首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 625 毫秒
1.
沙粒形状对风力机翼型磨损特性及临界颗粒Stokes数的影响   总被引:3,自引:3,他引:0  
风力机不可避免地运行在风沙环境下,风沙对风力机叶片的磨损将造成机组的气动性能下降和发电量降低。研究风沙对风力机翼型的冲蚀磨损特性时,通常将沙尘颗粒简化为球形颗粒,忽略了实际非球形颗粒的影响,相关研究表明颗粒形状对材料的冲蚀磨损率有一定的影响,该文以NACA 0012翼型直叶段为对象,研究沙尘颗粒形状对风力机翼型的磨损特性、气动性能及其临界颗粒Stokes数的影响规律。通过对风沙环境下NACA 0012翼型直叶段的流场进行数值模拟,研究了4种不同形状(颗粒形状因子分别为0.671、0.75、0.846和1)颗粒情况下,风力机翼型的磨损特性随颗粒体积当量直径的变化规律,以及颗粒形状对翼型开始发生磨损时临界颗粒Stokes数范围的影响规律。结果表明:来流风速为14.6 m/s、攻角为6°时,4种颗粒形状下翼型的最大磨损率均随颗粒体积当量直径的增大先增大后减小然后再增大,颗粒直径达到80μm为翼型最大磨损率的转折点;同一颗粒体积当量直径时,球形颗粒比非球形颗粒对翼型的冲蚀磨损程度小;颗粒形状对翼型升力系数和升阻比的影响很小;4种颗粒形状情况下,翼型表面的磨损区域均随颗粒体积当量直径的增大逐渐从翼型的前缘附近沿翼型压力面向尾缘扩展,并且翼型磨损最严重区域出现在前缘附近;颗粒形状会影响翼型开始发生磨损的临界颗粒Stokes数范围,颗粒形状因子越小,翼型开始发生磨损的临界颗粒Stokes数越大,Stokes数可以作为判断翼型表面是否发生磨损的依据。研究结果可为风力机叶片的防风沙磨损设计提供参考。  相似文献   

2.
风沙对风力机翼型绕流及其气动性能的影响   总被引:3,自引:3,他引:0  
中国西北地区风能资源丰富,然而该地区经常遭受沙尘天气的侵袭。风力机在强风沙环境下运行,其气动性能难免会受到沙尘的影响,并且其叶片会受到比较严重的磨损,导致机组的出力明显下降。翼型作为风力机叶片的基本组成单元,沙尘颗粒对翼型的绕流和气动特性的影响研究显得尤为必要。该文利用雷诺平均Navier-Stokes方程-大涡模拟(large eddy simulation)混合方法中的延迟分离涡模拟方法,模拟了NREL S809翼型在风沙环境下的流动特性,将不同颗粒直径条件下翼型周围的绕流情况和翼型的气动性能进行了对比,研究了空气中的颗粒对风力机翼型绕流及其气动性能的影响规律。结果表明,6.1?攻角时,颗粒对翼型绕流和升力系数的影响较小,但仍会使翼型的升力系数略微降低。随着颗粒直径的增大,翼型的升力系数先减小再增大,其中颗粒直径为20μm时达到最小值。当颗粒直径为150μm时,其升力系数仍小于洁净空气下的升力系数,但两者已十分接近。8.2?攻角时,不同直径颗粒对翼型绕流具有不同程度的影响,当颗粒直径小于20μm时,颗粒的跟随性较好,颗粒紧随气相运动,对翼型绕流的影响较小;当颗粒直径为20μm时颗粒对翼型绕流造成了极大的影响,如分离点提前、出现展向流动;当颗粒直径大于20μm后,随着颗粒直径的继续增大,颗粒的惯性力变强,颗粒逐渐独立于气相运动,对翼型绕流的影响也逐渐减弱。升力系数随颗粒直径的变化趋势和小攻角时相同,但变化幅度变大,升力系数最小时比洁净空气时减少了7.9%。该文可为不同颗粒直径的风沙环境下颗粒对翼型周围绕流流场及其对翼型升力系数影响等相关研究提供参考。  相似文献   

