首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dietary supplementation of phospholipids seems to be extremely important to promote growth and survival in fish larvae. Several studies also suggest the importance of n-3 highly unsaturated fatty acids (HUFA) rich phospholipids to further enhance larval performance. In the present study, four different diets were formulated in order to compare the effect of total dietary polar lipid contents, of soya bean lecithin supplementation and of feeding n-3 HUFA in the form of neutral or polar lipids on ingestion and incorporation of labelled fatty acids in gilthead seabream larvae. These diets were prepared including radiolabelled fatty acids from palmitoyl phosphatidylcholine, glycerol trioleate, free oleic acid (FOA) and free eicosapentaenoic acid (FEPA) and were fed to 25 day-old larvae. The results of these experiments showed that the elevation of the dietary polar lipid levels significantly improved microdiet ingestion, regardless of the origins of the polar lipids. This effect caused an improved incorporation of phosphatidylcholine fatty acids to the larval polar and total lipids (TL) as the dietary polar lipids increased. Nevertheless, a better incorporation of fatty acids from dietary polar lipids in comparison with that of fatty acids from dietary triglycerides into larval lipids was found in gilthead seabream, whereas a better utilization of dietary triglycerides fatty acids than dietary free fatty acids could also be observed. Besides, the presence of n-3 HUFA rich neutral lipids (NL) significanlty increased the absorption efficiency of labelled oleic acid from dietary triglycerides, but the presence of n-3 HUFA rich polar lipids, particularly improved the incorporation of FEPA. This fatty acid was preferentially incorporated into larval polar lipids in comparison with FOA.  相似文献   

2.
长毛对虾仔虾对不饱和脂肪酸需求量的初步研究   总被引:4,自引:1,他引:4       下载免费PDF全文
王渊源 《水产学报》1997,21(4):380-385
用正交法对不饱和脂肪酸进行6因素2水平的饲料含量设计,并在对虾营养试验系统中进行饲养实验。结果表明;长毛对虾仔虾的生长率,存活率受不2饱和脂肪酸种类与含量的影响。在本实验条件下,长毛对虾仔虾期C16:n,C18:n,C18;2n,C18;3n,C20:1-5n和C22-24的最适宜含量分别上饲料的0.24%,1.40%,1.85%,0.43%,0.76%和2.25%。  相似文献   

3.
The dietary requirement of the prawn Penaeus monodon for linoleic (LOA) and linolenic (LNA) fatty acids was examined in the absence of other long-chain polyunsaturated and highly unsaturated fatty acids (PUFA-20:2, 20:3, 22:2, 22:3 and HUFA-18:4, 20:4, 20:5, 22:4, 22:5, 22:6, respectively). Incremented dietary amounts of LOA (7, 14, 21, 28 and 35% of total fatty acids) and LNA (0, 7, 14, 21 and 28% of total fatty acids) were examined in a 5 × 5 factorial growth experiment lasting 50 days. An additional diet containing both PUFA and HUFA (cod-liver oil) was provided as a reference. The total lipid content (excluding sterols) of each of the 26 diets was maintained at 70 g kg−1 of dry diet. The fatty acid composition of the neutral lipid was manipulated by blending different plant oils and supplementing with purified free fatty acids to provide the desired fatty acid composition upon addition to the total diet. At the end of the 50-day growth experiment, the prawn digestive gland (DG) was quantitatively analysed for lipid and fatty acid content. Prawns fed the reference diet increased in weight (mean ± SEM) by 214 ± 6%. Growth was generally greater when combinations of LOA and LNA were used. The best growth (213 ± 17%) was obtained with the diet containing a fatty acid content of 14% LOA and 21% LNA. This growth was comparable to that of the reference diet. The digestibility of the total lipid in the diet was usually higher when both fatty acids were present. The lipid content of the DG was highest in prawns fed diets containing both LOA and LNA, similar to the growth response. The fatty acid composition of the prawn's DG lipid reflected the fatty acid composition of the diet. However, the maximum assimilation of LNA in the DG lipid (14.2% of DG lipid fatty acids) was about half that of LOA (32.5% of DG lipid fatty acids).  相似文献   

