首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Urea formaldehyde (UF) resins are important for wood industry due to their attractive properties at reasonable price. Particulate fillers added to UF are of interest with regard to improving the functionality of UF and also in terms of reduced UF consumption. To study their potential as filler, solid UF microspheres were synthesized and characterised respecting its morphology, chemical curing and thermal stability. Marigold flower structured spheres with diameters between 5 and 20 µm are presented and application trials demonstrated that high amounts of UF may be replaced by solid microspheres without impairing adhesive bond strength of solid wood bond lines. Fluorescence microscopy showed that microspheres greatly reduce adhesive penetration into the wood substrate, retaining the modified adhesive in the bondline. UF microspheres may thus be considered as viable filler for UF adhesives, particularly with regard to the possibility of endowing them with added functionality like self-healing properties.  相似文献   

2.
Finger joints are commonly used to produce engineered wood products like glued laminated timber beams. Although comprehensive research has been conducted on the structural behaviour of finger joints at ambient temperature, there is very little information about the structural behaviour at elevated temperature. A comprehensive research project on the fire resistance of bonded timber elements is currently ongoing at the ETH Zurich. The aim of the research project is the development of simplified design models for the fire resistance of bonded structural timber elements taking into account the behaviour of the adhesive used at elevated temperature. The paper presents the results of a first series of tensile and bending tests on specimens with finger joints pre-heated in an oven. The tests were carried out with different adhesives that fulfil current approval criteria for the use in load-bearing timber components. The results showed substantial differences in temperature dependant strength reduction and failure between the different adhesives tested. Thus, the structural behaviour of finger joints at elevated temperature is strongly influenced by the behaviour of the adhesive used for bonding and may govern the fire design of engineered wood products like glued laminated timber beams.  相似文献   

3.
Abstract

One of the main disadvantages of wood is hygroscopicity resulting from its polar character. The sorption–desorption of water causes unwanted swelling and shrinkage in wood. Thermal modification substantially reduces this inconvenient feature. Unfortunately, the same chemical changes that reduce water sorption alter the polar character of the material and result in poorer wetting of thermally treated wood by waterborne adhesives. Gluability of thermally modified beech (Fagus silvatica L.) and birch (Betula pubescens Ehrh.) wood with two commercial amino resins, melamine–urea–formaldehyde (MUF) and melamine–formaldehyde (MF), and a two-component polyurethane (PUR) adhesive was investigated. Both wood species were modified according to two temperature regimes: 160°C and 190°C. Shear strengths of the joints were then determined according to EN 205:2003 standard. The results showed that thermally modified beech and birch wood can be effectively glued not only with commercially available PUR adhesives, but also with aqueous MF and MUF resins. The resultant shear strengths of the joints were limited by the strength of the thermally modified substrate.  相似文献   

4.
The research focuses on the assessment of the performances of glued laminated wood corner joints for outdoor window profiles applications, proposing a methodology to appreciate the strength of 90° tenon mortise corner joints. The rationale relies on the potential damage (i.e. breaking of the frame) that can be caused by poor glueing processes and/or typology of adhesives. There is a number of standards for assessment of wood-adhesive bonds for outdoor windows; however, there is a lack of specific standards related to glueing assessment for outdoor wood frames, which can take into account all the factors influencing the glueing quality. The proposed methodology was tested on red oak window profiles. A commercially available polyvinyl acetate-based adhesive was used for corner joints. Bending strength of 90° tenon mortise corner joints was measured and compared with maximum admissible loads on the frame to limit its deformations within admissible ranges. The test results show that the 90° tenon mortise corner joints strength exceeds the admissible load to preserve the functionality of the frame. In order to appreciate the influence of conditioning processes on adhesion, shear strength tests of the flatwise glued joint samples (bond lines of lamellae) were carried out after different conditioning processes.  相似文献   

