首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to identify magnetic resonance (MR) signs that aid differentiation of neoplastic vs. non-neoplastic brain diseases in dogs and cats. MR images of 36 dogs and 13 cats with histologic diagnosis of intracranial disease were reviewed retrospectively. Diagnoses included 30 primary and three metastatic brain tumors, 11 infectious/inflammatory lesions, three vascular, one degenerative disease, and one developmental malformation. Upon univariate analysis of 21 MR signs, there were seven that had a significant association with neoplasia: single lesion (P = 0.004), shape (P = 0.015), mass effect (P = 0.002), dural contact (P = 0.04), dural tail (P = 0.005), lesions affecting adjacent bone (P = 0.008), and contrast enhancement (P = 0.025). Increasing age was also found to be associated with neoplasia (P = 0.0001). MR signs of non-neoplastic brain diseases in dogs and cats were more variable than those of brain neoplasia.  相似文献   

2.
Magnetic resonance imaging was performed on an eight-year-old, neutered female German Shepherd dog with a history of acute depression, inappetence, and hyperthermia. A lesion in the cerebrum was suspected. Possible differential diagnoses were meningoencephalitis, neoplasia, and vascular lesion (infarction, bleeding). A ring enhancing lesion was found in the basal ganglia on the left side with edema of the surrounding brain tissue. A similar mass lesion was present in the right pterygoid musculature. With inversion recovery sequences an altered composition of the cerebrospinal fluid (CSF) in the left lateral ventricle could be detected. CSF analysis confirmed a pyocephalus, probably due to rupture of a brain abscess into the left lateral ventricle.  相似文献   

3.
A retrospective study of 15 dogs and three cats was done to characterize the appearance of meningeal enhancement on magnetic resonance (MR) images of the brain, and to correlate this appearance with its underlying cause. Two patterns of meningeal enhancement (pial and dural) were identified. Enhancement of the pia mater was evident in four dogs and one cat, while enhancement of the dura mater was seen in 11 dogs and 2 cats. A variety of causes of meningeal enhancement were identified, including bacterial and cryptococcal meningitis, plasmacytic meningitis with associated subdural fluid accumulation, granulomatous meningoencephalomyelitis, inflammation secondary to otitis interna, feline infectious peritonitis, and neoplasia. The present study confirms that pial or dural meningeal enhancement may be present on MR images of the brain of dogs or cats in association with a variety of central nervous system diseases. A larger prospective study is required to further establish the incidence of specific patterns of meningeal enhancement seen in association with specific diseases.  相似文献   

4.
Magnetic resonance imaging was performed in seven dogs with histopathologically-confirmed brain infarcts. The infarcts were non-hemorrhagic in four dogs and hemorrhagic in three dogs. Six dogs had single infarcts involving the cerebrum and one dog had multiple infarcts involving the cerebrum and brain stem. Non-hemorrhagic infarcts were typically wedge-shaped, hypointense on T1-weighted images, hyperintense on T2-weighted images, and did not enhance with gadolinium-DTPA. Hemorrhagic infarcts had mixed intensity on T1- and T2-weighted images, with variable patterns of enhancement.  相似文献   

5.
MAGNETIC RESONANCE IMAGING FEATURES OF PRIMARY BRAIN TUMORS IN DOGS   总被引:1,自引:0,他引:1  
Magnetic resonance images of twenty-five dogs with histopathologically confirmed primary brain tumors were evaluated. A lesion was visible in each dog. Meningiomas were extra-axial lesions that enhanced markedly withj gadolinium-DTPA. Glimas were Characteized by intra-axial location, significant mass effect and surrounding edema, and variable enhancement patterns. Choroid plexus tumors and pituitary tumors were differentiated by their location and marked enbancement. Prediction of general typeof tumor was correct in 24 of 25 dogs.  相似文献   

6.
Magnetic resonance (MR) images were acquired in five dogs and one cat with ocular and orbital disease. MR images were obtained in the dorsal or oblique dorsal, and oblique sagittal planes. Pathologic changes identified in MR images included inflammatory lesions, cystic structures, and neoplasms. All abnormalities were readily apparent in TI-weighted images. MR findings in affected animals were often similar in signal intensity, location, and growth pattern to those found in people with comparable diseases. Although no MR changes were considered pathognomonic for a given disease, MR imaging provided detailed information on the homogeneity, extent and invasiveness of the lesions.  相似文献   

