首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
叶子是植物最重要的器官之一,建立植物叶片的高精度曲面模型对于开展植物叶片形态特征分析和冠层光分布计算等研究具有重要意义。该文提出了一种基于点云数据的植物叶片曲面重构方法,该方法首先对原始点云数据进行噪声点剔除和数据精简,然后采用Delaunay三角剖分方法生成初始网格曲面,再对网格曲面进行优化处理。结果表明该方法能够基于激光扫描三维点云数据快速重构出植物叶片的高精度网格曲面,包括萎蔫和枯萎等复杂形态。该研究可为植物建模与可视化相关研究提供参考。  相似文献   

2.
树木的几何建模在林木性状评价、森林动态经营管理与可视化研究中具有重要意义。现今,从激光雷达(Light Detection And Ranging,LiDAR)数据中重建树体三维模型并精准获取林木空间枝干结构参数是数字林业发展的必然趋势。该研究提出了一种深度学习与计算机图形学相融合的树木骨架重建与参数反演方法。该方法以PR107、CATAS 7-20-59、CATAS 8-79三个品种的橡胶树为实验对象,首先,采用背包移动激光雷达获取三个橡胶树品种的样地数据,并通过体素剖分和数据增广策略来构建橡胶树训练样本集。其次,构造由四层特征编码层和特征解码层所组成的点云分类深度学习网络,并包含优化的PointConv模块与不同尺度的特征插值模块,以实现在多尺度条件下,全面考虑点云的全局和局部优化特征,引导网络实现枝叶点云的精确分类。最后,面向分类后的枝干点云,运用计算机图形学的空间连通性算法与圆柱拟合策略,重建树木骨架模型,并自动解决叶子点云与对应的一级枝干归属问题,进而在叶团簇尺度下开展对单株树的精细描述与参数反演。通过对三块橡胶树测试样地的验证和与实测值的比对表明,该研究提出的深度学习网络枝叶分类总体准确率在90.32%以上。骨架重建与叶团簇分析结果显示,PR107品种橡胶树具有较为发散的树冠、最大的分枝夹角和叶团簇体积;CATAS 7-20-59品种橡胶树冠呈花瓶型,分枝夹角和叶团簇体积较小;而CATAS 8-79品种橡胶树尽管胸径最粗,但不耐寒害处于落叶期导致冠积最小。同时,反演得到的橡胶树一级枝干直径与实测值比对为:决定系数R2不低于0.94,均方根误差(Root Mean Square Error,RMSE)小于3.01 cm;主枝干与一级枝干的分枝角为:决定系数R2不低于0.91,均方根误差RMSE不高于4.94°。同时发现橡胶树一级枝干的直径与对应的叶团簇体积呈正相关分布。该研究将人工智能的理论模型应用于林木的激光点云数据处理中,为林木激光点云的智能化分析与处理提供了新颖的解决思路。  相似文献   

3.
为研究作物地下变态根的可视化模拟,以肉质直根和块根为模拟对象,采用体着色三维重建的方法获取变态根点云,提出并实现了去除变态根点云噪声、离群点和修补孔洞的预处理通道,并对预处理后的点云进行曲面重建,构建曲面模型,进而提取变态根的构型参数,最后对重建后的曲面模型进行可视化模拟。以胡萝卜和马铃薯为试验对象进行了可视化模拟,结果表明,去除变态根点云噪声、离群点和修补孔洞的预处理通道,能有效得到完整、均匀和光顺的点云模型,从曲面模型提取的体积误差小于10%,利用重建得到的曲面模型可平滑逼真的可视化变态根形态。该文研究为植物变态根构型模拟提供了一种新方法。  相似文献   

4.
为满足智能农业机器人路径规划中障碍物检测的需求,针对传统双目视觉中用于障碍物检测算法的局限性,提出基于点云图的障碍物距离与尺寸的检测方法。该方法以双目视觉中以立体匹配得到的点云图为对象,通过设置有效空间,对不同区域处点云密度的统计,找到点云密度随距离的衰减曲线。远距离障碍物由于相机分辨率的不足,点云密度会随距离下降,通过密度补偿算法进行补偿,经二次设置有效空间后锁定障碍物位置,将目标点云分别投影于俯视栅格图和正视图中,获得其距离和尺寸信息。试验表明:该方法能有效还原障碍物信息,最大测距范围为28 m,平均误差为2.43%;最大尺寸检测范围为10 m,长度和高度平均误差均小于3%。该文基于点云图的栅格化表示和密度补偿算法,通过设置有效空间将点云投影得到障碍物距离和尺寸,不同环境下的精度测试和距离检测验证了可靠性和鲁棒性。  相似文献   