5.
Abstract

Existing European standards for finger-jointing of load-bearing lumber require the wood to be dried before gluing. This article presents a study on the properties of green-glued finger joints, wet wood being bonded prior to drying. Issues to consider, in comparison to finger-jointing of dry wood, are mechanical performance of the joint, absorption of the polymer by the wood in its natural/wet state, and the chemical reactions of the adhesive on contact with water. Finger-jointed samples were tested in bending, and the glue joints analysed by optical microscopy, scanning electron microscopy and microdensitometry. A patented one-component polyurethane adhesive developed for gluing-green wood which has a moisture content usually higher than 70% was used in the study. The resulting green-glued joints showed improved strength properties in comparison to dry-jointed joints. The results confirm that green-glued joints provide a wide, continuous wood/adhesive interface from one substrate to the other. The adhesive penetrates several cells deep and the density of the wood adjacent to the joint surfaces is increased. The results also indicate that the patented adhesive forms covalent bonds to the wood substrate.  相似文献   

6.
The bonding of wood by means of glue has been practised for many centuries.

Adhesion between an adhesive and wood is the result of unbalanced secondary valency forces (Van der Waal's forces) present on the interfaces. It is fundamental to good adhesion that the adhesive must (a) wet the surface it is required to adhere to and (b) penetrate the wood capillaries. The phenomenon of “wetting” is indicated by the contact angle the adhesive forms on the wood surface as well as its ability to penetrate the wood capillaries. Maximum penetration of the capillaries is inhibited in practice due to air becoming trapped in “inkpot” type capillaries caused by the sawblade tearing the wood fibres over in the direction of the cut. Several ways to increase capillary penetration are suggested.

The anisotropic chemical reactivity of wood is theorized in so far that a unit area of wood substance (excluding lumen openings) cut on the cross-sectional plane cannot be as effectively glued as a unit area of wood substance on the radial and tangential plane. This is due to the positioning of the chemically reactive groups on the cellulose chains which are predominantly oriented parallel to the fibre axis.

The engineered design of joints is briefly discussed and mathematical expression given as to how incorrect joint design can be detrimental to the ultimate joint strength.

The general character of the better-known synthetic adhesives is briefly discussed. Little detail is given as excellent hand books exist on this specific subject.  相似文献   

7.
A comprehensive research project has been carried out at the Swiss Federal Institute of Technology (ETH) on the fire behaviour of timber-concrete composite slabs (Frangi and Fontana 2000). The glued laminated timber beams used for the fire tests were bonded with a one-component polyurethane (1-K-PUR) adhesive. As one fire test on a slab showed an unexpected shear failure of a glued laminated timber beam, a series of tests was carried out to study the shear behaviour of different types of adhesives at high temperatures. The first part of the paper describes the results of the shear tests at elevated temperatures, in the second part the shear test results are compared to the fire test on a slab.  相似文献   

8.
Existing European standards for finger-jointing of load-bearing lumber require the wood to be dried before gluing. This article presents a study on the properties of green-glued finger joints, wet wood being bonded prior to drying. Issues to consider, in comparison to finger-jointing of dry wood, are mechanical performance of the joint, absorption of the polymer by the wood in its natural/wet state, and the chemical reactions of the adhesive on contact with water. Finger-jointed samples were tested in bending, and the glue joints analysed by optical microscopy, scanning electron microscopy and microdensitometry. A patented one-component polyurethane adhesive developed for gluing-green wood which has a moisture content usually higher than 70% was used in the study. The resulting green-glued joints showed improved strength properties in comparison to dry-jointed joints. The results confirm that green-glued joints provide a wide, continuous wood/adhesive interface from one substrate to the other. The adhesive penetrates several cells deep and the density of the wood adjacent to the joint surfaces is increased. The results also indicate that the patented adhesive forms covalent bonds to the wood substrate.  相似文献   

9.
The purpose of the study was to determine the effect of joints on the mid-span load capacity of bookshelves made from laminated particleboard. Twenty types of joints were selected based on their popularity in the cabinet-making industry. Results showed that highest mid-span load capacities were obtained with glued groove joints that included glued wooden dowels. Overall, highest mid-span load capacities were obtained with fixed shelf-joint constructions, whereas lower capacities were obtained with adjustable constructions. Based on its high-load capacity and ease of construction, the spline joint appears best-suited for use by most craftsmen. Statistical lower tolerance limits were used to take capacity variability into account for design purposes. The 75% confidence|75% proportion limits for the glued wood spline and glued fiberboard spline joints were 94% and 93% of average, respectively.  相似文献   

