首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
基于稀疏表示的大米品种识别   总被引:4,自引:3,他引:1  
为了实现机器视觉准确判别大米品种,提出了一种基于稀疏表示的大米品种识别方法。以长江米、圆江米、粳米、泰国香米、红香米和黑米等6种大米籽粒图像作为研究对象,采用颜色和形态结构参数表示单个籽粒。每种大米随机选取50粒作为训练样本,200粒作为测试样本。所有训练样本组成稀疏表示方法的数据词典,对每一个测试样本,计算其在数据词典上的投影,将具有最小投影误差的类作为测试样本所属的品种。最后将提出的方法与BP网络和SVM的识别结果做了对比和分析。试验结果表明,提出的方法对于6个大米品种的综合识别准确率为99.6%,获得了最好的分类效果。为大米品种的识别提供了一种新的有效方案。  相似文献   

2.
基于机器视觉的玉米果穗参数的图像测量方法   总被引:1,自引:12,他引:1  
在玉米育种和品质研究中,经常需要对玉米的果穗长度、果穗宽度、穗行数、穗粒数等参数进行测量。该研究提出了一种基于机器视觉的玉米果穗参数图像测量方法。使用PC摄像头连续采集旋转台上的玉米果穗图像,经过图像处理,获得玉米穗的图像区域,进而得到玉米果穗的穗长和穗宽参数;通过对玉米果穗局部区域的x方向和y方向累计像素值曲线进行分析,提取出玉米穗行,获得每一穗行的穗粒数和穗行宽度;通过图像匹配,获得玉米果穗的穗行数。试验表明,使用该研究方法对玉米果穗的长度、宽度和穗行数的参数测量准确率可达98%以上,对穗行宽及总穗粒数测量准确率达95%以上,整穗的平均检测时间约102 s/穗。该研究实现了玉米果穗参数快速有效的自动检测,相对于目前采用的人工检测,大大提供检测效率,降低劳动强度,可应用于玉米千粒质量检测、产量预测、育种和品质分析等场合。  相似文献   

3.
基于机器视觉的玉米果穗产量组分性状测量方法   总被引:1,自引:8,他引:1  
玉米果穗的穗长、穗粗、穗行数、行粒数等性状是制约玉米产量的重要组分性状,目前主要采用人工测量方式,或通过截取果穗横断面图像自动计算穗行数等参数,操作复杂、测量效率低、主观误差大,且无法保留完整的原始考种材料。针对上述问题,该文基于机器视觉技术,通过可见光二维成像获取果穗三维表型性状参数,结合果穗颜色特征及果穗的生物学规律,分别建立投影修正模型、穗行数快速估算模型、行粒数计算模型等,精确计算穗长、穗粗、穗行数以及行粒数等性状参数。试验结果表明,该方法适用于粘连果穗处理,秃尖的识别率高,且对光照环境要求低,穗行数及行粒数的零误差率在93%以上,测量速度可达30穗/min以上,能够满足高通量考种的需求,特别是保留了原始果穗考种材料实现无损测量,对于实现高通量考种及精细化育种有重要的参考价值。  相似文献   

4.
为提高玉米果穗考种效率和精度,该文提出一种基于全景图像的玉米果穗流水线考种方法和系统。利用托辊传送装置实现果穗自动连续推送,基于工业相机自动检测果穗运动状态并实时采集图像,获取覆盖果穗全表面的图像序列;建立果穗运动、摄像机成像、表面拼接关系,从图像序列中抽取果穗中心畸变最小区域拼接出果穗表面全景图像;最后,结合果穗边界检测、籽粒分割和有效性鉴定等技术提取出果穗表面上有效籽粒。试验结果表明,该文方法和系统较好地平衡了玉米果穗考种的效率和精度,图像采集和计算平均效率达15穗/min和4穗/min,穗长和穗行数指标计算精度可达99%和98.89%,可为研发全自动、高通量玉米果穗表型检测装置提供有益借鉴。  相似文献   

