌的致病力显著下降(p0.05)。同一UV-B辐射强度下,20~60min的辐射处理对链格孢菌的生长、生理及致病力的影响没有显著性差异(p0.05)。链格孢菌表现出形态学和生理生化方面的UV-B适应机制,来减轻UV-B辐射的损伤。经UV-B辐射处理后的病菌积累较多黑色素,菌落颜色加深,菌丝分布更加致密,菌丝干重显著增加(p0.05);并且,链格孢菌的过氧化氢酶(CAT)活性显著升高(p0.05)。  相似文献   

10.
ABSTRACT Phylogenetic analysis revealed that isolates of Alternaria alternata causing black rot of citrus were associated with six well-supported evolutionary lineages. Isolates recovered from brown spot lesions on Minneola tangelo, leaf spot lesions on rough lemon, and healthy citrus tissue and noncitrus hosts were related closely to isolates from black-rotted fruit. Phylogenies estimated independently from DNA sequence data from an endopolygalacturonase gene (endoPG) and two anonymous regions of the genome (OPA1-3 and OPA2-1) had similar topologies, and phylogenetic analysis was performed on the combined data set. In the combined phylogeny, isolates from diverse ecological niches on citrus and noncitrus hosts were distributed in eight clades. Isolates from all lineages, regardless of ecological or host association, caused black rot in fruit inoculation assays, demonstrating that small-spored Alternaria isolates associated with different ecological niches on citrus and other plant hosts are potential black rot pathogens. These data also indicated that the fungi associated with black-rotted fruit do not form a natural evolutionary group distinct from other Alternaria pathogens and saprophytes associated with citrus. The use of the name A. citri to describe fungi associated with citrus black rot is not justified and it is proposed that citrus black rot fungi be referred to as A. alternata.  相似文献   

11.
中国柑橘黑腐病和褐斑病病原菌的系统发育分析   总被引:4,自引:0,他引:4  
 近些年链格孢属真菌的分类有了长足的进展,但柑橘褐斑病和黑腐病的病原却还是存在着一些争议。本研究从中国柑橘果实上收集了49株黑腐病菌菌株,并选取了8株从柑橘叶片上分离的具代表性的褐斑病菌菌株,基于Alta1 、endoPG、LSU、OPA10-2、OPAl-3和OPA2-1 等6个基因位点串联序列构建系统发育树。结果表明,柑橘黑腐病和褐斑病都可由不止一种链格孢菌引起,均以Alternaria alternata为主。两种病害的病原菌之间不能通过该系统发育树区分,但在致病性上存在差异,且能通过扩增ACT毒素合成基因进行区分。为了使两种病害的病原更加方便阐述,作者建议以它们的主要类群对其进行命名,柑橘褐斑病病原学名还是遵循前人的称呼,为the tangerine pathotype of A. alternata,即链格孢菌橘致病型,而柑橘黑腐病病原应为A. alternata,即链格孢菌。  相似文献   

12.
向日葵黑斑病研究进展及其综合防治   总被引:1,自引:0,他引:1  
向日葵黑斑病是一种重要的真菌病害,我国于20世纪60年代首次报道,目前对向日葵生产仍存在巨大威胁。本文综述了向日葵黑斑病的病原和寄主范围、向日葵黑斑病的症状和危害、国外种传黑斑病菌的检测、种传Alternaria helianthi对种子萌发和种苗活力的影响以及国内外有关黑斑病菌A. helianthi和A. alternata毒素的相关研究和向日葵黑斑病的综合防治。  相似文献   

13.
14.
 近些年链格孢属真菌的分类有了长足的进展,但柑橘褐斑病和黑腐病的病原却还是存在着一些争议。本研究从中国柑橘果实上收集了49株黑腐病菌菌株,并选取了8株从柑橘叶片上分离的具代表性的褐斑病菌菌株,基于Alta1 、endoPG、LSU、OPA10-2、OPAl-3和OPA2-1 等6个基因位点串联序列构建系统发育树。结果表明,柑橘黑腐病和褐斑病都可由不止一种链格孢菌引起,均以Alternaria alternata为主。两种病害的病原菌之间不能通过该系统发育树区分,但在致病性上存在差异,且能通过扩增ACT毒素合成基因进行区分。为了使两种病害的病原更加方便阐述,作者建议以它们的主要类群对其进行命名,柑橘褐斑病病原学名还是遵循前人的称呼,为the tangerine pathotype of A. alternata,即链格孢菌橘致病型,而柑橘黑腐病病原应为A. alternata,即链格孢菌。  相似文献   

