首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Irrigated agriculture in (semi-)arid regions may exert serious pressures on groundwater resources and jeopardise further agricultural and socio-economical developments. For assessing these pressures, we present in this paper results from a groundwater quality survey performed in 2005 within the irrigated agricultural Triffa plain in north-east Morocco. The study focuses on the physico-chemical and bacteriological quality of the groundwater body within the plain and exploits the correlation and spatial dependency of the quality parameters. It is demonstrated that the water quality in this region is critical. Nitrate levels are situated between 2 and 153 mg/l, with 73% of the observations exceeding the critical level of 50 mg/l. Nitrite, ammonia, orthophosphate and dissolved organic matter content do not exceed existing norms. Bacteriological residues (faecal, total coliforms, faecal streptococcus and clostridium sulfido-reductants), however, are retrieved in nearly all water samples. Bacteriological contamination is merely correlated with nitrite and ammonia content rather than with nitrate content, indicating a possible contribution of local pollution sources to groundwater deterioration. The variability of the nitrate and bacteriological pollution is important and spatially correlated. The spatially dependency is modelled using spherical and Gaussian semi-variograms and is used to map the nitrate and bacteriological contamination using ordinary kriging techniques. The results shown are significantly different as compared to earlier studies on groundwater quality for the studied aquifer. The differences may be explained partially by modified but inappropriate fertilizer management practices in combination with intensive irrigation. Given the agricultural developments in this area, further deterioration of the groundwater quality is expected if no mitigation strategies are developed.  相似文献   

2.
Shallow ground water is a resource that is routinely overlooked when water management alternatives are being considered in irrigated agriculture. Even though it has the potential to provide significant quantities of water for crop use under the proper conditions and management. Crop water use from shallow groundwater is affected by soil water flux, crop rooting characteristics, crop salt tolerance, presence of a drainage system, and irrigation system type and management. This paper reviews these factors in detail and presents data quantifying crop use from shallow ground, and describes the existing state of the art with regard to crop management in the presence of shallow ground water. The existing data are used to determine whether in-situ crop water use from shallow ground water is suitable for a given situation. The suggested methodology uses ratios of ground water electrical conductivity to the Maas–Hoffman yield loss threshold values, the day to plant maturity relative to plant growth period, and the maximum rooting depth relative to the nearly saturated zone. The review demonstrates that for in-situ use to be feasible there has to be good quality ground water relative to crop salt tolerance available for an extended period of time. Shallow ground water availability is one area that can be managed to some extent. Crop selection will be the primary determinant in the other ratios.  相似文献   

3.
Special attention has been paid to risk assessment in water resource management in arid and semi-arid regions like the Souassi aquifer, Tunisia. Risk assessment, using vulnerability and hazard mapping, is considered as a fundamental aspect of sustainable groundwater management. To determine the degree of risk affecting the study area, an attempt has been made to combine hydro-geologic parameters using the DRASTIC method and the hazard assessment by taking the product of the weighted hazard value (HI), the ranking factor (QN) and the reduction factor (Rf).All parameters used in this risk assessment were prepared, classified, weighted and integrated in a GIS environment. Data treatment shows that large areas in the Souassi aquifer can be classified as high or very high risk areas corresponding to pollution sources located in high vulnerability zones. The areas with low and very low risk are situated in the south, which could, consequently, be interesting for future development and long term planning of protective measures. Sensitivity analyses indicated that the removal of groundwater depth, net recharge and aquifer media parameters from the DRASTIC index, causes large variation in vulnerability assessment. Moreover, hydraulic conductivity and topography were found to be more effective in assessing aquifer vulnerability. Therefore, they should have higher weights than those assumed by the DRASTIC standard method, and contrary to the impact of the vadose zone parameter. The validity of the DRASTIC and the risk methods, verified by comparing the distribution of nitrates in the groundwater and the different vulnerability classes, shows a high similarity.  相似文献   