5.
基于TOF深度传感的植物三维点云数据获取与去噪方法   总被引:2,自引:2,他引:2  
为提高植物三维重建的精度,更好地实现植物数字化研究,提出了基于TOF(time of flight)深度传感的植物三维点云数据获取与去噪方法。首先通过TOF深度传感来获取植物点云数据,采用直通滤波器对点云数据进行预处理,减少背景噪声;其次采用改进密度分析的离群点去噪算法,该算法通过结合邻近点平均距离和邻域点数数量2个特征参数,对点云数据中的离群点噪声进行检测和去除;最后采用双边滤波算法对点云内部的小尺寸噪声进行检测和去除。以番茄植株进行相关试验,试验结果表明:与传统双边滤波算法比较,该文算法最大误差降低了11.2%,平均误差降低了23.2%;与拉普拉斯滤波算法比较,最大误差降低了20.6%,平均误差降低了39.2%,表明该文提出的算法在保持点云特征的情况下,能简单高效地去除植物三维点云数据中的不同尺度噪声。  相似文献   

6.
微地形DEM的最佳点云密度选取   总被引:1,自引:0,他引:1  
魏舟  李光录  任磊 《水土保持通报》2015,35(6):155-158,163
[目的]通过对微地形DEM的最佳点云密度进行分析研究,从中选取出最佳点云密度,以实现高效、快速获取地表微地形观测结果的目的,既可降低计算成本,又能够保证观测精度。[方法]通过对多个扫描测次的点云数据进行深入的研究,确定出针对该数据最佳DEM水平分辨率为4mm,对原数据进行7种等级的压缩生成对应的DEM。采用平均误差、中误差、标准差3种最常见的DEM精度指标对生成的DEM进行精度评价分析。[结果](1)在点云压缩程度15%时,随着点云密度的减小,平均误差基本没有变化,维持在极低的数值上;点云压缩程度15%时,平均误差随着点云密度的减小而迅速的增大。(2)在点云压缩程度10%时,随着点云密度的减小,标准差基本没有变化;点云压缩程度10%时,标准差随着点云密度的减小而迅速增大。(3)在点云压缩程度20%时,随着点云密度的减小,中误差基本没有变化,维持在极低的数值上;点云压缩程度20%时,中误差随着点云密度的减小而迅速的增大。[结论]对比验证分析结果表明,20%的点云压缩密度为生成微地形DEM最佳的点云密度。  相似文献   

7.
精确的植物三维静态形态结构模型有助于植物空间结构相关的各种研究,是虚拟植物、植物建模等问题研究的一个重要方面。研究植物生长过程中的三维信息的获取可以获得作物生长过程中各参数的动态数据,可为精细农业植物生长模型建立等提供依据。该文以植物为研究对象,介绍了虚拟植物及植物三维可视化的研究现状,讨论了植物叶片三维可视化的可行性及必要性。针对植物三维点云的采集与处理上,讨论了三维扫描仪的精度测定方法,并针对基于基准体的植株点云配准问题,提出采用基准体点云平均法向量计算的方法,去除了部分基准体表面的噪声点,提高了植株体的配准精度;采用迭代最近点(iterative closest point,ICP)算法,对植株叶片进行进一步的高精度配准。最后采用基于可视化类库VTK(visualization toolkit)实现了植物点云配准与三维可视化。  相似文献   

8.
在介绍机载激光雷达数据的具体处理流程、分析机载激光雷达数据特征的基础上,结合高程数据和影像数据总结出了基于点云数据的大范围复杂流域的提取方案,同时设计了提取流程并应用该流程对实验数据进行了河网提取。将采用本研究方案提取的河网结果与全手工处理所得的结果进行对比分析后发现,本研究提出的基于机载激光雷达点云数据的河网提取精度误差为3.8%,符合实际生产要求。基于机载激光雷达技术提取河网不仅信息丰富而且提取精度和效率显著提高,同时它作为一种全新数据采集技术,为数字流域三维可视化提供了新的技术支撑。  相似文献   

