首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
T cell hybridomas that express zeta zeta, but not zeta eta, dimers in their T cell receptors (TCRs) produce interleukin-2 (IL-2) and undergo an inhibition of spontaneous growth when activated by antigen, antibodies to the receptor, or antibodies to Thy-1. Hybridomas without zeta and eta were reconstituted with mutated zeta chains. Cytoplasmic truncations of up to 40% of the zeta molecule reconstituted normal surface assembly of TCRs, but antigen-induced IL-2 secretion and growth inhibition were lost. In contrast, cross-linking antibodies to the TCR activated these cells. A point mutation conferred the same signaling phenotype as did the truncations and caused defective antigen-induced tyrosine kinase activation. Thus zeta allows the binding of antigen/major histocompatibility complex (MHC) to alpha beta to effect TCR signaling.  相似文献   

3.
4.
In the polymerase chain reaction (PCR), two specific oligonucleotide primers are used to amplify the sequences between them. However, this technique is not suitable for amplifying genes that encode molecules where the 5' portion of the sequences of interest is not known, such as the T cell receptor (TCR) or immunoglobulins. Because of this limitation, a novel technique, anchored polymerase chain reaction (A-PCR), was devised that requires sequence specificity only on the 3' end of the target fragment. It was used to analyze TCR delta chain mRNA's from human peripheral blood gamma delta T cells. Most of these cells had a V delta gene segment not previously described (V delta 3), and the delta chain junctional sequences formed a discrete subpopulation compared with those previously reported.  相似文献   

5.
Two distinct CD3-associated T cell receptors (TCR alpha beta and TCR gamma delta) are expressed in a mutually exclusive fashion on separate subsets of T lymphocytes. While the specificity of the TCR alpha beta repertoire for major histocompatibility complex (MHC) antigens is well established, the diversity of expressed gamma delta receptors and the ligands they recognize are less well understood. An alloreactive CD3+CD4-CD8- T cell line specific for murine class II MHC (Ia) antigens encoded in the I-E subregion of the H-2 gene complex was identified, and the primary structure of its gamma delta receptor heterodimer was characterized. In contrast to a TCR alpha beta-expressing alloreactive T cell line selected for similar specificity, the TCR gamma delta line displayed broad cross-reactivity for multiple distinct I-E-encoded allogeneic Ia molecules.  相似文献   

6.
The murine epidermis contains a subpopulation of bone marrow-derived lymphocytes that have a dendritic morphology and that express Thy-1 and T3 cell-surface antigens but not other markers (L3T4 or Lyt-2) characteristic of mature peripheral T lymphocytes. An alternative type of T cell receptor was earlier identified on a subpopulation of murine thymocytes with a similar phenotype (T3+, L3T4-, Lyt-2-), but not on peripheral murine T lymphocytes. Two independently derived Thy-1+, L3T4-, and Lyt-2- dendritic cell lines of epidermal origin that express a T3-associated disulfide-linked heterodimer composed of a 34-kilodalton gamma-chain and 46-kilodalton partner (the delta chain) have now been identified. Analysis of N-linked glycosylation revealed that this receptor is similar to that detected on thymocytes. These results demonstrate that Thy-1+ dendritic epidermal cell lines can express gamma delta T cell receptors in vitro and suggest that Thy-1+ dendritic epidermal cells express such receptors in vivo. The localization of these gamma delta T cell receptor-expressing cells in the epidermis may be of importance for understanding the function of these receptors.  相似文献   

7.
Activation of spontaneously dividing T cell hybridomas induces interleukin-2 (IL-2) production, a cell cycle block, and programmed cell death. T cell hybridomas that express the T cell antigen receptor (TCR) zeta homodimer (zeta 2), but not the TCR zeta eta heterodimer, were studied. The zeta eta- cells produced little or no inositol phosphates (IP) when stimulated with antigen. In most cases the hydrolysis of phosphoinositides was also impaired after stimulation with antibody to CD3, although one zeta eta- cell produced normal concentrations of IP. The zeta eta- cells slowed their growth and secreted IL-2 in response to both stimuli. However, the zeta eta- cells did not die after activation with antigen. Since activated thymocytes also undergo programmed cell death, these results may have important implications for the role of the zeta eta.TCR in negative selection.  相似文献   