5.
玉米果穗图像单一特征的品种鉴别力评价   总被引:3,自引:7,他引:3       下载免费PDF全文
寻找新的果穗性状并评价它们单独鉴别品种的能力,是玉米新品种特异性、一致性和稳定性(DUS)测试研究的重要内容。采集了4个品种各50个果穗的RGB图像,用图像处理法提取了4大类形态特征共计145个性状,逐一性状对品种进行判别分析,以性状的品种识别率表示性状鉴别品种的能力大小。单一性状的品种识别率变化在0.244~0.634之间,在前17个高鉴别力性状中,果穗长宽比等具有与指南性状同等的甚至更高的品种区分能力。单一性状的广义遗传力一般都小于0.66,且与鉴别力高度一致(y = 0.29 + 0.44x, r=0.897, P<0.01)。总体上,四大属性的鉴别力从大到小依次为形状类>纹理类>颜色类>大小类。从受试的145个特征中筛选出许多具有较高品种鉴别能力的性状,可望应用于玉米新品种DUS测试工作。  相似文献   

6.
改进圆形Hough变换的田间红提葡萄果穗成熟度判别   总被引:1,自引:5,他引:1  
针对田间环境下红提葡萄果穗成熟度人眼判断效率低且易误判的问题,该研究采用K近邻(K-nearest neighbor,KNN)算法和最大类间方差(Otsu)法分别对葡萄果穗图像背景分割以找到最佳分割效果,采用圆形Hough变换识别葡萄果粒,并开发了可判别葡萄果穗成熟度的算法。研究结果表明,不论顺光、逆光或者与田间背景相似的绿色果穗,KNN法可实现良好的背景分割,然后圆形Hough变换法在边缘阈值和灵敏度分别取0.15和0.942时,识别葡萄果粒的准确率可达96.56%。在此研究基础上,采用该研究开发的葡萄果穗成熟度判断算法,可根据颜色将果粒划分不同成熟度等级,并实现对果穗成熟度判别,判别准确率为91.14%。该研究结果可为果农适宜期收获葡萄及自动化采摘提供重要指导。  相似文献   

7.
为了快速获取玉米根系表型指标,该研究提出一种基于图像的高通量解决方案.系统整合一套简易可靠的根系图像获取硬件和自动化根系图像处理算法,首先在固定背景下获取玉米根系图像,通过标定物检出、背景分割算法得到根系目标前景图像,识别根系起始点并剪除冗余部分得到根系感兴趣区域后计算颜色、形状、空间分布3大类29个表型指标.应用该系...  相似文献   

8.
为了在利用图像技术无损考察玉米果穗形态指标时,能够利用一幅图像显示整个玉米果穗的外形,从而减少多幅图像拼接产生的重叠和处理不便,该文提出一种新的基于机器视觉的玉米果穗考种方法与配套装置,首先拍摄旋转玉米果穗图像序列,应用SIFT(scale invariant feature transform)算法获取图像特征点,对特征点随机采样计算单应矩阵并进行一致性检测排除外点,将前后2帧图像注册到同一坐标系。然后采用动态规划法寻找前后2帧拼接图像的缝合线,按缝合线切割图像,以图像模板高斯滤波权值融合缝合线两侧图像消除曝光差异。依次拼接、融合图像序列生成果穗全景图。对果穗全景图进行考种指标检测,试验结果表明:基于机器视觉的测量值与人工测量方式不存在显著性差异(显著水平α=0.05),该文所述方法可满足自动化考种的需求。  相似文献   

9.
当前三维点云处理技术难以在玉米植株点云上对果穗进行识别和表型参数提取.针对该问题,该研究采用基于骨架的玉米植株器官分割流程对植株三维点云的果穗器官进行分割和表型参数提取.首先,优化基于骨架的玉米植株茎叶分割方法,在成熟期植株点云上实现植株骨架的提取、器官子骨架的分解以及器官点云的分割;再根据器官高度、子骨架长度、圆柱特...  相似文献   