7.
Animals with a portosystemic shunt (PSS) often have neurologic abnormalities. Diagnostic imaging, including brain magnetic resonance (MR) imaging, is not performed routinely in these animals. In this study, brain MR images were obtained in 13 dogs and three cats with a PSS, and in 15 dogs and five cats that were neurologically normal and used as controls. All animals with a PSS had widened sulci. In addition, 10 out of 13 dogs with a PSS and one out of three cats with a PSS had hyperintense focal areas in the lentiform nuclei on T1-weighted (T1W) images, which did not enhance after intravenous gadolinium. Following surgical correction of the PSS, MR imaging examinations were repeated in one dog and one cat. The hyperintensity of the lentiform nuclei had decreased. This study indicates that MR imaging findings of widened sulci and hyperintensity of the lentiform nuclei on T1W images may be found in dogs and cats with a PSS.  相似文献   

8.
9.
The objective of this retrospective study was to estimate using magnetic resonance imaging the size range of the pituitary gland in cats who had no evidence of pituitary disease. The pituitary gland was measured from transverse and sagittal magnetic resonance postgadolinium T1-weighted images in 17 cats. The cats were 0.83 to 15 years of age and weighed between 2.9 and 6.5 kg. Linear pituitary measurements were performed on a dedicated workstation using electronic calipers. Mean (+/- standard deviation) pituitary gland length was 0.54 cm (+/- 0.06 cm) and mean width was 0.50 cm (+/- 0.08 cm). Mean pituitary gland height measured on sagittal images was 0.34 cm (+/- 0.05) and measured on transverse images was 0.32 cm (+/- 0.04 cm). Mean pituitary volume was 0.05 cm3 (+/- 0.01 cm3). There was no significant correlation between cat weight (kg) and pituitary volume or age and pituitary volume. The pituitary gland appearance varied on pre- and postcontrast T1-weighted images. On the precontrast images, the majority of pituitary glands had a mixed signal intensity. On postcontrast images, uniform pituitary gland enhancement was seen commonly.  相似文献   

10.
This retrospective study describes the clinical and magnetic resonance (MR) imaging features of chronic orbital inflammation with intracranial extension in four dogs (two Dachshunds, one Labrador, one Swiss Mountain). Intracranial extension was observed through the optic canal (n=1), the orbital fissure (n=4), and the alar canal (n=1). On T1-weighted images structures within the affected skull foramina could not be clearly differentiated, but were all collectively isointense to hypointense compared with the contralateral, unaffected side, or compared with gray matter. On T2-, short tau inversion recovery (STIR)-, or fluid-attenuated inversion recovery (FLAIR)-weighted images structures within the affected skull foramina appeared hyperintense compared with gray matter, and extended with increased signal into the rostral cranial fossa (n=1) and middle cranial fossa (n=4). Contrast enhancement at the level of the affected skul foramina as well as at the skull base in continuity with the orbital fissure was observed in all patients. Brain edema or definite meningeal enhancement could not be observed, but a close anatomic relationship of the abnormal tissue to the cavernous sinus was seen in two patients. Diagnosis was confirmed in three dogs (one cytology, two biopsy, one necropsy) and was presumptive in one based on clinical improvement after treatment. This study is limited by its small sample size, but provides evidence for a potential risk of intracranial extension of chronic orbital inflammation. This condition can be identified best by abnormal signal increase at the orbital fissure on transverse T2-weighted images, on dorsal STIR images, or on postcontrast transverse or dorsal images.  相似文献   

11.
We performed a retrospective study of 100 dogs and 16 cats with planar brain scintigraphy and histopathologically established diagnoses from a total of 485 studies performed from 1976 to 1992. Necropsy (112) or surgical biopsies (4) diagnoses were categorized in two ways: first as focal brain disease, diffuse brain disease or normal; second as either neoplastic, non-neoplastic or normal. A radiologist reviewed brain scintigrams and categorized the studies as focal areas of increased accumulation, diffuse or poorly localized areas of increased accumulation, or normal. We calculated for this population of 116 animals that focal brain scintigrams had 75% sensitivity and 90% specificity for any focal brain disease. The sensitivity and specificity of a focal scintigraphic lesion for a brain tumor was 72% and 82% respectively. The sensitivity and specificity of a diffuse or poorly localized scintigraphic lesion as a test for diffuse brain disease was 40% and 88% respectively.  相似文献   

12.
CANINE BRAIN ANATOMY ON MAGNETIC RESONANCE IMAGES   总被引:1,自引:1,他引:0  
Magnetic resonance (MR) images of the canine brain were acquired during investigation of dogs with neurologic disease. A paramagnetic contrast medium was used for enhancement. MR provided images with excellent contrast between grey and white matter, as well as brain tissue and cerebrospinal fluid. Good resolution and anatomic detail of the canine brain were obtained. A series of images was compiled and labelled as a reference for MR anatomy of the canine brain.  相似文献   

