首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
魏凌基  张晶  林海荣  吕新华 《种子》2008,27(5):80-82
利用小麦矮秆基因Rht-Blb、Rht-Dlb的4对特异分子标记。NH-BF和MR1、NH-BF和WR1.2、DF和MR2、DF和Wk2、4,对新疆育成春小麦和推广品种中矮秆基因Rht-B1b及Rht-Dlb的分布情况进行了分子标记鉴定,结果表明,在鉴定的38个品种中,21.05%含Rht.B1b基因,44.74%含Rht-Dlb基因,二者合计为65.79%;同时含有Rht—B1b和Rht-Dlb2个矮秆基因的仅占5.26%。本研究首次对新疆部分育成春小麦和推广品种中矮秆基因Rht.B1b、Rht.D1b的分布做了分子鉴定。方法简便、成本低、重复性强。该方法及已检测的结果可用于选择含有Rht-B1b和Rht-D1b矮秆基因的矮秆和半矮秆品种做亲本。淘汰不合目标基因的植株,缩小选择的群体,从而提高选育效率。  相似文献   

2.
利用矮秆基因RhtB1-b、RhtD1-b和Rht8特异分子标记对郑麦583和2015-2016年度参加河南省区域试验、河南省品种比较试验、国家黄淮南片区域试验及国家黄淮麦区品种比较试验的共630份小麦材料的基因型进行检测。结果表明,供试材料中检测到549份材料含有RhtB1-b基因;592份材料含有RhtD1-b基因;513份材料含有Rht8基因;422份材料同时含有3个矮秆基因,169份材料仅含有2个矮秆基因,说明3个主要的矮秆基因在河南小麦育种过程中被聚合使用。此外,分析发现,矮秆基因Rht8与株高和每公顷穗数,以及千粒重具有显著相关性。郑麦583等小麦品种聚合了这3个矮秆基因,具有优良的丰产性,通过选择和利用矮秆基因对于培育具有丰产性优点的小麦品种具有一定价值。  相似文献   

3.
用微卫星标记鉴定中国小麦品种中Rht8矮秆基因的分布   总被引:15,自引:0,他引:15  
利用微卫星Xgwm261标记对中国小麦主产区近30年小麦主栽品种进行Rht8矮秆基因的鉴定,同时进行系谱分析加以验证,结果表明:就全国范围而言,约42.3%的品种含有Rht8,但不同生态区的分布频率不同;结合赤霉酸(GA3)反应实验,约20.6%的品种同时含有Rht8和对GA3不敏感矮秆基因.根据系谱分析,中国小麦品种Rht8的供体品种主要是来自意大  相似文献   

4.
利用矮秆基因Rht-B1b、Rht-D1b和Rht8的特异性分子标记对202份普通小麦材料进行了分子检测,连续两年观测了供试材料的重要农艺特性,分析了不同矮秆基因的遗传效应。结果表明:在202份供试材料中,22份供试材料含有基因Rht-B1b,分布频率为10.89%;基因Rht-D1b、Rht8和不含3种矮秆基因的材料分布频率分别为73.76%、65.84%和6.93%,其中有12份材料含基因Rht-B1b+Rht8,有104份材料含Rht-D1b+Rht8,分布频率分别为5.94%和51.43%。矮秆基因对农艺特性的影响不同。3个矮秆基因均可以显著地降低株高,其降秆效应分别为Rht-D1bRht-B1bRht8,就基因组合而言,降秆效应则是Rht-D1b+Rht8Rht-D1bRht-B1b+Rht8Rht-B1bRht8,说明矮秆基因具有累加效应,同时含有2个矮秆基因要比只含有其中1个矮秆基因株高更低。矮秆基因在有效分蘖、穗长、小穗数和穗粒数等方面不存在显著差异,但矮秆基因对有效分蘖有一定的负效应,有利于穗长和穗粒数的增加。基因Rht8可以显著提高千粒重,而Rht-B1b和Rht-D1b对千粒重存在一定的负效应。试验中含有基因Rht-D1b和Rht8的部分材料在农艺性状中表现良好,应进一步加以利用。  相似文献   

