首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
土壤污染物临界负荷研究进展   总被引:1,自引:0,他引:1  
胡宁静  骆永明 《土壤》2006,38(5):552-558
随着城市化进程与工农业的快速发展,土壤污染形势也越来越严峻。土壤污染物临界负荷的研究,可获取土壤可持续发展质量指标,是一条实现土壤可持续管理的有效途径。我国土壤污染临界负荷研究不足,为了推动其发展,本文讨论了其研究进展、指导原则、应用、存在问题与发展趋势。动态的和基于风险的土壤污染物临界负荷估算已是国际发展趋势。当前,缺乏完善的动态临界负荷估算模型,估算过程具有较大不确定性。为了准确地估算土壤污染物的临界负荷,在未来研究中需要加强对临界浓度制定和动态模型构建的研究,主要包括土壤中污染物的迁移传输规律、污染物的剂量-效应关系等。  相似文献   

2.
In recent years, agricultural land in Switzerland has been increasingly used as temporary access ways for heavy machinery in road and pipeline construction operations. The Swiss soil protection law requires that measures are taken to prevent soil compaction in such operations, but gives no criteria to determine tolerable loads. We studied the compaction sensitivity of a loess soil (Haplic Luvisol) at different soil moisture conditions in a field traffic experiment and by a numerical model on the computer using finite element analysis. Two plots, one wetted by sprinkling and one left dry (no sprinkling), were traversed by heavy caterpillar vehicles during construction of a large overland gas pipeline. Compaction effects were determined by comparing precompression stresses of samples taken from trafficked and non-trafficked soil. A finite element model with a constitutive relation, based on the concept of critical state soil mechanics, was used to interpret the outcome of the field trials.

We found significantly higher precompression stresses in the trafficked (median 97 kPa) compared with the non-trafficked (median 41 kPa) topsoil of the wet plot. No effect was evident in the topsoil of the dry plot as well as in the subsoils of the wet and the dry plot. The observed compaction effects were in agreement with the model predictions if the soil was assumed to be partially drained, but disagreed for the wet subsoil if fully drained conditions were assumed. Agreement between model and experimental results also required that the moisture dependence of the precompression stress was taken into account.  相似文献   


3.
Heavy sugarbeet harvesters may compact subsoil. But it is very difficult to study this by field experiments that resemble agricultural practice. Therefore, an analysis was made by a finite element method (FEM) for a relevant calcaric fluvial soil profile, the mechanical properties of which were largely known. Measuring data of this Lobith loam soil includes preconsolidation stress, compression index and swelling index, all as a function of depth. Using these three types of soil parameters calculations have been done for tyre sizes, inflation pressures and wheel loads that occur with heaviest sugarbeet harvesters available on the European market in 1999. Because no values on soil cohesion were available, the calculations were done for several cohesion levels. The results include the detection of regions with Mohr–Coulomb plasticity and regions with cap plasticity (compaction hardening). For the soil studied—a typical soil strength profile for arable land with ploughpan in the Netherlands in the autumn of 1977—all studied combinations of wheel load and inflation pressure did not induce compaction in and below the ploughpan. The size of the region with Mohr–Coulomb plasticity decreased with increasing cohesion. It appeared from a sensitivity analysis that, although soil modelling may use a great number of soil parameters, the most important parameters seem to be: preconsolidation stress and cohesion. There is an urgent need for data of these parameters that are measured on a great range of subsoils and subsoil conditions.  相似文献   

4.
Depending on the top and subsoil textures, semi-arid soils exhibit cohesive and frictional properties that are associated with the relatively high soil strength, bulk density and penetration resistance. The objective of this study was to gain the knowledge of mechanical properties of the compacting chromic luvisols in order to improve the design of tillage tools. Therefore, we applied critical state soil mechanics to study the stress–strain behaviour of the luvisols using triaxial tests under laboratory conditions. Field investigations involved random collection of undisturbed soil samples which were subjected to triaxial testing first by isotropic consolidation and compression and then triaxial shearing. Plots of deviatoric stress against axial strain were made to determine the soil shear strengths at the critical states over different soil water levels and the two soil depths of 0–20 cm for the plough and 20–40 cm for the hard pan layers, respectively. An exponential model used to fit the deviatoric stress–axial strain test data accurately predicted the trends. Soil water significantly influenced the shear strength, cohesion (c′) and internal angle of friction (′) and hence the mechanical behaviour of the luvisols. The regression equations developed showed that c′ and ′ have quadratic relationships with soil water. The very high clay bonding strength in the subsoil (hard pan) layer resulted in high shear strength, bulk density and penetration resistance values for this soil layer. The increase in shear strength with decreasing water content affected the deviatoric stress–axial strain relationships between the upper and lower plastic limits of the sandy soil. Thus, as the soil dried, the soil ceased to behave in the plastic (ductile flow) manner and thus began to break apart and crumble. The crumbling was indicative of brittle failure. The transition stage from an increase to a decrease in c′ and ′ values with soil water occurred in the soil water content range of 6–10%. Knowledge of stress–strain behaviour of compacting soils is of practical significance in the design of appropriate tillage tools for the specific soil type.  相似文献   

5.
Quantitative soil organic carbon (SOC) models are required for a better understanding of C sequestration in soils and for prognoses at different scenarios. However, it is unclear whether the major C‐stabilization mechanisms are included adequately. Objectives were (1) to test the performance of the CIPS (Carbon turnover In Pore Space) model and the Rothamsted Carbon (RothC) Model for a prediction of the SOC dynamics at the long‐term experiments at Halle (Germany) and (2) to compare the model structures of the quantitative models and a conceptual model in order to identify shortcomings of the quantitative models. Both quantitative models had a similar prediction performance: the C dynamics was predicted satisfactorily for the Halle sites under continuous rye with NPK fertilization or without any fertilization (1878–1953), but larger deviations between modeled and measured C contents were observed for the continuous rye and maize in the entire period from 1878 to 1996. The comparison of the conceptual model with the quantitative models revealed that the neglect of the black C dynamics and the interactions of SOC with mineral surfaces are not included explicitly. Site‐specific calibrations are required where these processes have a significant impact on soil organic matter dynamics. Furthermore, the number of pools and mechanisms in the conceptual model is higher than in the quantitative models independent of their level of abstraction. Despite the neglect of some important mechanisms in the quantitative models, it has to be noted that they reproduce the SOC data generally well in agricultural surface soils. Moreover, they need only few inputs which are generally easily obtainable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号