4.
为考察饥饿及恢复摄食对胭脂鱼仔鱼氨基酸和脂肪酸的影响.在水温(19±0.5)℃下,对胭脂鱼仔鱼实施延迟首次投喂0、1、3、5、7、9和11d共7个处理,随后进行饱食投喂,分别在延迟处理结束时以及摄食后(19日龄和29日龄)取材对鱼体的含脂量、脂肪酸和氨基酸含量进行检测.结果如下:(1)随延迟首次投喂时间的增加,胭脂鱼仔鱼鱼体的脂肪含量呈显著下降趋势.在实验结束时(29日龄),各处理组仔鱼的脂肪含量均与对照组无显著性差异,表现出完全补偿效应.(2)胭脂鱼仔鱼在饥饿期间,主要以单不饱和脂肪酸作为能量代谢基质,按n-6>n-9>n-3顺序被先后利用,且C22∶6n-3 (DHA)优先于C20∶5n-3(EPA)被保存下来.同时,鱼体中DHA和ARA的百分含量与仔鱼体质量和含水率存在极显著相关关系.(3)随延迟首次投喂时间的增加,胭脂鱼仔鱼的丙氨酸、异亮氨酸、亮氨酸和组氨酸显著下降;天冬氨酸和谷氨酸显著上升;而甘氨酸、赖氨酸和精氨酸则呈先上升后下降的趋势.结果表明:胭脂鱼仔鱼对饥饿有较强的适应性,在饥饿初期以消耗脂类物质为主,当脂类物质趋于阈值,氨基酸开始被大量消耗;胭脂鱼仔鱼在饥饿后恢复摄食时,鱼体氨基酸的恢复比脂肪酸更慢.  相似文献   

5.
Total lipid, lipid classes and their associated fatty acids have been measured in whole halibut, Hippoglossus hippoglossus (L.) larvae and in dissected animals separated into yolk and body compartments. At hatching the larval body contained 17 μg ind?1 of lipid (11% of larval body dry weight), while the yolk contained 190 μg ind?1. Phosphatidylcholine (PC) accounted for 57% of total yolk lipids while phosphatidylethanolamine (PE), triacylglycerol (TAG), cholesterol and sterol ester (SE) accounted for 12%, 12%, 9% and 6% respectively. The main fatty acids in the PC fraction were 22:6n-3 (25.6 μg ind?1), 16:0 (19.2 μg ind?1) and 20:5n-3 (12.6 μg ind?1). Between hatch and 200 day-degrees post hatch (D°PH) a net decline in total lipids of 29% was seen. There seemed to be some, but relatively minor, changes in the relative composition of lipids in the yolk throughout development, which are indicative of a non-selective endocytotic bulk uptake of lipids from the yolk. Towards first-feeding there was a selective catabolism of PC and a net synthesis of PE in the developing body, resulting in a shift in the lipid class composition in the body compared with that of the yolk. The fatty acids released from lipid hydrolysis were mainly used as energy substrates by the growing halibut larvae; 22:6n-3 was quantitatively one of the most important fatty acid fuel in energy metabolism. At the same time 38% and 23% of the 22:6n-3 released from PC was retained by the PE and neutral lipids in the growing larval body respectively. Except for 20:5n-3 (2%, 14%) no similar retention was seen in any of the other fatty acids. The observed net synthesis of PE in developing yolk-sac larvae of Atlantic halibut and the preferential retention of 22:6n-3 into it, increasing from 28% at hatching to 45% at 200 D°PH, may point to a high biological value of this compound.  相似文献   