5.
矮败小麦的赤霉酸反应杨丽,刘秉华(中国农业科学院作物育种栽培研究所北京100081)矮败小麦是具有矮秆基因标记的显性核不育材料,含有太谷核不育小麦的显性雄性不育基因ms2和矮变1号小麦品种的显性矮秆基因Rh10.基因ms2和Rht10在4D染色体短臂...  相似文献   

6.
山西省中部地区是山西小麦生产的重要地区,了解该区当前主栽小麦品种的基因组成特点,对于进一步选育新品种具有指导作用。采用SDS-PAGE方法分析了10个小麦品种的高分子量谷蛋白亚基和醇溶蛋白组成,并利用5个功能基因标记分析了其矮秆基因、硬度、多酚氧化酶等基因组成。结果表明,供试材料HMW-GS存在4种组合类型,其中晋太9923亚基组合为1,7+8和5+10,评分为10分;根据醇溶蛋白和黑麦专化标记分析说明4个品种含有T1RS·1BL易位;3个品种含Rht2,7个品种含Rht8,1个品种为Rht2+Rht8组合;4个品种扩增出Pinb-D1b位点,5个品种具有Pinb-D1a位点,1个品种为杂合型;利用多酚氧化酶基因标记在10个品种检测出3个不同位点,表明该基因在品种间存在多样性,其中4个品种含有长度为876bp的低活性位点。  相似文献   

7.
为了深入认识‘衡观35’重要农艺性状分子机理,通过基因功能标记或与基因紧密连锁的微卫星标记的检测,结合植株的田间表现,分析了国审小麦品种‘衡观35’含有的控制重要农艺性状的关键基因。结果表明,‘衡观35’含有1BL/1RS易位染色体,这与其丰产性和较广泛的生态适应性是一致的。‘衡观35’含2个隐性春化基因(vrn-A1和vrn-B1)和1个显性春化基因(Vrn-D1),表明其主要为冬性品种,抗寒性好,同时又具有春天早发和生长快的特点。‘衡观35’含有对光周期不敏感的Ppd-D1a基因,这与其具有早熟和可在多个生态区广泛种植的特性是一致的。‘衡观35’含Rht1、Rht2、Rht4和Rht8四个矮秆基因的分子标记,这可能其株高较低的重要遗传基础。‘衡观35’含有Pm4和Pm16基因的分子标记,在田间表现出较好的白粉病抗性。‘衡观35’含有YrTp2基因的分子标记,在田间上表现出较好的条锈病抗性。以上信息为深入认识‘衡观35’重要农艺性状分子机理提供了线索,对在未来小麦遗传改良中高效利用该品种的重要基因具有实用价值。  相似文献   

8.
本研究采用4BS染色体携带Rht3基因的小麦显性矮源"矮苏3"(55~60 cm),经辐射与化学诱变,获得了一系列株高在70~85 cm、具小麦育种理想株高的突变体.采用形态标记、生化标记及分子标记对上述理想株高突变体进行了基因型检测.经成熟种子萌发试验的生化标记检测表明,理想株高突变体仍具有显性矮秆基因Rht3成熟种子α-淀粉酶活性低而抗穗萌的特性.经采用位于4BS染色体上的"易组太谷核不育基因MS2 (4BS)"作为形态标记基因来定位理想株高突变体携带的半显性矮秆基因,证实了理想株高突变体携带的半显性矮秆基因与MS2(4BS)连锁、因而与Rht3基因同位于普通小麦4B染色体上.基于通常认为Rht3与隐性矮秆基因Rht1同为4BS染色体上的复等位基因,经采用Ellis等开发的"perfect marker"SSR特异引物的分子标记检测,在矮苏3及其理想株高突变体上同时扩增出了与Rht-B1b相同的237 bp的特征带.以上3种类型的基因标记检测的结果,均有利于说明矮苏3的理想株高突变体携带Rht3突变衍生的复等位基因,因其具理想株高而又抗穗萌,可望作为半显性创新矮源用于高度集约化的小麦"分子设计育种",以克服小麦育种目前局限于使用隐性矮源的局面,实现自"绿色革命"以来小麦育种矮源的升级换代.  相似文献   