4.
童明伟  秦增虎 《排灌机械》2011,29(2):104-108
为解决长江中上游的地表水中含沙量大,微生物以及悬浮物含量高,而不能直接作为江水源热泵机组的循环冷却用水的问题,对长江重庆段的水温和水质情况进行了分析,介绍了水流防堵除渣装置的原理,并通过试验测试了水流防堵除渣装置的性能.试验结果表明:过滤后的江水含沙量可降低到100 g/m3左右,平均去除率达68.5%,悬浮物及水藻含量也明显减少,浊度基本能够控制在50~100 NTU,平均去除率为73.1%,能够满足直接进入机组的水质要求.装置压力管道负载阻抗与安装管路特征阻抗相匹配,其水击压力幅值很小,能解决长江水进入热泵机组的清污、防堵、防水击的关键技术.整个分离系统结构简单,安装方便,运行可靠,运行费用低,能实现利用水流及重力完成浊水的自动过滤、自动清渣和自动排污,可在长江中上游的地表水源热泵中应用.  相似文献   

5.
Studies quantifying winter annual cover crop effects on water quality are mostly limited to short-term studies at the plot scale. Long-term studies scaling-up water quality effects of cover crops to the watershed scale provide more integrated spatial responses from the landscape. The objective of this research was to quantify N loads from artificial subsurface drainage (tile drains) in a subbasin of the Walnut Creek, Iowa (Story county) watershed using the hybrid RZWQ-DSSAT model for a maize (Zea mays L.)-soybean [Glycine max (L.) Merr.] and maize-maize-soybean rotations in all phases with and without a winter wheat (Triticum aestivum L.) cover crop during a 25-year period from 1981 to 2005. Simulated cover crop dry matter (DM) and N uptake averaged 1854 and 36 kg ha−1 in the spring in the maize-soybean phase of the 2-year rotation and 1895 and 36 kg ha−1 in the soybean-maize phase during 1981-2005. In the 3-year rotation, cover crop DM and N uptake averaged 2047 and 44 kg ha−1 in the maize-maize-soybean phase, 2039 and 43 kg ha−1 in the soybean-maize-maize phase, and 1963 and 43 kg ha−1 in the maize-soybean-maize phase during the same period. Annual N loads to tile drains averaged 29 kg ha−1 in the maize-soybean phase and 25 kg ha−1 in the soybean-maize phase compared to 21 and 20 kg ha−1 in the same phases with a cover crop. In the 3-year rotation, annual N loads averaged 46, 43, and 45 kg ha−1 in each phase of the rotation without a cover crop and 37, 35, and 35 kg ha−1 with a cover crop. These results indicate using a winter annual cover crop can reduce annual N loads to tile drains 20-28% in the 2-year rotation and 19-22% in the 3-year rotation at the watershed subbasin scale over a 25-year period.  相似文献   

6.
湖库水质评价是根据水体的用途,按照一定的评价参数、质量标准和评价方法,对水体进行定性和定量的评定.通过对数据的深加工处理,结合当地污染源排放状况、社会经济发展状况、区域内自然状况及其环境管理措施实施等信息的综合分析,客观合理地评价水环境质量状况,为环境管理及决策提供技术支撑.本文根据合肥市湖库水质环境监测评价的实际情况,提出几点关于湖库水质监测与评价的思考和建议.  相似文献   

7.
An experimental watershed (Oskotz principal- Op -ca.1700 ha) covered with forest and pasture (cattle-breeding) with an equally experimental sub-watershed (Oskotz woodland - Ow - ca. 500 ha) almost entirely under forest was continuously monitored during 8 years (2001-2008). These watersheds were established by the Government of Navarre (Spain) in order to assess the impact of agricultural activities on different region of Navarre. The first results regarding exported sediment, runoff, nitrate and phosphate are presented herein. These results are compared with those from two grain-sown watersheds previously reported by the authors, elsewhere.The same as in the grain-sown watersheds, most runoff, sediment, nitrate and phosphate yields in Oskotz were generated during winter, though most erosive rainfalls occurred during summer. In Ow, average sediment, nitrate and phosphate yields were approximately: 700, 22, 0.35 kg ha year−1, respectively; for Op these figures were 550, 54 and 0.76 kg ha year−1, respectively.However, total sediment and solute yields were different depending on the prevailing land use: cereal crops > forest > pasture. Sediment yields in the forest were strongly affected by the logging moment, when exported sediment rocketed.Nitrate concentration and yields were lower (and under the critical threshold) in the forested/pastured watersheds than those recorded in the two intensively cultivated watersheds. However, phosphate yields were dramatically higher (and over the critical threshold) in the former watersheds due to the prevailing soil conditions and to the fertilization of pasture, mainly with slurry.The present work, along with that similar one recently reported by the authors, is an unprecedented and relevant piece of research for the region.  相似文献   