6.
The aim of the present study was to determine the optimum dietary levels of soybean lecithin (SBL) for seabream (Sparus aurata) larvae, and its influence on production performance and digestive enzymes activity. Larvae were fed five formulated microdiets with five levels of SBL. Complete replacement of live preys with the experimental microdiets for seabream larvae at 16 dph produced over 55% survival rates, particularly in fish fed with the highest levels of SBL. Moreover, increase in dietary SBL up to 80 g kg−1 significantly improved larval growth, leading to high final total length and body weight. An increase in alkaline phosphatase activity with the elevation up to 80 g kg−1 SBL was also found denoting a better maturation of the digestive system. Besides, there was a stimulatory effect of dietary SBL on PLA2 activity. Finally, increasing dietary SBL lead to better utilization of dietary highly unsaturated fatty acid, as it was reflected in their higher content in both neutral and polar lipid of the larvae. In summary, elevation of dietary SBL up to 80 g kg−1 in microdiets for seabream significantly improved digestive enzymes activities, enterocyte maturation, utilization and deposition of dietary essential fatty acids and larval growth, as a consequence of a better digestion, absorption, transport and deposition of dietary nutrients.  相似文献   

7.
Earlier studies have established that polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid and docosahexaenoic acid inhibit steroid production in the goldfish testis. As PUFA inhibit testicular steroidogenesis in the rat through activation of protein kinase C (PKC), the present studies were undertaken to characterize the properties of PKC in the goldfish testis and to test the effects of selected PUFA on PKC activity. PKC activity was quantified in goldfish testis homogenate following partial purification by DEAE-cellulose chromatography by determining the transfer of radiolabelled phosphate from [γ - 32P]ATP to histone III-S. Testicular PKC activity was defined by the amount of protein phosphorylation in the presence of phosphatidylserine, phasphatidylcholine, Ca2+ ions and diolein (a 1,2-diacylglycerol analog) above that obtained in response to Ca2+ ions alone. Western blot analysis of a crude testis homogenate using an antibody specific to the α and β isoforms of mammalian PKC led to the identification a single band of protein (80 kD) that co-migrated with PKC from rabbit brain cytosol. Addition of arachidonic, eicosapentaenoic or docosahexaenoic acids failed to activate PKC. However, PKC activity stimulated by phospholipid, Ca2+ ions and diolein was inhibited in a dose related fashion by all of these fatty acids. These studies suggest that the inhibitory effects of EPA and DHA on testicular steroidogenesis are not mediated by activation of PKC. The lack of effect of PUFA on PKC activity in the goldfish testis suggests that either the distribution of PKC isoforms differs between the testis of mammals and fish or that PKC is not activated by PUFA in the goldfish.  相似文献   

8.
Yolk-sac larvae and starved larvae of Clarias gariepinus (Burchell 1822), reared at 28°C, were predominantly ammonotelic, but urea excretion contributed about 19±7% to the total nitrogen excretion. Exogenously feeding larvae of C. gariepinus were mainly ammonotelic until 180-205 h post fertilization, but from then on the relative urea excretion stabilized at 44±13%. The contents of total free amino acids (FAA) and ammonia in C. gariepinus peaked around complete yolk absorption. During the first period after hatching 64% of the FAA and 60% of the total ammonia were located in the yolk compartment. The body compartment contained the highest amount of FAA and total ammonia at the end of the yolk-sac period (65 and 77%, respectively). The amount of nitrogen originating from catabolism of amino acids was balanced within 6% by the excreted sum of ammonia and urea. The high degree of ureotelism in C. gariepinus larvae may constitute an adaptive mechanism to a habitat of temporal water shortage.  相似文献   

9.
This study evaluated the nutritional value of dietary n‐3 and n‐6 polyunsaturated fatty acids (PUFA) such as linoleic (LOA) and linolenic (LNA) acids, and highly unsaturated fatty acids (HUFA) such as arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids for juvenile Litopenaeus vannamei, based on their effects on growth, survival, and fatty acid composition of hepatopancreas and muscle tissue. Diets contained 5% total lipid. A basal diet contained palmitic and stearic acids each at 2.5% of diet. Five diets contained 0.5% dry weight of LOA, LNA, AA, EPA, or DHA. An additional diet evaluated HUFA in combination by supplementing at 0.5% of diet, a mixture of n‐3 HUFA. All HUFA showed higher nutritional value than PUFA for shrimp and produced significantly (P < 0.05) higher final weight, weight gain, and total lipid in shrimp muscle. Fatty acid profiles of shrimp tissues reflected the composition of the dietary lipids. In general, saturated fatty acids were more abundant in the neutral factions, while PUFA and HUFA were more abundant in the polar fractions of tissues. Under these experimental conditions, HUFA had much greater nutritional value than PUFA for juvenile L. vannamei; moreover, dietary requirements for PUFA were not demonstrated.  相似文献   