9.
小麦和硬粒小麦中Rht—B1和Rht—D1主效矮秆基因的效应随环境而变化。我们在全球81个试验中种植了国际适应性试验(IAT)中的6个春小麦矮秆近等基因系。在产量大于3Mg/ha的56个试验中,有54%的试验的半矮秆品系平均产量显著高于高秆品系;在产量低于3Mg/ha的27个试验中,仅有在24%的试验中为半矮秆品系的产量占优势。  相似文献   

10.
分析衡观35广适基因对冬春麦杂交F1影响,可为冬春杂交小麦定向分子育种提供理论依据。利用广适节水小麦品种衡观35与145份节水春麦材料杂交配制F1,用相关分子标记测定不同矮秆基因、春化基因和光周期不敏感基因对F1影响。结果表明,测试春小麦材料不具有Rht1和Rht2基因,有Rht8矮秆基因的16份,具有矮秆基因(Rht1、Rht2、Rht8)的衡观35与携带Rht8矮秆基因的春小麦材料杂交F1降秆作用最明显,达25.5%。具有隐性春化基因(vrn-A1和vrn-B1)的衡观35与携带vrn-A1基因的春麦材料后代抗寒性强,平均冬季存活率达73.3%。具有光周期不敏感基因(Ppd-D1a)的衡观35与携带光周期不敏感基因(Ppd-D1a)的春小麦杂交F1成熟期比春小麦亲本平均提前11 d。这一结果可作为冬春杂交小麦强优势组合亲本选取的分子参考依据,为定向培育广适、高产、节水的杂种小麦提供理论基础。  相似文献   

11.
利用矮秆基因Rht-B1、Rht-D1和千粒重功能基因TaCwi-A1、TaGW2-6A、TaSus2-2B的KASP标记,对云南省育成的42份小麦品种(系)进行单倍型检测,旨在筛选出含有目标基因的优异小麦种质,为云南省小麦产量相关性状的遗传改良提供材料和方法。结果表明,供试材料的株高基因组成分为5种类型,分别为Rht-B1a/Rht-D1a(40.48%)、Rht-B1a/Rht-D1b(23.81%)、Rht-B1a+197bp/Rht-D1a(4.76%)、Rht-B1b/Rht-D1a(28.57%)、Rht-B1b/Rht-D1b(2.38%)。供试材料中TaCwi-A1基因TaCwi-A1a高粒重单倍型的分布频率为42.86%,TaGW2-6A基因Hap-6A-A高粒重单倍型的分布频率为38.10%,TaSus2-2B基因Hap-H高粒重单倍型的分布频率为71.43%。5份品种(系)为3个千粒重基因的TaCwi-A1a/Hap-6A-A/Hap-H高粒重单倍型组合,频率为11.90%。研究表明,云南小麦品种(系)产量相关性状具有较好的遗传改良潜力。  相似文献   