8.
Nitrate leaching is one of the many forms of environmental pollution resulting from irrigation and intensive agriculture. In this work, a method of combining an agronomic simulation model (EPIC) and a mathematical multi-objective programming model is used to analyse the effects of three agricultural policies on farmer’s revenue and nitrate leaching. An evaluation of the net social costs associated with the different policy measures is also given. The farmer’s behaviour in different policy scenarios was studied in terms of selected crops, irrigation technique and method, and adopted management practices with focus on farm management practices and water application efficiency. Irrigation water pricing, subsidies to adopt improved management levels, and taxation on the use of nitrogen fertilizer were examined. A trade-off emerges between the levels of nitrate leaching and net farmer’s revenue more pronounced for nitrogen tax policies than for water pricing. The results obtained indicate that nitrate leaching can be reduced by about 40% with an associated net social cost of 269 €/ha for the water pricing policy, 183 €/ha for the tax on fertilizer and 95 €/ha for subsidies to high efficiency management.  相似文献   

9.
Drainage water quality in rice paddies was strongly influenced by the puddling of soil in the paddy fields by tractors and in response to opening of drainage gates. The concentrations of contaminants in drainage water increased rapidly when the puddling process began and were maintained at high concentrations throughout the puddling period. Moreover, the high concentrations did not decrease immediately after the puddling procedures ceased. Additionally, the ratio of dissolved nitrogen and phosphorous to total nitrogen and total phosphorous increased daily during the last half of the puddling period, due to discharge of chemical fertilizers with the drainage water. Also, the loads of particulate nitrogen and phosphorus discharged during the puddling period were larger than the loads discharge during irrigation. The discharge from paddy fields during puddling also increased the total annual contaminant load.  相似文献   

10.
Accurate assessments of non-point source pollution and the associated evaluation of mitigation strategies depend on effective water quality monitoring programs. Intensive irrigation season water quality monitoring was conducted on three agricultural drains (6 h to daily sampling) along with analysis of decade long records from two larger agricultural drains (biweekly to monthly sampling) in the San Joaquin Valley, California. Analyses revealed significant temporal variability in concentrations of nutrients, salts, and turbidity over short time-scales (<1 day), as well as significant differences in monthly and annual mean concentrations. Statistical techniques were used to evaluate the sampling intensity required to meet rigorous confidence and accuracy criteria, as well as to evaluate the efficacy of different sampling strategies (e.g. grab samples versus composite samples). The number of samples required to determine mean constituent concentrations within 20% of the mean at a 95% confidence level ranged from 2 to 39 samples per month (SPM) for total phosphorus, 1-16 SPM for total nitrogen, 5-25 SPM for turbidity, and 1-3 SPM for electrical conductivity. Using a daily composite sample (4 subsamples per composite) instead of discrete samples was shown to maintain the same accuracy and confidence standards, while reducing the required sample number by up to 50%. This study emphasizes the value of a statistical approach for evaluating water quality monitoring strategies, and provides a framework through which cost-benefit analysis can be implemented in the development of monitoring plans.  相似文献   