10.
The nutritional requirements of pikeperch larvae have been sparsely examined. Dietary polyunsaturated fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may affect growth and physiological stress response in marine fish larvae, but these mechanisms have not received as much attention in freshwater fish. Pikeperch larvae were reared on Artemia from day 3 until 21 days posthatch. Artemia were enriched with six formulated emulsions, with inclusion of either fish oil, pure olive oil (POO) or olive oil supplemented with various combinations of ARA, EPA and DHA. Larval tissue FA was significantly related to the content in the diets, but larval growth was similar for all treatments. When exposed to stress by confinement in small tanks with culture tank water or saline water (15 g L?1.), mortality in larvae treated with POO was significantly higher than in the remaining treatments while tissue cortisol contents in these fish seemed lower. The findings of a lower stress response in larvae fed POO may be related to the lower tissue content in these larvae of essential fatty acids especially DHA but also EPA and ARA.  相似文献   

11.
The effect of the replacement of fish protein hidrolizate and vitamin premix by freeze‐dried biomass of the marine microalga Isochrysis galbana in the feed for goldfish (Carassius auratus) larvae was tested. Larvae (3.4±0.7 mg) were fed with three experimental microparticulated diets that differ from each other in the percentage of replacement of fish protein hidrolizate (25% or 100%) or vitamin premix by I. galbana biomass. The control diet and the diet containing microalgae biomass as a substitute of 25% of fish protein hidrolizate (MP25) presented the highest survival, being almost 100%, with no significant differences between them. Survival in diets in which 100% of fish protein hidrolizate (MP100) or vitamin premix (MV) had been substituted by microalgal biomass was 78% and 66% respectively. Growth, measured as weight, was lower than with the control diet in all treatments in which microalgal biomass was included, with lowest results being obtained with the MP100 diet. Differences between treatments and control were lower when growth was measured as length. The harvesting and processing microalgae biomass is crucial to maintain the nutritive value and could be the cause for the obtained results.  相似文献   

12.
以野生日本鬼鲉人工催产获得的受精卵为实验材料,定量检测了日本鬼鲉胚胎及卵黄囊仔鱼发育过程中脂肪组成及脂肪酸含量.结果表明:日本鬼鲉胚胎及卵黄囊仔鱼的总脂肪含量为13.85%~ 11.66%,极性脂肪占总脂肪含量为75.39%~ 72.20%.总脂肪及极性脂肪含量在胚胎发育阶段无显著变化,在卵黄囊仔鱼阶段随发育而显著下降.中性脂肪含量在胚胎发育阶段有显著变化,在卵黄囊仔鱼阶段其含量相对稳定.野生日本鬼鲉胚胎及卵黄囊仔鱼总脂肪的主要脂肪酸为DHA(22∶6n-3),16∶0,ARA(20∶4n-6),EPA(20∶5n-3),18∶0和18∶1n-9.总脂肪及极性脂肪的DHA,ARA,EPA含量(mg/gDW)均随胚胎和卵黄囊仔鱼的发育而显著下降,且DHA和ARA含量均在胚胎囊胚期至尾芽期大幅降低.中性脂EPA和DHA含量随发育呈先升后降,其峰值分别出现在初孵仔鱼和2日龄(2DPH)卵黄囊仔鱼.中性脂ARA含量随发育逐步升高,峰值出现在3日龄(3DPH)卵黄囊仔鱼.在胚胎发育前期,总脂肪DHA和ARA相对EPA被选择性消耗,饱和脂肪酸(SFAs)和多不饱和脂肪酸(PUFAs)相对单不饱和脂肪酸(MUFAs)被机体选择性消耗,N-6PUFA相对N-3 PUFA被选择性消耗;在胚胎发育后期及卵黄囊仔鱼阶段,总脂肪EPA相对DHA和ARA被选择性消耗.在胚胎和卵黄囊仔鱼发育过程中,SFAs中16∶0相对18∶0被选择性消耗.胚胎发育后期阶段和卵黄囊仔鱼阶段,总脂肪MUFAs中16∶1相对18∶1被选择性消耗.实验表明日本鬼鲉胚胎及卵黄囊仔鱼发育阶段极性脂肪中DHA、ARA和EPA可以向中性脂肪中转移,胚胎和卵黄囊仔鱼对不同类别脂肪中的重要脂肪酸的消耗具有选择性,且其选择性与发育阶段相关.  相似文献   