12.
为了解沧麦6005叠氮化钠诱变群体中小麦重要功能基因的组成情况,利用高通量的KASP标记技术对小麦株高、抗病性、抗旱性、抗穗发芽、春化和品质等性状相关的基因进行了检测分析。结果表明:1)控制小麦株高的基因Rht-B1和Rht-D1在73份叠氮化钠诱变材料中出现6种组成类型,分别是Rht-B1a+197bp+Rht-D1a(1份)、Rht-B1a+197bp+Rht-D1b(39份)、Rht-B1a+Rht-D1a(1份)、Rht-B1a+Rht-D1b(13份)、Rht-B1b+Rht-D1a(13份)和Rht-B1b+Rht-D1b(3份),含有Rht-D1b的家系占全部突变家系的75.34%。2)在小麦抗病和抗逆性方面,73份诱变材料中发现含抗叶锈病基因Lr68的材料7份,含抗赤霉病基因Fhb1的材料5份,抗叶锈病基因Lr34在供试材料中未发现;在抗穗发芽方面,有3份材料含TaSdr-B1基因的TaSdr-B1a抗穗发芽单倍型,有53份材料含有PHS1基因的Rio Blanco type抗穗发芽单倍型,有16份材料含有TaMoc-A1基因的Hap-H抗穗发芽单倍型,在所有供试材料中含TaMFT-A1基因的Jagger-type和Zen/2174-type抗穗发芽单倍型的材料数分别为15份和22份;在抗旱性方面,有55份材料含有COMT-3B基因的3Ba单倍型,有28份材料含有Dreb-B1基因的TaDREB-B1a抗旱单倍型,有52份材料含有TaSST-4A基因的A2a抗旱单倍型;3)在小麦春化和早熟性方面均为一种单倍型,在春化方面,所有的诱变材料均为冬性类型。在早熟性方面,所有的供试材料在TaELF3-B1基因上均检测为晚开花的单倍型。4)在小麦品质方面,有45份材料含有高分子量麦谷蛋白亚基5+10,有18份材料含有Glu-A1基因的Ax1 or Ax2*强筋单倍型。综合表明,叠氮化钠诱变方法和KASP标记技术结合起来,可以作为一种小麦分子辅助育种的有效策略,能显著地提高小麦育种效率。  相似文献   

13.
为促进国外种质资源在我国的有效利用,将14个国家的100份代表性小麦品种在国内的8个代表性地点种植,调查抽穗期、成熟期和株高,并以4个春化基因(Vrn-A1、Vrn-B1、Vrn-D1和Vrn-B3)、1个光周期基因(Ppd-D1a)及2个矮秆基因(Rht-B1b和Rht-D1b)的分子标记检测所有品种的基因型。春化基因Vrn-A1a、Vrn-B1、Vrn-D1和vrn-A1+vrn-B1+ vrn-D1的分布频率分别为8.0%、21.0%、21.0%和64.0%;显性等位变异Vrn-A1a、Vrn-B1和Vrn-D1主要存在于来自中国春麦区及意大利、印度、加拿大、墨西哥和澳大利亚的品种中,这些品种一般为春性类型;春化位点均为隐性等位变异或vrn-A1+vrn-D1+Vrn-B1的品种主要分布在中国冬麦区、美国冬麦区、俄罗斯冬麦区,以及英国、法国、德国、罗马尼亚、土耳其和匈牙利,这些地区的小麦均为冬性类型。秋播时,供试品种均能正常抽穗,且携带春化显性变异的材料较隐性类型抽穗早,显性等位变异表现加性效应,4个春化位点均为隐性变异的一些欧美材料因抽穗太晚在杨凌和成都不能正常成熟;而春播时,显性等位变异基因型抽穗的频率高,隐性等位变异基因型基本不能抽穗。光周期不敏感基因Ppd-D1a的分布频率为68.0%,主要分布在中国、法国、罗马尼亚、俄罗斯、墨西哥、澳大利亚和印度,而光周期敏感等位变异Ppd-D1b主要分布在英国、德国、匈牙利和加拿大等中高纬度地区;携带Ppd-D1a的品种较携带Ppd-D1b的品种抽穗早,大多数Ppd-D1a品种在长日照和短日照条件下均能成熟,大部分Ppd-D1b品种在短日照条件下不能成熟。Rht-B1b和Rht-D1b基因的分布频率分别为43.0%和35.0%,其中Rht-B1b主要分布于美国、罗马尼亚、土耳其、意大利、墨西哥和澳大利亚,Rht-D1b主要分布于中国、德国、英国、意大利和印度。一般来说,一个国家的品种携带Rht-B1b或Rht-D1b之一,而这2个基因在高纬度地区分布频率较低。Rht-B1b、Rht-D1b和Ppd-D1a的降秆作用均达显著水平,Rht-B1b和Rht-D1b的加性效应突出。  相似文献   