11.
Rapid urbanization and industrialization have increased the pressure on limited existing fresh water to meet the growing needs for food production. Two immediate responses to this challenge are the efficient use of irrigation technology and the use of alternative sources of water. Drip irrigation methods may play an important role in efficient use of water but there is still limited information on their use on sugar beet crops in arid countries such as Iran. An experiment was conducted to evaluate the effects of irrigation method and water quality on sugar beet yield, percentage of sugar content and irrigation water use efficiency (IWUE). The irrigation methods investigated were subsurface drip, surface drip and furrow irrigation. The two waters used were treated municipal effluent (EC = 1.52 dS m−1) and fresh water (EC = 0.509 dS m−1). The experiments used a split plot design and were undertaken over two consecutive growing seasons in Southern Iran. Statistical testing indicated that the irrigation method and water quality had a significant effect (at the 1% level) on sugar beet root yield, sugar yield, and IWUE. The highest root yield (79.7 Mg ha−1) was obtained using surface drip irrigation and effluent and the lowest root yield (41.4 Mg ha−1) was obtained using furrow irrigation and fresh water. The highest IWUE in root yield production (9 kg m−3) was obtained using surface drip irrigation with effluent and the lowest value (3.8 kg m−3) was obtained using furrow irrigation with fresh water. The highest IWUE of 1.26 kg m−3 for sugar was obtained using surface drip irrigation. The corresponding efficiency using effluent was 1.14 kg m−3. Irrigation with effluent led to an increase in the net sugar yield due to an increase in the sugar beet root yield. However, there was a slight reduction in the percentage sugar content in the plants. This study also showed that soil water and root depth monitoring can be used in irrigation scheduling to avoid water stress. Such monitoring techniques can also save considerable volumes of irrigation water and can increase yield.  相似文献   

12.
农田水利建设一直是我国农业发展的重中之重,最初的农田一般仅依靠自然河水和雨水进行灌溉,而后由兴修的水利工程进行灌溉,农水建设发展到今天开始重视环境水生态.传统农田水利向环境水生态转变是一种必然的发展趋势.这种形式的转变能够最大限度地满足农业经济发展中的用水需求,而且不会对生态环境带来危害.本文主要分析农田水利发展对环境的影响,并概述了传统农业水利向环境水生态转变的过程.  相似文献   

13.
Excessive irrigation and nitrogen applications result in substantial nitrate leaching into groundwater in intensively cropped oases in desert areas of Alxa, Inner Mongolia. An integrated modelling approach was developed and applied to compare policy incentives to reduce nitrate leaching. The integrated model consists of a process-based biophysical model, a meta-model, a farm economic model and an assessment of policy incentives. The modelling results show that there are “win-win” opportunities for improving farm profitability and reducing nitrate leaching. We found that 4471 Yuan ha−1 of farm gross margin could be obtained with a reduction in nitrate leaching of 373 kg ha−1. Farmers’ lack of knowledge about water and nitrogen in soil, and on crop requirements for water and nitrogen could explain the differences, so that agricultural extension is an appropriate policy incentive for this area. When the economic optimum is obtained reductions in nitrate leaching are not achievable without profit penalties and there is a “trade-off” relationship between farm profitability and groundwater quality protection. The combination of low elasticity of nitrate leaching and large elasticity of farm gross margin against water price increases results in very high costs for reducing nitrate leaching (105.6 Yuan kg−1). It is suggested that if the water price increases were coupled with subsidies for adopting nitrate leaching mitigation practices, environmental gains could come at a lower cost.  相似文献   

14.
Irrigation is widely criticised as a profligate and wasteful user of water, especially in watershort areas. Improvements to irrigation management are proposed as a way of increasing agricultural production and reducing the demand for water. The terminology for this debate is often flawed, failing to clarify the actual disposition of water used in irrigation into evaporation, transpiration, and return flows that may, depending on local conditions, be recoverable. Once the various flows are properly identified, the existing literature suggests that the scope for saving consumptive use of water through advanced irrigation technologies is often limited. Further, the interactions between evaporation and transpiration, and transpiration and crop yield are, once reasonable levels of agricultural practices are in place, largely linear—so that increases in yield are directly and linearly correlated with increases in the consumption of water. Opportunities to improve the performance of irrigation systems undoubtedly exist, but are increasingly difficult to achieve, and rarely of the magnitude suggested in popular debate.  相似文献   

15.
Water demands are outstripping supplies in many parts of Asia and causing conflicts, especially as rapidly urbanizing and industrializing areas compete with more traditional agriculture on alluvial plains near expanding metropolises. The environment is increasingly being seen as a legitimate and important user of water, often in competition with irrigation, domestic, industrial, hydropower and community uses of water. Any future scenario requires an improvement in water productivity, especially in agriculture. Surface and ground water supplies are not well regulated owing primarily to a weak knowledge base, analytical capacity in addition to a number of traditional institutional, governance, political and other factors. Water policy makers have, therefore, to work out strategies for integrated water and environmental management, which rely on a proper knowledge base of the basin hydrological and pollution conditions. Examples from various countries in Asia are elaborated in this paper to demonstrate how spatially distributed evapotranspiration data from remote sensing, in conjunction with other key data, can help to build the knowledge base for integrated basin scale water management. Remote sensing is not a solution, but it provides key data that is difficult to access by conventional data collection methods.  相似文献   