3.
考虑粗糙度敏感位置的钝尾缘翼型气动性能研究   总被引:1,自引:0,他引:1  
针对考虑粗糙度敏感位置的风力机翼型钝尾缘改型前后的气动性能进行研究,揭示钝尾缘改型对表面粗糙翼型增升效果的影响规律。基于k-ωSST湍流模型,计算表面光滑与粗糙的S822翼型的升、阻力系数,并与试验结果进行比较;采用坐标旋转变换与缩放横纵坐标系数相结合的方法,建立钝尾缘改型型线数学表达式,分析对称钝尾缘改型増升效果得到S822翼型的最佳尾缘厚度;研究吸力面和压力面布置粗糙度时翼型的气动性能,获得上、下翼面的粗糙度敏感位置;对具有粗糙度敏感位置的翼型按最佳尾缘厚度进行钝尾缘改型,计算改型前后翼型的升、阻力系数和升阻比,并分析尖、钝尾缘翼型的粗糙度敏感性。结果表明:翼型进行钝尾缘改型的最佳尾缘厚度为2%弦长;吸力面和压力面的粗糙度敏感位置分别为距前缘1%弦长和5%弦长处;钝尾缘改型使升力系数和最大升阻比均明显升高,显著改善了表面粗糙翼型的气动性能,且尖、钝尾缘翼型的粗糙度敏感性综合指标值为10.68%和8.15%,降低了翼型对粗糙度位置的敏感性。研究结论可为表面粗糙风力机叶片翼型的设计和优化提供指导。  相似文献   

4.
尾缘加厚的DU系列翼型气动性能数值分析   总被引:5,自引:4,他引:1  
徐浩然  杨华  刘超 《农业工程学报》2014,30(17):101-108
为了研究不同最大相对厚度翼型尾缘加厚后气动性能变化情况,以3种不同最大相对厚度的DU系列翼型为对象,采用尾缘对称加厚方法对3种翼型进行修型处理,翼型的数值模拟计算结果表明:翼型尾缘对称加厚一方面可以减小吸力面后缘侧的压力梯度,抑制压力恢复,推迟边界层分离;另一方面可以增大翼型压力面与吸力面之间的压差,最大相对厚度较大的翼型压差增加幅度大。采用全湍流模型计算时,翼型尾缘加厚获得升力增量比自由转捩计算模型更大。随着尾缘厚度增加,小攻角下翼型获得的升力系数增量逐渐减小,而阻力则快速增大。当尾缘加厚厚度较大时,最大相对厚度较大的翼型获得的升力系数增量大于较小的最大相对厚度翼型。翼型最大升力系数随着翼型尾缘厚度的增大而增大,但是发生失速时,过大的升力系数会导致翼型升力急剧下降。为避免该现象发生,尾缘厚度应控制在约5%翼型弦长范围内。研究结果可以应用于钝尾缘翼型及风力机叶片设计,提高风力机的风能利用效率。  相似文献   

5.
生物质制粒机环模的磨损机理分析   总被引:2,自引:2,他引:0  
环模是制粒机的核心部件,目前存在磨损快、寿命短等问题。该文对X46Cr13钢环模进行600 h实际生产状态下的磨损试验;对环模内壁和模孔内壁的磨损量与表面硬度进行测量;对磨损面进行表观形貌和微观磨损形貌观察;从宏观和微观角度对磨损机理进行分析,旨在通过研究环模磨损机理与磨损分布规律,对环模改进提出建议。结果表明:不同磨损位置起主导作用的磨损机制有所不同;环模内壁磨损十分严重,磨损机理为以微切削作用为主的磨粒磨损和疲劳磨损交互作用;模孔内壁磨损量较小,模孔入口附近以磨粒磨损为主,出口附近则以疲劳磨损为主,从模孔入口到出口磨损量呈指数形式逐渐减小,磨损由磨粒磨损为主逐渐向疲劳磨损为主过渡。研究结果可为改善环模耐磨性能和延长使用寿命提供参考。  相似文献   