9.
基于三维点云数据的苹果树冠层几何参数获取   总被引:2,自引:9,他引:2  
针对果园环境下苹果树冠层参数获取精度较低的问题,提出了基于地面三维激光扫描仪高精度获取苹果树冠层参数的方法.选用Trimble TX8地面三维激光扫描仪作为苹果树冠层三维点云数据采集设备,提出了基于标靶球的KD-trees-ICP算法,用于高精度配准苹果树冠层三维点云数据.研究了平均风速小于4.5 m/s时,距离地面三维激光扫描仪不同远近条件下的标靶球配准残差和拟合误差的变化规律,分析结果表明,标靶球平均配准残差为1.3mm,平均拟合误差为0.95 mm,低于大场景测量配准误差要求(5mm).为了提高有风环境下提取苹果树冠层参数的精度,研究了0.9~4.5 m/s区间平均风速影响下的苹果树冠层枝干、果实、叶片的三维点云质量,建立了风速与叶片侧面厚度的曲线拟合模型,分析结果表明,在果园平均风速小于1.6 m/s时可以从苹果树冠层三维点云数据中提取高精度冠层参数.利用地面激光三维扫描仪获取距离苹果树12 000 mm以内冠层参数,测量精度高于人工测量,相对误差小于4%,为果树高通量信息获取提供了技术支持.  相似文献   

10.
为满足高通量作物表型分析需求,提升三维点云重建效率和精度,该研究针对不同作物、不同生育时期、不同植株部位(地上部和根系),基于研发的多视角自动成像系统和SFM(structure from motion)-MVS(multi-view stereo)算法,采用不同视角和不同相机数获取的图像重建作物三维点云,通过重建效率和精度(Hausdorff距离)评估,以及基于点云提取表型参数(株高、幅宽、凸包体积和总表面积)的可靠性评价,优化作物三维点云重建策略。结果显示,对于结构相对稀松、遮挡较少的盆栽植株(苗期、蕾薹期、盛花期、成熟期油菜)、结构相对紧凑、遮挡较多的植株地上部(花铃期棉花、抽穗期水稻、拔节期和灌浆期小麦)以及器官密集、遮挡严重且有较多细长结构的地上部和根系(分蘖期小麦和成熟期水稻地上部、成熟期玉米和油菜根系),分别采用3~4、6和10个相机为其最优重建策略(Hausdorff距离小于或接近0.20 cm,且重建时长和Hausdorff距离归一化值之和最小)。采用不少于4个相机获取的图像重建作物三维点云,可提取较为可靠的表型参数(决定系数R2>0.90...  相似文献   

11.
基于点云配准的果树快速三维重建   总被引:1,自引:2,他引:1  
旨在为果园生产管理提供果树三维可视化基础数据,该文提出了一种基于点云配准的自然光照环境下的果树三维重构方法。首先,利用RGB-D相机采集不同视角下的果树彩色图像和深度图像,并通过信息融合获取相应视角下果树的三维点云数据;第二,对果树原始点云进行去背景和滤波等预处理,利用归一化对齐径向特征NARF(Normal Aligned Radial Feature)算法计算每片点云中的关键点,并在关键点初运用快速点特征直方图FPFH(Fast Point Feature Histograms)描述子得到关键点的特征向量。通过计算比较两片点云的FPFH特征,寻找两片相邻点云之间的空间映射关系,利用随机抽样一致性RANSAC(RANdomSAmple Consensus)算法提纯映射关系并完成相邻两片点云的初始配准;第三,在初始配准的基础上,利用迭代最近点ICP(Iterative Closest Point)算法完成点云的精确配准;最后,利用上述点云初始配准和精确配准方法对果树多片点云进行全局配准并完整重构果树的三维点云图像。针对配准过程中时间消耗过大的问题,该文提出了基于OpenMP技术对配准进行加速的方法。结果表明,该文所提出的果树三维重构方法具有较高的准确性,配准的平均距离误差为0.0068 m;同时,在不影响配准精度和稳定性的前提下大幅提高了果树三维重建的效率。  相似文献   

12.
基于超声波的果树冠层三维重构与体积测量   总被引:3,自引:8,他引:3  
为了克服地面不平整和拖拉机非线性行驶对果树冠层参数测量的影响,该文在超声波传感器阵列测量果树冠层体积技术的基础上,使用RTK-DGPS空间定位技术和姿态航向参考系统,通过空间坐标的平移和旋转转换,直接获得以大地坐标表示的果树冠层的三维点阵云图数据,通过PC机后台处理重构果树冠层三维轮廓和计算果树冠层体积,并详细介绍了系统的结构与工作原理。以果园荔枝树为试验对象,采用该系统对15棵不同高度和体积的果树进行了3次重复试验,另对56棵树的测量结果与人工测量结果进行了对比分析,试验结果表明该方法具有较好的重复性(  相似文献   