13.
A 6‐week feeding trial was conducted to evaluate the nutritional value of dietary linoleic (18:2n‐6, LOA) and linolenic (18:3n‐3, LNA) acids for juvenile Litopenaeus vannamei by determining their effects on growth, survival and fatty acid composition of hepatopancreas and muscle tissue. Diets were formulated to contain 5% total lipid. A basal diet contained only palmitic and stearic acids, each at 2.5% of diet. Six diets contained one of three levels (0.25, 0.5 and 1%) of either LOA or LNA, and three diets had different ratios of LNA/LOA (1, 3, 9) at a combined inclusion level of 0.5% of diet. An additional diet contained 0.5% of a mixture of n‐3 highly unsaturated fatty acids (HUFA). The fatty acid profile of hepatopancreas and muscle of shrimp reflected the profile of the diets. HUFA of the n‐3 family showed higher nutritional value than LOA or LNA for juvenile L. vannamei by producing significantly (P < 0.05) higher final weight and weight gain. Neither LOA nor LNA, alone or in combination, improved growth significantly compared with shrimp fed the basal diet.Thus, dietary requirements for LOA and LNA were not demonstrated under these experimental conditions.  相似文献   

14.
Essential fatty acid requirements of cultured marine fish larvae   总被引:14,自引:1,他引:14  
Feeding of marine fish larvae is, in most cases, limited to the administration of two species of live prey. This reduction in the range of food available for the cultured larvae may occasionally lead to nutritional imbalances or deficiencies. A large amount of research has been recently devoted to the study of the essential fatty acid requirements of marine fish larvae. Studies on the biochemical composition of developing eggs and larvae, as well as the comparison of the patterns of loss and conservation during starvation, pointed out the importance of n-3 HUFA and arachidonic acid as essential fatty acids for larvae of marine fish. The biochemical composition of marine fish larvae, in terms of lipid content and fatty acid composition of total and polar lipids, is modified by dietary levels of essential fatty acids. Larval growth, survival and activity have also been reported to be affected by dietary levels of essential fatty acids. In addition, some pathological signs, such as hydrops or abnormal pigmentation, have been related to essential fatty acid deficiency in these fish. Based on these effects, the essential fatty acid requirements of marine larval fish have been reported to range between 0.3 and 55 g kg?1 n-3 HUFA on a dry weight basis, suggesting that quantitative requirements of fish larvae may differ from those of juveniles or adults. But quantitative requirements for larvae of the same species reported by various authors are often contradictory. These differences are discussed in relation to the dietary lipid content, ratio 20:5n-3/22:6n-3 and culture conditions used.  相似文献   