6.
为了能够方便快捷的设计和修改翼型,采用两段椭圆弧来构造翼型的中弧线,并推导了描述中弧线的方程式。用该方法构造的中弧线光滑连续,且不存在拐点。选用现有翼型的厚度分布,与中弧线分布函数进行叠加,并引入厚度比例因子来实现对厚度的调整,最终得到了一种基于双椭圆弧型中弧线的翼型设计方法,称之为DEA(double ellipse arcs)翼型。选用Clark-Y翼型作为基础翼型,设计了多款DEA翼型,并利用X-foil软件对翼型气动性能进行求解,分别研究了最大相对弯度、最大弯度相对位置、最大相对厚度以及翼型中弧线的形状因子对翼型气动性能的影响。研究表明:增加最大相对弯度,可以提高翼型的升力系数,同时使翼型的升阻特性得到一定的改善;最大弯度位置前移,可以提高翼型在小攻角下的升力系数,同时增加翼型高效升阻比的攻角范围;增加最大相对厚度可以提高翼型的最大升力系数,以及增大失速攻角,同时,高效升阻比的攻角范围也随着翼型最大相对厚度的增大而增加;中弧线前、后缘形状因子对翼型气动性能的影响相对较小。  相似文献   

7.
为了提高风力机的捕风能力,确定最佳的翼型结构,该文以风力机翼型S809为研究对象,设计了S809分离式尾缘襟翼模型,对翼型主体与襟翼之间缝隙进行了局部优化处理,利用AUTOCAD建立了分离式尾缘襟翼几何模型。进而采用计算流体力学方法,对0攻角下,0~16°不同襟翼偏转角的襟翼模型进行了气动性能计算,并对翼型周围流场的压力云图、流线图、压力系数分布进行了理论分析。结果表明:分离式尾缘襟翼结构设计合理,襟翼与主体之间的缝隙对翼型气动性能的影响很小;尾缘襟翼偏转增大了翼型弯度,提高了翼型的升力,随偏转角增大,翼型升力系数及升阻比增大,偏转角在14°时翼型的升阻比最大,为进一步研究分离式尾缘襟翼综合气动性能打下了基础。  相似文献   

8.
大气湍流是风力机非定常特性的主要诱因,该研究基于CDRFG(consistent discretizing random flow generation)方法生成湍流入口边界,采用大涡模拟(large eddy simulation, LES)研究风力机翼型气动力非定常特性对湍流的敏感性。结果表明:翼型前缘区域对湍流来流较为敏感,而中部及尾缘区域几乎不受湍流的影响。攻角分别为2°、8°和14°时,吸力面从前缘点到约0.5、0.3和0.1倍弦长位置处表面压力的标准差较均匀来流时幅值增大,表明小攻角时翼型吸力面上压力脉动受湍流影响的区域较大。来流湍流强度分别为9.3%、6.5%和4.8%时,2°攻角下翼型升力系数的标准差是其均匀来流时的6.36、5.42和4.90倍;8°攻角下是其均匀来流时的3.95、3.33和3.02倍;14°攻角下是其均匀来流时的1.78、1.63和1.40倍;表明小攻角时湍流引起的升力系数脉动特性较大攻角时更加显著。翼型前缘点脉动压力的功率谱曲线与湍流来流速度的功率谱曲线在整个频域区间趋势一致,表明前缘点压力的脉动特性主要取决于湍流来流的脉动特性,沿翼型弦向逐渐往后...  相似文献   

9.
强力混合机混匀过程中由颗粒流引起的磨损是影响混合机寿命的主要因素,颗粒中混有的少量液体对颗粒流形态以及磨损均有重要的影响。本文基于离散元法(DEM)研究了湿颗粒混匀过程中强力混合机桨叶的磨损,通过Mikami模型模拟湿颗粒中液桥力的复杂作用。采用四种磨损模型进行预模拟,并通过实验得出Huang模型为模拟强力混合机桨叶磨损的最优模型,最后分析了颗粒湿度、粒径以及混合机参数对磨损的影响。试验结果表明:桨叶的磨损主要集中在桨叶的端部和前部;颗粒的湿度能增大颗粒对桨叶表面的作用力及颗粒-桨叶的相对速度而加剧桨叶磨损;桨叶速度的增加和颗粒粒径的减少同样能加剧桨叶的磨损;而料筒转速对桨叶的磨损影响较小。研究结果对于强力混合机结构改进具有一定的意义。  相似文献   