16.
何敬悦 《湖南农机》2012,39(1):211-212
恒压供水比以往的供水方式节能环保了很多,笔者对几十个村进行调查,存在未能实现二十四小时供水和老百姓因用容器储水不当而出现水质最终被污染危险的安全问题,解决方法设备、先进技术这两部分是节能和更好利用水源的关键问题.  相似文献   

17.
在水利建设项目立项、取水许可证申请和审批过程中,水资源论证是一个重要环节,是对区域水资源管理制度进行深化的一项重要举措.为了提高河流水资源的管理水平,更好地对水资源进行保护和利用,需要对水资源进行合理配置,确保水资源可以持续地开发和利用.基于此,本文对水利建设项目水资源论证框架进行探讨.  相似文献   

18.
以杭州市清泰水厂进水泵房给水泵为对象,通过对千岛湖作为第二供应水源后水质变化进行理论分析和试验研究,以及水源变化后水泵实际流量扬程等性能进行分析研究,提出在千岛湖、钱塘江等多水源下给水泵的选型设计.通过给水泵叶轮切削的方式,使给水泵新的工况点处于高效区域内,确保给水泵安全顺利生产运行,提高进水泵房给水泵的效率,满足日供...  相似文献   

19.
The authors of the recently completed Comprehensive Assessment of Water Management in Agriculture (CA) concluded that there are sufficient water resources to produce food for a growing population but that trends in consumption, production and environmental patterns, if continued, will lead to water crises in many parts of the world. Only if we act to improve water use will we meet the acute fresh water challenge. Recent spikes in food prices, partially caused by the increasing demand for agricultural products in non-food uses, underline the urgent need to invest in agricultural production, of which water management is a crucial part. The world experienced similar pressure on per capita food supplies and food prices in the 1960s and 1970s, but the challenges now are different than those we experienced 50 years ago. The world's population is substantially larger, there are many more people living in poverty, and the costs of many agricultural inputs are much higher. The current situation and the long-term outlook require a fresh look at approaches that combine different elements such as the importance of access to water for the poor, providing multiple ecosystem services, rainwater management, adapting irrigation to new needs, enhancing water productivity, and promoting the use of low-quality water in agriculture. This special issue highlights the analysis behind a number of policy options identified by the CA, a five-year multi-disciplinary research program involving 700 scientists. This introductory article sets the background and context of this special issue, introduces the key recommendations from the CA and summarizes the papers in this issue.  相似文献   

20.
In Australian irrigated citriculture, fruit yield and quality outcomes are not tightly related to levels of plant available water, which raises the possibility of using mild water stress applied to part of the root zone, i.e. partial root zone drying, to stimulate physiological mechanisms that reduce tree water use by changing the relationship between stomatal conductance and ambient evaporative conditions.The PRD technique alternates irrigation such that one side of the tree root zone is allowed to dry whilst the other side is irrigated. This significantly reduces the wetted soil volume at any point in time, whilst always maintaining a readily available water supply to part of the root zone. By adopting this irrigation strategy water use of mature Navel orange trees C. sinensis (L.) Osbeck was reduced and water use efficiency was increased. The technique did not induce excessive fruitlet drop and crop yield was unaffected. Both fruit size and juice percentage slightly decreased whereas total soluble solids percentage (TSS) and juice acid percentage increased. As water use was reduced and juice quality attributes were increased, this technique has obvious benefits for juice fruit production.PRD offers an advantage over conventional deficit irrigation strategies because it helps reduce water use by separating the biochemical signaling responses to water deficit in the dry part of the root zone from the physical effects of reduced stomatal conductance due to lower water availability, allowing developmental processes associated with plant growth to remain unperturbed. Irrigating a reduced root zone volume in this way reduces crop water requirement. However, it is also important to understand that this technique pushes the crop to its limits and should only be applied to well established healthy trees.When applying PRD irrigation, it is important that water is supplied with sufficient frequency and depth of wetting to meet the water needs of the whole plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号