15.
To establish the changes which occur during embryogenesis and early larval development, eggs, yolk sac larvae and swim-up larvae of pike were examined for lipid class and fatty acid composition. At a water temperature of 15.5°C, the embryonic phase was short (6 days) and characterized by a 41.3% decline in the lipid content of eggs, accompanied by large reductions in the amount of phosphatidylcholine (41.4% decrease), sterol esters and triacylglycerols (respectively a 41.2% decrease and a 58.1% decrease), but not phosphatidylethanolamine which increased markedly (35.6%). By the time of yolk sac absorption (7 to 11 days after fertilization) the larvae remained inactive and a limited utilization of lipids was observed. Yolk sac phosphatidylcholine was selectively incorporated into larval bodies while the levels of other lipid classes remained unchanged in the yolk. When the swim bladder was filled and the swimming stage was reached (11 days to 13 days af), the yolk was completely depleted and yolk phosphatidylcholine together with yolk triacylglycerols were catabolised. Yolk phosphatidylethanolamine and yolk sterol esters were partly incorporated into the body lipids. In the subsequent swim-up larval stage (13 to 15 days af), a steady decrease in lipids was observed (41.6%). Fluctuations in the levels of polyunsaturated fatty acids, monounsaturated fatty acids or saturated fatty acids examined from eggs or larvae were consistent with changes in lipid classes during pike development. During yolk sac absorption, pike incorporated yolk PUFA released on hydrolysis of phosphatidylcholine into the larval body. The results are discussed with reference to water temperature and in relation to the ontogenic and ecological context of pike development. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Tilapia (Oreochromis) nilotica were fed either a commercial diet containing 2.2% (n-3) and 0.5% (n-6) polyunsaturated fatty acids (PUFA), or a diet containing 1.0% methyl linoleate as the only PUFA. The fatty acid composition of tissue lipids generally reflected that of the diet. Fish from both dietary groups were injected intraperitoneally with 14C-labelled linoleic acid, 18:2 (n-6), or linolenic acid, 18:3 (n-3), and the distribution of radioactivity in tissue lipids examined. The conversion of both 18:2 (n-6) and 18:3 (n-3) to longer chain PUFA was lower in fish fed the commercial diet than in those fed the diet containing only 18:2 (n-6). Half of the radioactivity from both substrates recovered in liver polar lipids was present in C20 and C22 PUFA with fish maintained on the experimental diet. It is concluded that T. nilotica is capable of elongating and desaturating both 18:2 (n-6) and 18:3 (n-3), but that this conversion is suppressed by dietary longer chain PUFA. NERC Unit of Aquatic Biochemistry  相似文献   

17.
Total lipids, lipid classes and their associated fatty acids were measured in developing eggs, yolksac larvae and starving larvae (from fertilized egg to day 9 after hatch) of the common dentex Dentex dentex (L., 1758). The larvae of common dentex during lecitotrophia and subsequent starvation consumed 1.6 g of total lipid per larvae per day. The overall decrease was mainly due to utilization of the major neutral lipids, TAG and SE (0.5 and 0.6 g larvae–1 day–1, respectively) which was 3.4-fold greater than that of the the major phosphoglycerides (primarily PC by 0.2 g larvae–1 day–1). There was net synthesis/conservation of PE during the first half of the study period before it decreased rapidly (0.2 g larvae–1 day–1) during the second half. PUFAs were principally catabolized (468.6 ng larvae–1 day–1), primarily 22:6(n-3), 20:5(n-3) and 20:4(n-6) (221.8, 58.5 and 12.1 ng larvae–1 day–1, respectively). Saturated and monounsaturated fatty acids were also utilized (227.2 and 256.7 ng larvae–1 day–1, respectively), principally 16:0 and 18:1(n-9) that were both consumed at 149.8 and 156.7 ng larvae–1 day–1, respectively. The rank order of utilization of fatty acids (ng larvae–1 day–1) by D. dentex larvae from total lipids, PC and TAG coincided with the order of abundance of the different fatty acids in the respective lipid fractions. However, in PE, the most abundant fatty acid, DHA, was relatively conserved and 16:0, the second most abundant fatty acid, was catabolized to the greatest extent. D. dentex showed a pattern of lipid metabolism during early development similar to that of marine larval fish from temperate waters whose eggs contain high levels of total lipids, including an oil globule, and which preferentially utilize neutral lipids as the primary energy source.  相似文献   