10.
Mechanical behaviour of Eucalyptus wood modified by heat   总被引:4,自引:2,他引:2  
Summary  Eucalyptus wood (Blue gum) shows very high mechanical performances, presents very few knots and gives strong glued joints, reasons that justify its interest for structural uses, carpentry and furniture components or even building construction. The inconveniences of this species are its slow and difficult drying process and its low dimensional stability – with very high swelling and shrinkage coefficients. The drying process has been studied at INETI and the problem revealed to be solved with appropriate drying schedules and the stresses released by a steam treatment. Heat treatment of Eucalyptus wood has been identified as one of the most promising techniques to increase its dimensional stability. Studies in this area still proceed. This paper presents some test results that show the influence of heat treatment in the strength properties of this wood, namely the bending modulus of elasticity and tensile strength perpendicular to grain, in addition to the explanation of dimensional stability evaluation and some results of dimensional stability treatments. Received 15 June 1998  相似文献   

11.
胶合木胶合质量影响因素浅析   总被引:1,自引:1,他引:0  
刘建萍 《木材工业》1998,12(6):28-30
本文分析了胶合木用胶粘剂的适用期,木材含水率、环境温度等因素对胶合木胶合质量的影响。  相似文献   

12.
木材胶合界面是指同时包含木材细胞壁和胶粘剂的区域。在木质胶合产品的加工工艺选择与使用性能评价中,胶合界面发挥着重要作用,其中胶粘剂渗透性能和界面力学性能是重要的评判标准。目前,用于表征胶合界面性能的技术包括光学显微技术、电子显微技术、X射线成像技术、微观力学测试技术等。文中通过对比各表征技术,提出进一步研究界面结合强度的表征、微观力学模型的建立、界面力学特性与木质胶合产品宏观性能的关系等将是未来的探索方向。  相似文献   

13.
水基聚氨酯胶粘剂在集成材生产中的应用   总被引:4,自引:1,他引:3  
讨论了水基聚氨酯木材胶粘剂的反应机理和影响其胶接性能的主要因素,进行了SR-100木材结构胶制备集成材的应用试验。结果表明:该胶用于针叶材云杉和阔叶材水曲柳、榆木、柞木,所制得集成材的粘接性能达到结构用集成材的指标要求,为生产结构集成材提供技术依据。  相似文献   

14.
In past years high priority was given to developing a seismic design for wood structures, including research on the response of wood structures to earthquakes. In this study a new type of portal frame with relatively large span was developed for the traditional Japanese wooden houses with large openings at the front to strengthen the structure. Stainless steel plates coated with zinc and glued with epoxy adhesives on laminated veneer lumber (LVL) members, composed of Douglas fir veneer and bonded with phenolformaldehyde resin, were used. The connection between the frame's beam and columns and between the columns and groundsills was mechanical, with bolts. The subject of this research was to analyze strength properties and failure behavior of glued LVL metal joints used as structural components and to evaluate the response of LVL portal frames under cyclic lateral loading. The results show that portal frames using glued LVL metal plates have a good multiplier for the shear walls and may be applied to traditional Japanese structures. The equivalent viscous damping provided good energy dissipation in the frames. The joints displayed good mechanical behavior during tests; moreover, the structures demonstrated high strength, stiffness, and ductility, which are necessary for a seismic design.Part of this paper was presented at the 47th annual meeting of the Japan Wood Research Society, Kouchi, April 1997; and at the 5th world conference on timber engineering. Montreux, Switzerland, August 1998  相似文献   

15.
Prediction of the load carrying capacity of bolted timber joints   总被引:1,自引:0,他引:1  
Failure of bolted timber joints is analyzed experimentally and numerically. In this study, the prediction of the load-carrying capacity of dowel-type joints with one dowel under static loading is based on the analysis of fracture in wood contrarily to most engineering methods that are based on the yield theory. Mechanical joints consist of glued laminated spruce members and steel dowels. In the different analyzed tests, the bolt loads the wood parallel or perpendicular to the grain. The wood member thickness is chosen sufficiently thin to avoid the fastener from presenting plastic hinges. The influences of different structural parameters such as the dowel diameter, the edge- and end-distances are investigated. The fracture propagation analysis is carried out with the Finite Element (FE) method in the framework of Linear Elastic Fracture Mechanics (LEFM). The only identified parameter is the critical energy release rate in mode I (GIc). The comparison between experimental and numerical results shows that the fracture must be considered for a correct prediction of the ultimate load and that LEFM can help to improve design codes. Received 11 August 1997  相似文献   