15.
茶树链格孢叶斑病的病原鉴定   总被引:3,自引:0,他引:3  
茶树是我国重要的经济作物,茶园叶病的流行会造成严重的经济损失。2017年10月到2018年1月从安徽、福建和湖北省茶区的9个茶树品种上采集代表性茶叶斑病叶,该病害的发病症状与由Colletotrichum spp.引起的茶炭疽病相似。采用组织分离法从发病叶片组织分离获得26株菌落形态一致的真菌分离物,显微镜观察结果显示,各菌株分生孢子的产生方式和形态特征相似。为进一步明确菌株的分类地位,选取2株来自安徽庐江和宣城地区的代表性菌株(EC-6和XBC1-3)进行多基因片段的PCR扩增和序列分析。结果表明,代表性菌株EC-6和XBC1-3的ITS、gpd、tef-1a基因序列分别与交链格孢Alternaria alternata参考菌株CBS 107.27的序列(KP124300, KP124157, KP125075)相似性为100%、99%和100%,结合菌株形态学观察以及柯赫氏法则验证,证实交链格孢是引起该茶树叶斑病的致病菌。这是在安徽茶区首次发现由致病性链格孢引起茶树叶斑病。  相似文献   

16.
Cauliflower (Brassica oleracea L. var. botrytis) and mustard [Brassica juncea (L.) Czern] are important cruciferous crops facing serious yield and quality loss in India from dark leaf spot disease caused by Alternaria brassicae (Berk.) Sacc. Genetic variation among 32 pathogenic A. brassicae isolates from both crops was analyzed with random amplified polymorphic DNA and inter-simple sequence repeat primers in which the mean similarity coefficient was found to be 0.73 and 0.84, respectively. Further internal transcribed spacer analysis showed all isolates are 90–100 % similar to each other, indicating genetic similarity among different A. brassicae isolates that vary pathogenically.  相似文献   

17.
An outbreak of black mottle and dieback on basil (Ocimum basilicum L.; Lamiaceae) was recorded in a greenhouse in Okinawa Prefecture, Japan during 2004. The causal agent was identified as Alternaria alternata (Fr.) Keissler based on morphological characters and growth temperature. This report is the first of Alternaria leaf spot of basil caused by A. alternata.  相似文献   

18.
2019年-2020年在北京地区桃园病害调研普查时发现一种桃树病害的新发症状-新叶坏死,主要症状表现为当年新生枝条顶端新叶和生长点腐烂坏死。为明确这种新叶坏死症状是否由病原菌侵染引起,从北京平谷2个乡镇3个桃园采集35份病梢样品,经病样组织分离和菌株纯化,选取12个代表性菌株进行形态学鉴定、系统进化分析以及致病性测定。结果显示,通过形态学鉴定和多基因(ITS,Alt a1,gpd)系统发育分析,以上分离株均鉴定为链格孢Alternaria alternata;3株代表性菌株的致病性测定验证了A.alternata是引起新叶坏死症状的病原菌,并且该病原菌也能导致桃枝条和果实发病,产生黑斑病症状。这是首次报道A.alternata除了引起桃果实黑斑症状之外,还可以引起桃树新叶坏死症状,结果进一步丰富了链格孢侵染桃树的症状多样性,为链格孢引起的病害的整体防控提供了理论基础。  相似文献   

19.
Spore suspensions of Alternaria brassicae, the causal agent of gray leaf spot in Brassica plants, were incubated on the leaves of cabbage (B. oleracea) and spore germination fluid (SGF) was collected after 48 h. A high molecular weight (HMW) fraction (>10 kDa) was separated from the SGF by ultrafiltration. In a detached leaf assay, the HMW fraction induced visible symptoms only on host leaves and the toxicity was lost by treatment with proteinase K or heat at 60 degrees C for 15 min, indicating the presence of host-specific protein toxin(s). A protein toxin in the HMW fraction was purified by several chromatography steps. The toxin induced water-soaked symptoms followed by chlorosis at concentrations of 0.5 to 1 microg/ml on host leaves, but not on nonhost leaves even at 50 microg/ml. The toxin also had infection-inducing activity when added to spore suspension of a nonpathogenic isolate of A. alternata, causing symptoms similar to the infection of A. brassicae only on host leaves. These results indicate that a new host-specific protein toxin named ABR-toxin is released from germinating spores of A. brassicae on host leaves. ABR-toxin migrated as a protein of 27.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point of ABR-toxin was estimated to be approximately 7.0 and 21 N-terminal amino acid residues were sequenced.  相似文献   

20.
 The root endophytic fungus Heteroconium chaetospira isolate OGR-3 was tested for its ability to induce systemic resistance in Chinese cabbage against bacterial leaf spot caused by Pseudomonas syringae pv. maculicola and Alternaria leaf spot caused by Alternaria brassicae of the foliar diseases. Chinese cabbage seedlings planted in soil infested with an isolate of H. chaetospira were incubated in a growth chamber for 32 days. The first to fourth true leaves of the seedlings were challenge-inoculated with P. syringae pv. maculicola or A. brassicae. Chinese cabbage planted in soil infested with H. chaetospira showed significant decreases in the number of lesions of bacterial leaf spot or Alternaria leaf spot when compared to the control plants not treated with H. chaetospira. The results indicated that colonization of roots by H. chaetospira could induce systemic resistance in Chinese cabbage and reduce the incidence of bacterial leaf spot and Alternaria leaf spot. Received: April 24, 2002 / Accepted: August 9, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号