10.
玉米果穗表型性状是玉米育种、产量预测的重要参数,提出一种基于穗粒分布图的玉米果穗性状计算方法,全面解析玉米果穗和穗粒的几何、数量和颜色等表型性状。该文利用步进电机驱动果穗转动来获取果穗主要侧面图像,采用果穗畸变校正方法生成标准果穗图像序列,在像素尺度进行果穗轮廓分析,建立图像序列中果穗轮廓映射关系并生成果穗三维模型,在穗粒尺度拼接果穗整个表面的穗粒分布图,计算出果穗和穗粒的各项表型性状。试验结果表明,提出的表型性状计算方法对穗型及穗粒分布规则的玉米果穗具有较高检测精度,其中穗行数、行粒数、总粒数、果穗长和果穗粗的平均计算精度分别为98.231%、94.351%、96.921%、98.956%和98.165%。  相似文献   

11.
基于图像的昆虫远程自动识别系统的研究   总被引:6,自引:3,他引:6  
只有对害虫进行鉴定才能在农业生产中对害虫进行有目的的防治,而对昆虫进行鉴定只有少数分类专家才能完成,鉴定需求的日益增加与专家相对较少形成了一对尖锐的矛盾.该文的研究尝试为该矛盾的解决提供一条新的思路:在标准方法下获取昆虫图像,并经由Internet网络上传给自动种类识别系统服务器,从而实现远程识别.系统首先对昆虫图像进行基于形状和颜色特征值的提取.昆虫图像的形态特征值由矩形度、延长度、球状型、叶状型、似圆度和7个Hu不变矩等12个特征值组成,颜色特征值由红、绿、蓝、灰度真方图及基于红、绿的二维色度直方图特征值分别组成,然后建立径向基神经网络分类器,每一特征向量由独立的径向基神经网络做为分类器,最终识别由每个分类器识别结果的线性组合而成.采用该系统对16种昆虫进行了测试,每种昆虫取40个样本,20个用做训练、20个用做测试,准确率达到96%以上.  相似文献   

12.
综合利用计算机视觉、图像处理、人工神经网络技术,实现小麦品质评价自动化。通过比较不同背景,发现在黑色毛面纸板背景下,使用数码像机获得容易处理的小麦图像。应用分水岭算法自主开发了图像分割处理软件,分割小麦图像并识别提取出完整的小麦颗粒,针对每个小麦颗粒,计算了其12个形态学特征、12个色泽参数等图像特征参数。利用所提取的24个小麦图像特征参数,采用人工神经网络BP算法建立起小麦粒径外观品质评价模型,并应用于小麦的品质识别,取得了良好的试验结果。多次建模运算证明,该方法具有较好的稳定性,对小麦粒径外观品质评价的平均识别准确率可达93%。  相似文献   

13.
针对当前稻飞虱图像分类研究中存在图像识别速度慢、分类精度低的不足,该文提出一种基于K-SVD和正交匹配追踪(orthogonal matching pursuit, OMP)稀疏表示的稻飞虱图像分类方法。首先,根据稻飞虱的趋光性特点,使用团队自主研发的野外昆虫图像采集装置自动获取稻田害虫图像;然后,利用K-SVD算法对稻飞虱图像特征的过完备字典进行更新构造,结合OMP算法对原始输入图像的特征信号进行稀疏表示;最后,通过求解输入图像的重构误差对昆虫图像进行分类。在相同的试验条件下,与传统的图像分类算法(SVM、BP神经网络)进行比较。实验结果表明,该文提出的基于K-SVD和OMP算法的稻飞虱图像稀疏表示分类方法可对稻飞虱与非稻飞虱进行快速准确的分类,分类速度达到6.0帧/s,平均分类精度达到93.7%。与SVM和BP神经网络相比,分类速度分别提高了5和5.5帧/s;分类精度分别提高了15.7和28.2个百分点,为稻飞虱的防治预警工作提供了信息与技术支持。  相似文献   