14.
The impact of the Rht dwarfing genes on P utilization efficiency (PUTE = grain dry matter per kg P in above-ground biomass), total P uptake (Pt) and related traits was studied in the varietal backgrounds of two tall wheat cultivars, Maringa and Nainari 60. Four sets of near-isogenic lines carrying different combinations of the alleles Rht-B1b, Rht-D1b and Rht-B1c for gibberellin-insensitive dwarfism in the hexaploid wheat (Triticum aestivum L.) were compared with tall controls in two field trials under conditions of adequate nutrient supply and irrigation in Northwest Mexico. The yield-increasing effect of the dwarfing genes Rht-D1b and Rht-B1b led to improved PUTE in Maringa and total P uptake in both cultivars. Also, the double dwarf line of Maringa had larger grain yields and P uptake compared to the tall control. The Rht-B1c genotypes showed low PUTE, thick roots and high P concentration in vegetative biomass indicating a surplus of assimilates and P, which could not be translocated into the grains. A similar problem could be observed in Nainari 60 with Rht-B1b and Rht-D1b, which produced the largest grain dry matter with the lowest P concentrations in grains although they showed high P accumulation in straw. Most of the net P uptake occurred before anthesis. P absorption after anthesis was more critical for the dwarf genotypes. For double dwarfs and Rht-B1c, respectively, only 3% and 21% of the total accumulated P at maturity was absorbed at post-anthesis. The grain P of the dwarf lines came more from P accumulated at pre-anthesis and translocated from the vegetative biomass into the grain. The pre-anthesis P accumulation was positively correlated with spikes per m2 (r = 0.91), whereas post-anthesis P accumulation correlated better with grains per spike(r = 0.72), and thousand kernel weight (r = 0.51). P uptake efficiency played a secondary role under these non-P-limiting conditions, and differences in root length density were only slightly affected by Rht-genes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Reduction of plant height has played a significant role in improving wheat production and knowledge of dwarfing genes in Chinese wheat will be very important for developing high yielding cultivars. Molecular markers were used to detect the presence of genes Rht-B1b (Rht1), Rht-D1b (Rht2) and Rht8 in 220 wheat genotypes from autumn-sown wheat regions in China. They include landmark landraces, leading cultivars and core parents involved in wheat breeding from the 1950s to the present. Results indicated that Rht-D1b and Rht8 dominate with frequencies of 45.5% and 46.8%, respectively, followed by Rht-B1b with a frequency of 24.5%. The frequencies of Rht-B1b and Rht-D1b increased, from 8.6 to 32.2% and 36.2 to 53.4%, respectively, whereas the frequency of Rht8 has remained constant over time, when compared with cultivars released before and after 1990. This indicates that both the Rht-B1b and Rht-D1b were successfully used in wheat production in Chinese environments. Our study shows that Rht-B1b and Rht-D1b can be used in the post-anthesis heat stressed environments. Rht-B1b in Chinese wheats is derived from two sources, viz., Norin 10 and the Italian introduction St2422/464 (Rht-B1b and Rht8). The identity of Rht-B1b in these two sources still needs to be confirmed. Suwon 86 carrying both Rht-B1b and Rht-D1b, and Chinese cultivars, Huixianhong and Yaobaomai, are the primary sources of Rht-D1b in Chinese wheats. It is likely that Rht-D1b in Youbaomai derives from an unknown introduction. Italian introductions such as Funo and Abbondanza, and Lovrin 10 with the 1B/1R translocation, and Chinese landraces are the three major sources of Rht8. This information will be very valuable for wheat breeding in China, and internationally.  相似文献   