8.
Molecular cloning of the zeta chain of the T cell antigen receptor   总被引:43,自引:0,他引:43  
The T cell antigen receptor is a multi-subunit receptor complex present on the surface of all mature and many developing T cells. It consists of clonotypic heterodimers noncovalently linked to five invariant chains that are encoded by four genes and referred to as the CD3 complex. The CD3 gamma, delta, and epsilon chains have been molecularly characterized. In this report the molecular cloning of a complementary DNA encoding the zeta chain of the murine T cell antigen receptor is described. The predicted protein sequence of the zeta chain suggests a structure distinct from those of any of the previously described receptor subunits.  相似文献   

9.
Chromosome 4 Jt gene controls murine T cell surface I-J expression   总被引:10,自引:0,他引:10  
Data are presented suggesting a resolution to the paradox concerning the murine response subregion I-J, which encodes a suppressor T cell marker. The controversy arose when sequences corresponding to I-J DNA were not found in the central immune response region described by immunogeneticists. New evidence is presented that T cell surface I-J expression results from the action of at least two complementing genes. One gene is within the H-2 region on chromosome 17; the second gene, termed Jt, is on chromosome 4. The two recombinant mouse strains B10.A(3R) and B10.A(5R) originally used to define the I-J subregion apparently differ not within the H-2 region but elsewhere.  相似文献   

10.
以GenBank上登载的猪的T细胞受体β(pTCR-β)基因为参考序列,用RT-PCR法从猪的外周血淋巴细胞中克隆了TCR-β链基因,并进行生物信息学分析.结果表明:pTCR-β基因含有一个完整的开放阅读框架(ORF),大小为849bp,编码283个氨基酸,且含有一段27个氨基酸的信号肽序列,与参考序列相比,在核苷酸序列上的同源性为80.4%,在氨基酸序列上的同源性为70.3%;生物信息学结构预测发现2个结构域,一个为IG结构域,由第32-138位共107个氨基酸残基组成;另一个为IG-LIKE结构域,由第164-211位共48个氨基酸残基组成.  相似文献   

11.
12.
The induction of an immune response in mammals is initiated by specifically reactive T lymphocytes. The specificity of the reaction is mediated by a complex receptor, part of which is highly variable in sequence and analogous to immunoglobulin heavy- and light-chain variable domains. The functional specificity of the T cell antigen receptor is, however, markedly different from immunoglobulins in that it mediates cell-cell interactions via the simultaneous recognition of foreign antigens and major histocompatibility complex-encoded molecules expressed on the surface of various lymphoid and nonlymphoid cells. The relation between the structure of the receptor and its functional specificity was investigated by analyzing the primary sequences of the receptors expressed by a series of T lymphocyte clones specific for a model antigen, pigeon cytochrome c. Within this set of T lymphocyte clones there was a striking selection for amino acid sequences in the receptor beta-chain in the region analogous to the third complementarity-determining region of immunoglobulins. Thus, despite the functional differences between T cell antigen receptors and immunoglobulin molecules, analogous regions appear to be important in determining ligand specificity.  相似文献   

13.
The T cell receptor   总被引:51,自引:0,他引:51  
The primary structure of T cell receptor proteins and genes is well understood. Immunologists are now trying to understand the properties of these interesting molecules. Evidence suggests that T cell alpha beta receptors recognize a complex of an antigen-derived peptide bound to one of the cell-surface products of the major histocompatibility complex (MHC) genes. It is likely that alpha beta receptors and MHC proteins have coevolved to have some affinity for each other. During T cell development in the thymus, cells bearing self-reactive receptors are deleted by the mechanisms of tolerance, and cells are preferentially allowed to mature if they bear receptors that will be able to recognize antigen plus self-MHC after they have become full-fledged T cells. Some explanations for these phenomena have been tested, but no satisfactory theory can yet be proposed to account for them.  相似文献   