14.
为了实现大田害虫的快速实时识别和诊断,设计了一套大田害虫远程自动识别系统。该系统通过3G无线网络将害虫照片传输到主控平台中,在主控平台中实现远程自动识别。系统首先对害虫图像进行基于形态和颜色特征值的提取。害虫图像的形态特征由周长、面积、偏心率等以及7个胡不变矩共16个特征值组成,颜色特征值由9个颜色矩组成,然后建立支持向量机分类器。采用该系统对6种常见大田害虫进行了测试,平均准确率达到87.4%。考虑到不同的害虫姿态和大田中不同的光照条件,系统的分类效果是满意的。  相似文献   

15.
韩瑞珍  何勇 《农业工程学报》2012,28(23):156-162
为了实现大田害虫的快速实时识别和诊断,设计了一套大田害虫远程自动识别系统。该系统通过3G无线网络将害虫照片传输到主控平台中,在主控平台中实现远程自动识别。系统首先对害虫图像进行基于形态和颜色特征值的提取。害虫图像的形态特征由周长、面积、偏心率等以及7个胡不变矩共16个特征值组成,颜色特征值由9个颜色矩组成,然后建立支持向量机分类器。采用该系统对6种常见大田害虫进行了测试,平均准确率达到87.4%。考虑到不同的害虫姿态和大田中不同的光照条件,系统的分类效果是满意的。  相似文献   

16.
无人驾驶农机自主进行行驶路径检测和识别系统需要具备环境感知能力。作物行的中心线识别是环境感知的一个重要方面,已有的作物行中心线识别算法在缺株作物行中心线提取中存在检测精度低的问题。该研究提出了一种能够在缺株情况下提取玉米作物行中心线的算法。首先采用限定HSV颜色空间中颜色分量范围的方法将作物与背景分割,通过形态学处理对图像进行去噪并填补作物行空洞;然后分别在图像底部和中部的横向位置设置条状感兴趣区(Region of Interest,ROI),提取ROI内的作物行轮廓重心作为定位点。在图像顶端间隔固定步长设置上端点,利用定位点和上端点组成的扫描线扫描图像,通过作物行区域最多的扫描线即为对应目标作物行的最优线;将获取的最优线与作物行区域进行融合填充作物行中的缺株部位;最后设置动态ROI,作物行区域内面积最大轮廓拟合的直线即为目标作物行中心线。试验结果表明,对于不同缺株情况下的玉米图像,该算法的平均准确率达到84.2%,每帧图像的平均检测时间为0.092 s。该研究算法可提高缺株情况下的作物行中心线识别率,具有鲁棒性强、准确度高的特点,可为无人驾驶农机在作物行缺株的农田环境下进行作业提供理论依据。  相似文献   

17.
基于玉米冠层原位监测的全生育期叶色建模及其应用   总被引:1,自引:1,他引:1  
针对田间玉米冠层叶色变化难以定量描述问题,该文利用田问原位冠层监测系统,在摄像机自动曝光模式下连续采集多个玉米品种的冠层图像,揭示了复杂天气条件对图像和玉米冠层颜色的影响.利用概率密度统计分析方法分别计算玉米6个关键生育期的冠层亮度-色度分布,并针对冠层色度具有明确变化趋势且分离度较高的冠层亮度区间,建立了全生育期玉米冠层叶色模型.进而,基于该模型建立了适合不同玉米生育期的冠层图像自动分割方法,将玉米全生育期的冠层图像分割精度提升到82.6%,并揭示了不同品种玉米在叶片发育过程中冠层叶色与叶龄的相关性,利用登海605和农大108的冠层叶色预测出的生育期叶龄均方根误差RMSE (root mean squared error,RMSE)分别为1.14和1.41叶.试验结果表明,该文建立的玉米冠层叶色模型能够较好描述玉米关键生育期的冠层叶色变化规律,对玉米冠层图像分割、生育期估计、玉米品种表型鉴定具有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号