10.
固液两相流条件下半开式叶轮离心泵中颗粒冲击、泄漏涡发展和颗粒轨迹之间存在紧密交互作用,导致过流部件的磨损行为复杂多变。该研究结合双向耦合欧拉-拉格朗日方法和颗粒磨损Finnie模型,对不同颗粒体积浓度下半开式叶轮离心泵固液两相流场进行求解,分析了颗粒体积浓度对泄漏涡结构特征、颗粒运移轨迹和磨损特性的影响,揭示了颗粒体积浓度、叶顶间隙泄漏涡和过流部件表面磨损规律的关联机制。结果表明:随着颗粒体积浓度的增加,颗粒的频繁撞击加剧了叶片压力面进水边和后盖板磨损程度,叶片吸力面出水边的磨损范围向进水边方向延伸;颗粒体积浓度小于1%时,颗粒的轴向运动和叶顶间隙泄漏涡的阻碍作用导致颗粒易与叶片前缘靠近叶根处和吸力面出水边靠近叶顶的区域发生撞击,诱发严重磨损,且呈现点状磨损;当颗粒体积浓度大于3%时,叶轮后盖板的整体磨损强度大于叶片,颗粒体积浓度的增加造成流入叶顶间隙层的颗粒数增加,颗粒对叶顶间隙泄漏涡的冲击导致涡流的破碎、分离、再融合,加剧不稳定流动,泵的扬程和效率均明显下降。该研究可为固液两相半开式叶轮离心泵优化设计和安全稳定运行提供理论参考。  相似文献   

11.
偏航工况水平轴风力机存在典型的动态特性,为了提高动态载荷特性的预测精度,该文采用计算流体力学方法(computational fluid dynamics,CFD)研究了MEXICO(model experiments in controlled conditions)风轮在偏航角0、15°、30°、45°工况下的整机气动性能。数值模拟得到的叶片截面压力系数分布、载荷系数随方位角变化规律以及轴向入流时速度分布与试验测量值均吻合较好。当偏航角在30°以内时,采用CFD方法计算的轴向载荷系数的相对误差在±5%以内,切向载荷系数的相对误差在±15%以内;当偏航角达到45°时,轴向载荷系数的相对误差超过±15%,切向载荷系数的相对误差接近±30%,同时偏航运行时速度分布与试验测量相差较大。偏航运行时叶根处的翼型升阻力迟滞特性较叶尖处显著,但叶根处攻角变化范围小于叶尖处。采用动量叶素法进行风力机性能预测时必需充分考虑该特性。该研究为工程预测模型的建立和偏航工况风力机设计运行提供了参考。  相似文献   

12.
考虑攻角范围的垂直轴风力机叶片翼型优化设计   总被引:1,自引:1,他引:0  
为解决目前垂直轴风力机叶片翼型设计都是在单一攻角下设计,而忽略了垂直轴风力机运行时叶片攻角变化范围大的问题。该研究提出一定攻角范围下垂直轴风力机叶片翼型廓线优化方法,首先采用类函数与B样条函数相结合的方法来表征翼型气动外形,以一定攻角范围下的切向力系数之和作为叶片翼型优化的目标函数。进一步利用粒子群算法并耦合翼型气动性能预测软件RFOIL对H型垂直轴风力机叶片翼型气动外形进行优化设计。最后从风能利用率、力矩系数、涡量分布和速度分布这4个方面讨论优化翼型较初始翼型的优越性。结果表明:相比原始垂直轴风力机,新型垂直轴风力机翼型能有效提高风力机的力矩系数及功率系数,其最大功率系数为0.362,提高了8.45%。此研究对于如何设计高性能垂直轴风力机翼型具有很好的借鉴意义。  相似文献   