14.
Expression of T cell receptor (TCR) V alpha genes in tumor-infiltrating lymphocytes (TILs) within intraocular melanoma was studied. Primers for 18 different human TCR V alpha families were used to analyze TCR V alpha-C alpha gene rearrangements in TIL in these melanomas obtained at surgery. A limited number of TCR V alpha genes were expressed and rearranged in these tumors, and TILs expressing V alpha 7 were found in seven of eight of these uveal melanomas. TCR gene usage is also restricted in experimental autoimmune disease, in T cells within organs like skin and other epithelial tissues, and in the brain of patients with multiple sclerosis (MS). The restricted usage of TCR genes in TIL may indicate that a specific antigen in these melanomas is targeted.  相似文献   

15.
Gammadelta T cell receptors (TCRs), alphabeta TCRs, and antibodies are the three lineages of somatically recombined antigen receptors. The structural basis for ligand recognition is well defined for alphabeta TCR and antibodies but is lacking for gammadelta TCRs. We present the 3.4 A structure of the murine gammadelta TCR G8 bound to its major histocompatibility complex (MHC) class Ib ligand, T22. G8 predominantly uses germline-encoded residues of its delta chain complementarity-determining region 3 (CDR3) loop to bind T22 in an orientation substantially different from that seen in alphabeta TCR/peptide-MHC. That junctionally encoded G8 residues play an ancillary role in binding suggests a fusion of innate and adaptive recognition strategies.  相似文献   

16.
17.
Two independent methods were used to identify the mouse chromosomes on which are located two families of immunoglobulin (Ig)-like genes that are rearranged and expressed in T lymphocytes. The genes coding for the alpha subunit of T-cell receptors are on chromosome 14 and the gamma genes, whose function is yet to be determined, are on chromosome 13. Since genes for the T-cell receptor beta chain were previously shown to be on mouse chromosome 6, all three of the Ig-like multigene families expressed and rearranged in T cells are located on different chromosomes, just as are the B-cell multigene families for the Ig heavy chain, and the Ig kappa and lambda light chains. The findings do not support earlier contentions that genes for T-cell receptors are linked to the Ig heavy chain locus (mouse chromosome 12) or to the major histocompatibility complex (mouse chromosome 17).  相似文献   

18.
Murine T10 and T22 are highly related nonclassical major histocompatibility complex (MHC) class Ib proteins that bind to certain gammadelta T cell receptors (TCRs) in the absence of other components. The crystal structure of T22b at 3.1 angstroms reveals similarities to MHC class I molecules, but one side of the normal peptide-binding groove is severely truncated, which allows direct access to the beta-sheet floor. Potential gammadelta TCR-binding sites can be inferred from functional mapping of T10 and T22 point mutants and allelic variants. Thus, T22 represents an unusual variant of the MHC-like fold and indicates that gammadelta and alphabeta TCRs interact differently with their respective MHC ligands.  相似文献   

19.
The rearrangement of T cell antigen receptor beta- and gamma-chain gene segments was studied in transgenic mice that bear a functional beta-chain gene. Virtually all CD3-positive T cells derived from transgenic mice express beta chains containing the transgene-encoded V beta 8.2 variable region on their surfaces and do not express endogenous beta-chain variable regions. Expression of endogenous V beta genes is inhibited at the level of somatic recombination during thymic ontogeny. Furthermore, rearrangements of the TCR gamma-chain genes are also markedly inhibited in these transgenic animals. Hence expression of the TCR beta transgene has led to allelic exclusion of alpha beta receptors and isotypic exclusion of gamma delta T cell receptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号