13.
为了实现枣树智能化修剪作业,该研究提出了基于点云配准的自然光照环境下的果树三维重构方法,并针对传统最近点迭代(Iterative Closest Point,ICP)算法对待配准点云的空间位置要求苛刻的问题,提出了改进的点云配准算法。首先,使用彩色深度(RGB-D)相机采集不同角度下的枣树彩色和深度图像,并通过信息融合实现相应角度下的点云获取。其次,对点云进行背景去除和滤波处理,基于直方图设定分割阈值,提取单株枣树点云,并将放置在树根附近的标靶球作为标记,使用人工标记法进行两站点云初配准。最后,在初配准基础上计算点云的曲面法向量和曲率,由曲率相近的点构成配对点对,使用k维树最近点迭代(k dimensional-tree-Iterative Closest Point,kd-tree-ICP)算法完成精配准,对点云使用Alpha-shape算法面片化,实现表面重构。利用上述方法对多棵枣树进行全局配准并完整重构果树模型。试验结果表明,通过引入初配准,有效提高了点云配准的准确性和稳定性,配准误差均控制在1.0 cm以内,平均配准误差为0.76 cm;重构模型真实感较强,在外观上更加接近真实树,重构模型枝干相对误差控制在7%以内。该研究重构模型精度较高,可为枣树智能修剪提供可视化研究基础和技术支持。  相似文献   

14.
为了弥补无人机和地面不同观测视角导致的森林信息缺失以及不同平台摄影测量影像点云难以高效配准的问题,该研究基于无人机和地面摄影测量构建森林三维影像点云数据,以提取的无人机树冠最高点和地面树干中心为关键特征点,参考由粗到精的配准思路,借助特征点在3D和2D的映射关系以及改进的模拟退火算法和迭代最近点算法,提出了一种适合于无人机和地面不同观测平台的森林影像点云配准框架。测试结果表明,相较于银杏树和楸树而言,杨树对关键点匹配影响较大(杨树1.13 m > 楸树0.75 m > 银杏树0.52 m),不同树种对粗配准影响较小(杨树0.13 m > 银杏树0.08 m > 楸树0.07 m);所提方法在不同树种组成的6块典型样地上表现出色,平均精配准误差分为0.06 m,有效实现了无人机和地面平台影像点云的精细化配准。研究结果可为森林资源调查、森林三维重建以及影像点云的推广应用提供有力的支撑。  相似文献   

15.
为解决当前果园探测技术难以在恶劣的果园环境中提取果树冠层信息的问题.该研究将毫米波雷达应用于果园冠层探测,搭建了基于毫米波雷达的果园冠层探测系统,利用该系统扫描得到了果园点云,检测和估算得到每棵果树的株高、冠幅和体积参数.针对毫米波雷达在不同距离下产生点云密度不同的问题,该研究提出了一种基于可变轴的椭球模型自适应密度聚...  相似文献   

16.
果园精细管理中,苹果树冠层结构决定了叶幕期光照分布情况,而叶幕期光照分布又是关系到果实产量和质量的重要因素之一。该文以纺锤体苹果树为研究对象,提出了基于苹果树冠层计盒维数的光照分布预测方法。在冠层尺度内,按照网格法划分休眠期苹果树冠层三维点云数据,通过分析该数据构成的果树冠层空间结构,提出用计盒维数量化果树冠层结构的方法;通过分析休眠期冠层结构特征和叶幕期冠层相对光照分布特点,研究了休眠期苹果树三维冠层网格空间计盒维数与叶幕期冠层光照空间分布之间的关系,预测了叶幕成形期苹果树冠层光照分布。通过连续3 a的数据分析,叶幕期苹果树冠层阳面光照分布平均预测精度为76.11%,阴面平均光照分布预测精度为74.10%,该方法可为苹果树自动化修剪合理性评判提供技术支持。  相似文献   

17.
为探索不同生理物候期苹果树叶片氮素含量的快速检测方法。分别在果树坐果期、生理落果期和果实成熟期,使用光谱仪测量了果树叶片在可见光和近红外区域的反射光谱,同时在实验室测定了果树叶片的全氮含量。研究首先将实验所得的光谱反射率与氮素含量以果树为单位进行聚类,利用小波包分析技术对每棵果树的光谱信息进行分解,提取出的低频信号和去除高频噪音后的信号分别组成了低频全光谱和去噪全光谱。针对这两个全光谱均实施了主成分分析,利用提取主成分分别建立了果树不同生长阶段的氮素含量多元线性回归模型。对比基于归一化植被指数(NDVI)建立的氮素含量估测模型发现,利用全光谱信息建立的氮素含量预测模型精度更高;在坐果期和果实成熟期,使用去噪全光谱提取的主成分建立的氮素预测模型最优;而在生理落果期,使用低频全光谱提取的主成分建立的模型最优。结果表明,利用小波包分析技术能够有效地提高苹果果树叶片氮素含量的光谱预测能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号