16.
Near isogenic lines (NILs) varying for reduced height (Rht) and photoperiod insensitivity (Ppd-D1) alleles in a cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) were compared for interception of photosynthetically active radiation (PAR), radiation use efficiency (RUE), above-ground biomass (AGB), harvest index (HI), height, weed prevalence, lodging and grain yield, at one field site but within contrasting (‘organic’ vs. ‘conventional’) rotational and agronomic contexts, in each of 3 years. In the final year, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) in Maris Huntsman and Maris Widgeon backgrounds were added together with 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c+Ppd-D1a)]. There were highly significant genotype × system interactions for grain yield, mostly because differences were greater in the conventional system than in the organic system. Quadratic fits of NIL grain yield against height were appropriate for both systems when all NILs and years were included. Extreme dwarfing was associated with reduced PAR, RUE, AGB, HI, and increased weed prevalence. Intermediate dwarfing was often associated with improved HI in the conventional system, but not in the organic system. Heights in excess of the optimum for yield were associated particularly with reduced HI and, in the conventional system, lodging. There was no statistical evidence that optimum height for grain yield varied with system although fits peaked at 85 and 96 cm in the conventional and organic systems, respectively. Amongst the DH lines, the marker for Ppd-D1a was associated with earlier flowering, and just in the conventional system also with reduced PAR, AGB and grain yield. The marker for Rht-D1b was associated with reduced height, and again just in the conventional system, with increased HI and grain yield. The marker for Rht8c reduced height, and in the conventional system only, increased HI. When using the System × DH line means as observations grain yield was associated with height and early vegetative growth in the organic system, but not in the conventional system. In the conventional system, PAR interception after anthesis correlated with yield. Savannah was the highest yielding line in the conventional system, producing significantly more grain than several lines that out yielded it in the organic system.  相似文献   

17.
Near isogenic lines (NILs) varying for genes for reduced height (Rht) and photoperiod insensitivity (Ppd-D1a) in a cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c + Ppd-D1a, Rht-D1c, Rht12) were compared at one field site but within contrasting (‘organic’ vs. ‘conventional’) rotational and agronomic contexts, in each of 3 years. In the final year, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b Rht-D1b, Rht-D1b + Rht-B1c) in both Maris Huntsman and Maris Widgeon backgrounds were added together with 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c Ppd-D1a)]. Assessments included laboratory tests of germination and coleoptile length, and various field measurements of crop growth between emergence and pre jointing [plant population, tillering, leaf length, ground cover (GC), interception of photosynthetically active radiation (PAR), crop dry matter (DM) and nitrogen accumulation (N), far red: red reflectance ratio (FR:R), crop height, and weed dry matter]. All of the dwarfing alleles except Rht12 in the Mercia background and Rht8c in the DHs were associated with reduced coleoptile length. Most of the dwarfing alleles (depending on background) reduced seed viability. Severe dwarfing alleles (Rht-B1c, Rht-D1c and Rht12) were routinely associated with fewer plant numbers and reduced early crop growth (GC, PAR, DM, N, FR:R), and in 1 year, increased weed DM. In the Mercia background and the DHs the semi-dwarfing allele Rht-D1b was also sometimes associated with reductions in early crop growth; no such negative effects were associated with the marker for Rht8c. When significant interactions between cropping system and genotype did occur it was because differences between lines were more exaggerated in the organic system than in the conventional system. Ppd-D1a was associated positively with plant numbers surviving the winter and early crop growth (GC, FR:R, DM, N, PAR, height), and was the most significant locus in a QTL analysis. We conclude that, within these environmental and system contexts, genes moderating development are likely to be more important in influencing early resource capture than using Rht8c as an alternative semi-dwarfing gene to Rht-D1b.  相似文献   