13.
为了探究翼型振摆运动时的动态特性以及升力波动形成机制,采用基于浸入边界法的自编求解器,对NACA0012翼型在1000雷诺数作不同起始攻角、不同振摆频率、不同振摆幅值的俯仰振摆运动进行了直接数值模拟,并分析了升力系数的波动特性和其与流场演变的相关性.结果表明:翼型的高频振摆(2.92 Hz)较低频振摆(1.46 Hz)...  相似文献   

14.
为开发低风资源适用型风力机,以100 W水平轴风力机为研究对象,分析不同设计叶尖速比和设计攻角对风轮变风况气动性能的影响;考虑低风速地区风资源数据统计特点,以提高年发电量和降低启动风速为目标,以设计叶尖速比、设计攻角、叶片弦长和扭角为变量,采用NSGA-II算法进行全局多目标气动寻优;开展风力机性能测试试验。结果表明,优化后年发电量提高了9.14%,风轮启动转矩提高了9.62%;在不同负载条件下,优化叶片功率输出均有明显提高,启动风速由3.84 m/s降低到3.03 m/s;该方法避免设计陷入局部优化,提供一种低启动风速与高功率输出矛盾解决方案,为低风速水平轴风力机设计与应用提供重要参考。  相似文献   

15.
水泵水轮机转轮叶片低压边相比其他部位更具有空蚀的危险性。首先基于低比转速混流式转轮设计程序,设计了3种具有不同厚度的叶片,厚度差异主要在叶片低压边位置;然后采用数值模拟方法对3种翼型转轮分别进行了3个不同出力的水轮机工况以及3个不同流量的水泵工况的全流道定常数值计算,对比分析了各计算工况下具有不同叶片低压边厚度的转轮的空化形态及流动特征;最后采用有限元方法对转轮叶片强度进行了校核。研究表明:3种叶片低压边厚度分布规律的转轮均满足强度要求。空化性能方面,水轮机42%出力工况下,翼型2转轮不发生空化;88%出力工况、100%出力工况和水泵大流量工况下,随着叶片低压边的厚度的增大,空化越剧烈;水泵小流量工况与设计工况下,转轮的空化程度并不因低压边厚度的增大而加剧,而是水泵设计工况下,低压边厚度相对最大的翼型3叶片头部绕流平顺,空化性能相对较好,其他2种翼型由于头部出现脱流和漩涡,出现严重空化。  相似文献   

16.
C型及S型叶片的贯流式水轮机流场特性   总被引:2,自引:2,他引:0  
为了研究不同叶片进出口边形状及位置对贯流式水轮机内部的流动特性及机组能量特性所产生的影响,并为贯流式水轮机叶片的水力设计提供参考,该文基于某4叶片灯泡贯流式水轮机模型机,利用ANSYS-Bladegen对转轮叶片进行优化设计,并通过数值研究的方法对优化前(C 型叶片)和优化后(S 型叶片)的贯流式水轮机进行流场分析和性能评估,以揭示2种形式的叶片几何参数差异所引起的水轮机内流动特性及水轮机能量特性的差异。研究结果表明:S型叶片因其进出口边位置低于C型叶片,因此流道内速度矩的消耗位置较低,转轮出口环量分布规律也呈S型分布;C型叶片具有较大的叶栅稠密度及包角,叶片表面低压区较小,相反S型叶片叶栅稠密度及叶片包角较小,叶片正背面压差较大,因此转轮能量转换能力优于C型叶片,同时S型的出水边有效的减小了转轮出口的低压区,有助于改善尾水管内的流动特性;叶片进出水边对转轮内的水流具有导流作用,且流量越小,这种趋势越明显,S 型叶片进水边形状有将水流导向轮缘的趋势,水流在流道内的流量分配也呈近似 S型分配;S型叶片叶栅排挤作用减小,转轮内的水力损失、转轮出口环量损失及尾水管水力损失也明显小于C型叶片,因此其整体能量特性优于C型叶片。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号