18.
This study examines the effects of nonesterified fatty acids on the properties of the sex steroid binding protein (SSBP) in the plasma of goldfish (Carassius auratus). Scatchard analysis revealed a single class of high affinity (Kd 1.89±0.20 nM), low capacity (Bmax 302±17 nM) binding sites for [3H]17-estradiol in female goldfish plasma. The SSBP bound 17-estradiol and testosterone with similar affinity but had much lower affinity for estriol, 17,20-dihydroxy-4-pregnen-3-one and cholesterol. Nonesterified fatty acids inhibit the binding of [3H]17-estradiol to the SSBP as a function of dose, degree of unsaturation and fatty acid chain length. Polyunsaturated fatty acids (PUFAs) such as arachidonic acid (C20:4), eicosapentaenoic acid (C20:5) and docosahexaenoic acid (C22:6) strongly inhibit the binding of [3H]17-estradiol to the SSBP. By comparison, saturated fatty acids such as heptadecanoic acid (C17:0), palmitic acid (C16:0) and stearic acid (C18:0) were without effect. Scatchard analysis and Lineweaver-Burk plots showed that PUFAs act through a competitive mechanism whereby they reduce the affinity but have no effect on the binding capacity of the SSBP. Collectively, these studies suggest that in addition to their roles as metabolic energy sources and as precursors to eicosanoids, PUFAs can be potent modulators of steroid hormone interactions with the SSBP in goldfish plasma.  相似文献   

19.
The cell membrane phospholipid composition is of major importance for normal cell functions. However, it is not known how complete depletion of both shorter and longer chain omega‐3 fatty acids in salmon diets influences fatty acid composition of phospholipid subclasses in different organs of Atlantic salmon. We describe here the fatty acid composition in phospholipid subclasses of liver, muscle, heart and intestine in Atlantic salmon after 18 months of dietary n‐3 essential fatty acids deprivation. The percentage of 22:6n‐3 was markedly reduced in almost all phospholipid subclasses, and except for muscle phosphatidylcholine, phosphatidylethanolamine (PE) and phosphatidylinositol (PI), phospholipids in deficient fish were totally devoid of 20:5n‐3. As compensation, we observed significant increases in 20:4n‐6, and especially in 20:3n‐9 (Mead acid) and 22:5n‐6, varying among phospholipids and organs. High amounts of 20:3n‐9 were found in liver and intestinal PE, little in PE from heart and muscle. For 22:5n‐6, we saw a small incorporation in PI in liver and intestine compared to heart and muscle. Generally in PI, the preference for 20:4n‐6 to 20:5n‐3 differed significantly between organs. Overall, changes upon n‐3 deprivation seemed to be strongest in liver and intestine, the lipid‐secreting organs, and less in muscle and heart.  相似文献   

20.
The aim of the present study was to determine the optimum dietary levels of krill phospholipids (KPL) for sea bream (Sparus aurata) larvae, and its influence on larval development and digestive enzymes activity. Larvae were fed five formulated microdiets with five different levels of KPL. Complete replacement of live preys with the experimental microdiets for seabream larvae produced high survival and growth rates, particularly in fish fed the highest levels of KPL. In the present study, increase in dietary KPL up to 120 g kg?1 (100 g kg?1 total PL) significantly improved larval survival and growth, whereas further increase did not improve those parameters. An increase in alkaline phosphatase, trypsin and lipase activity with the elevation of KPL up to 120 g kg?1 was also found denoting a better functioning of digestive system. Besides, there was a linear substrate stimulatory effect of dietary KPL on phospholipase A2 activity. Finally, increasing dietary KPL lead to better assimilation of n‐3 HUFA especially eicosapentaenoic acid, reflected in the higher content of these fatty acids in both neutral and polar lipids of the larvae. In summary, KPL were found to be an excellent source of lipids for seabream larvae. Optimum inclusion levels of this ingredient in microdiets to completely substitute live preys at this larval age were found to be 120 g kg?1 KPL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号