18.
Root penetration (RP) ability into compacted soil is an important breeding target for drought avoidance by durum (Triticum turgidum L. var. durum) and bread wheat (T. aestivum L.) in regions with compacted soils and water deficits. However, it is said generally that yield of the current cultivars introduced the reduced height gene (Rht-B1b or Rht-D1b) are more sensitive to drought stress than that of old landraces. This study investigated the effect of the Rht genes on RP ability using the seedlings of near-isogenic lines (NILs) of Rht genes of LD222 durum wheat and April Bearded bread wheat, and 110 recombinant inbred lines (RILs) of durum wheat derived from the cross between the tall landrace (Jennah Khetifa; Rht-B1a Rht-B1a) and semi-dwarf cultivar (Cham1; Rht-B1b Rht-B1b). One seedling of each genotype was grown in a pot (6 cm diameter, 15 cm height) with a disc of 3 mm thickness made from paraffin and Vaseline mixture (PV) in 10 cm depth, as a substitute for a compacted soil layer. The RP index [number of roots penetrating through the PV disc per plant (PVRN)/total number of seminal and crown roots per plant (TRN)] was measured at eight weeks after sowing and used as the indicator of RP ability of seedling. In NILs, the shoot length decreased significantly because of the introduction of either Rht-B1b or Rht-D1b dwarfing genes, but the RP index was similar to those of tall parents. In RILs, although the RP index and shoot length were higher in Jennah Khetifa than in Cham1, the relationship between RP index and shoot length was not significant (r = 0.156). Both results indicate that RP ability of wheat does not link to dwarfness regulated by Rht genes. We suppose therefore that it would be possible to develop a high yielding semi-dwarf cultivar with excellent RP ability.  相似文献   

19.
H.-H. Voss    J. Holzapfel    L. Hartl    V. Korzun    F. Rabenstein    E. Ebmeyer    H. Coester    H. Kempf    T. Miedaner 《Plant Breeding》2008,127(4):333-339
Fusarium head blight (FHB) is one of the major fungal diseases in wheat throughout the world. To control FHB severity, breeding genetically resistant varieties is thought to be the most promising strategy. In wheat breeding programmes, short cultivars predominantly carrying the Norin 10 derived semi-dwarfing allele Rht-D1b ( Rht2 ) are preferred worldwide because of higher achievable grain yields and lower risk of lodging. This study was conducted to determine the influence of different alleles at the Rht-D1 locus on FHB reaction. Three winter wheat populations were produced by crossing rather susceptible varieties 'Biscay', 'Pirat' and 'Rubens' carrying mutant-type allele Rht-D1b with the more resistant varieties 'Apache', 'Romanus' and 'History' containing the Rht-D1a wild-type allele ( rht2 ). The 190, 216 and 103 progeny of the F4-derived populations were assayed for the presence of Rht-D1a or Rht-D1b , plant height, and mean FHB rating after spray inoculation at flowering time with a highly aggressive isolate of Fusarium culmorum . Comparably, high mean FHB severities ranging from 28% to 49% for all population × environment combinations were achieved, with significant genotypic variation for FHB rating and plant height within all populations. Both traits were negatively correlated with r ranging from −0.48 to −0.61 in the complete populations. However, within the subpopulations homozygous for one or other height allele these correlations decreased considerably. The Rht-D1b semi-dwarfing allele resulted in 7–18% shorter plants, depending on the population, but a considerably increased FHB reaction of 22–53%. Nevertheless, significant genotypic variance for FHB resistance remained in all tested Rht-D1b subpopulations indicating that selection for moderately FHB resistant genotypes within agronomically beneficial Rht-D1b genotypes is still feasible.  相似文献   

20.
Fusarium head blight (FHB) is a serious wheat disease all over the world. In this study, the relationships between plant height (PH) and FHB were investigated across the whole wheat genome by QTL meta-analysis from fifty-six experiments. Coincident meta-QTL (MQTL) for PH and FHB were found on chromosomes 2D, 3A, 4B, 4D and 7A. Rht-B1, Rht-D1, Rht8, MQTLs P7 and P26 were consistent with FHB MQTLs. The meta-analysis results confirmed the negative associations of Rht-B1, Rht-D1, and Rht8 with FHB resistance. The associations of PH and FHB resistance on chromosomes 3A and 7A have not been reported and need further investigation. These regions should be given attention in breeding programs. MQTLs derived from several resistance sources were also observed. Some FHB MQTLs for different types of resistance overlapped. These findings could be useful for improving wheat varieties with resistance to FHB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号