16.
Beams of a composite made from wood and fibreglass layers glued with a phenolic adhesive were tested in three point bending. Experimental results indicate an increase in mechanical properties in comparison with equivalent beams without fibreglass. An interesting modification is obtained in the mode of fracture. Values of the modulus of elasticity for the adhesive, fibreglass and wood were obtained in separate loading tests and used to derive the modulus of the composite using a general relationship for layered systems. Good agreement was found between theoretical and experimental values of modulus.  相似文献   

17.
研究利用林木剩余物碎料和发泡聚苯乙烯并添加胶粘剂、助剂等进行加压制造复合材料.以导热系数、压缩强度、尺寸稳定性作为主要技术指标对复合材料进行评价,考察了木质碎料与聚苯乙烯泡沫不同配比、施胶量、密度等工艺参数对复合材料性能的影响,并利用扫描电镜对复合材料的界面进行了分析.结果表明:在设定密度范围内,由于胶粘剂、助剂和压力的共同作用,使木质碎料与发泡聚苯乙烯间形成蓬松状结合;正交试验确定的最佳工艺为:发泡聚苯乙烯与木材碎料配比为12∶88、施胶量12%、助剂2%、密度0.20g/cm3.用该工艺制造的复合材料达到相关标准要求.  相似文献   

18.
Summary An experimental investigation of glass fibre reinforcement of glued laminated timber beams is presented. A polyester resin is used both as matrix and adhesive between the reinforcement and the wood. The main part of the work considers beams with large holes tested in three point bending. Circular and rectangular holes, centred at quarter length of the beams make the strength of wood perpendicular to the grain become critical. Great improvements of strength are obtained with the glass fibres. A comparison between various kinds and combinations of glass fibre reinforcement is made. Further, the reinforcement applied as repair of earlier cracked beams is investigated with positive results. One series of beams without holes is reinforced and tested in four-point bending.This reseach project was initiated to improve the ability of glued laminated timber to compete with steel and concrete, in large free span constructions. The project was funded by the Nordic Industrial Fund (NI), Svenskt Limträ AB and the Swedish National Board for Industrial and Technical Development (NUTEK)  相似文献   

19.
Abstract

In a previous study it was shown that the mechanical stability of an end-grain joint bonded with a one-component polyurethane adhesive (PUR) was insufficient compared with melamine–urea–formaldehyde and phenol–resorcinol–formaldehyde bonding. Based on this, the aim of this study was to improve the mechanical stability of the end-grain joint by means of a hydroxymethylated resorcinol (HMR) primer and by increasing the spreading quantity. To study the effect of HMR and the increased spreading quantity on the adhesive bond strength of end-grain to end-grain-bonded wood samples, three-part Norway spruce wood specimens were tested in tension. Before bonding, each end-grain surface was treated with an aqueous solution of HMR. The two axially orientated outer parts of the specimens were jointed with the middle part using a PUR adhesive. Compared with untreated, i.e. non-primed samples, the tensile strength of HMR-treated specimens was more than doubled. Furthermore, a positive effect of increased adhesive spread was shown for untreated PUR-bonded samples. An increase in adhesive spread by a factor of 1.6 led to an improvement in tensile strength by a factor of about 2.6.  相似文献   

20.
秦理哲  胡拉  杨章旗  段文贵 《林产工业》2019,46(3):36-39,44
采用铜氨(胺)季铵盐(ACQ-D)防腐剂处理马尾松木材,以水性高分子异氰酸酯(API)、聚氨酯(PUR)和间苯二酚-苯酚-甲醛树脂(RPF)为胶黏剂制备防腐材胶合试样,研究胶黏剂种类和防腐剂处理浓度对马尾松胶合强度的影响。结果表明:API、PUR、RPF适用于ACQ处理马尾松的胶合,平均剪切强度和木破率均达到GB/T 26899—2011《结构用集成材》要求。胶黏剂种类对防腐材胶合强度有显著影响,表现为PUR和RPF的剪切强度优于API。与未处理材相比,ACQ处理对API胶合有负面影响,对PUR胶合有增强效应,对RPF胶合没有显著影响。在ACQ浓度为0.1%~1.0%范围内,胶合强度没有显著变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号