13.
Magnetic resonance imaging (MRI) and computed tomographic imaging (CT) characteristics of intracranial intra-arachnoid cysts in six dogs are described.Of the six dogs, three were less than one year of age and 4 were males. Five of the six dogs weighed less than 11 kg. Five cysts were located in the quadrigeminal cistern.On CT images, the intracranial intra-arachnoid cysts had sharply defined margins, contained fluid isodense to CSf and did not enhance following IV administration of contrast. On MRI images, the intracranial intra-arachnoid cysts were extra-axial, contained fluid isointense with CSF and did not enhance following IV contrast. While spinal arachnoid cysts of dogs have been reported in the literature, other than the six dogs contained in this report, intracranial intra-arachnoid cysts have not to our knowledge been described in animals. These six dogs have a similar age, sex, arachnoid cysts.  相似文献   

14.
Magnetic resonance imaging is used commonly to diagnose intervertebral disk herniation in dogs. It is common to locate areas of suspected compression on sagittal T2‐weighted (T2‐W) images and then obtain limited transverse images in these areas to reduce the acquisition time (a step‐by‐step approach). Our objective was to assess the frequency of correct localization of spinal cord compression due to disk herniation using only the sagittal images. The results from isolated readings of the sagittal T2‐W images alone or combined with a single‐shot fast spin echo (SSFSE) slab in 118 dogs were compared with a gold standard, based on a consensual reading of all images available, including complete transverse images across the entire spinal segments under study. The sites of compression were localized correctly from the sagittal images in 89.8% of dogs. If only the most significant lesions were accounted for, the percentage increased up to 95.2%. In 54.9% of the readings with incorrect localization, the actual compressive site was immediately adjacent to the one suspected from review of the sagittal images. The frequency of correct localization was higher in the cervical region, and was increased by examination of the SSFSE slab. The most common cause of disagreement was the presence of multiple degenerate bulging disks. Based on these results we recommend obtaining transverse images across the entire segment when multiple bulging disks are present. It is also recommended to obtain transverse images across the spaces immediately adjacent to the suspected site of herniation from review of the sagittal images.  相似文献   

15.
The purpose of this study was to describe relevant canine brain structures as seen on T2-weighted images following magnetic resonance (MR) imaging at 7 T and to compare the results with imaging at 1.5 T. Imaging was performed on five healthy laboratory beagle dogs using 1.5 and 7 T clinical scanners. At 1.5 T, spin echo images were acquired, while gradient echo images were acquired at 3 T. Image quality and conspicuity of anatomic structures were evaluated qualitatively by direct comparison of the images obtained from the two different magnetic fields. The signal-to-nose ratio (SNR) and contrast-to-noise ratio (CNR) were calculated and compared between 1.5 and 7 T. The T2-weighted images at 7 T provided good spatial and contrast resolution for the identification of clinically relevant brain anatomy; these images provided better delineation and conspicuity of the brain stem and cerebellar structures, which were difficult to unequivocally identify at 1.5 T. However, frontal and parietal lobe and the trigeminal nerve were difficult to identify at 7 T due to susceptibility artifact. The SNR and CNR of the images at 7 T were significantly increased up to 318% and 715% compared with the 1.5 T images. If some disadvantages of 7 T imaging, such as susceptibility artifacts, technical difficulties, and high cost, can be improved, 7 T clinical MR imaging could provide a good experimental and diagnostic tool for the evaluation of canine brain disorders.  相似文献   

16.
The magnetic resonance (MR) imaging findings in 22 dogs and two cats with confirmed paraspinal infection of the thoracolumbar spine were characterized. These findings included extensive T2-hyperintense areas (24/24), abscessation (20/24), mild inherent T1-hyperintensity of muscle and abscesses (18/24), and postcontrast enhancement (24/24). Changes involved the vertebral canal in four patients. The longus coli muscles were affected in one cat. Thoracolumbar changes in the remaining 23 patients involved the iliopsoas and epaxial muscles in 23/23 and 19/23 patients, respectively. Iliopsoas muscle abscessation was unilateral in 12/23, and bilateral in 6/24 patients. Abscessation involved both epaxial and iliopsoas muscles in 2/23 patients and the epaxial muscles alone in one patient. A contrast-enhancing sinus tract within the deep thoracolumbar fascia was present in 10/23 patients. Lumbar vertebrae periosteal reactions were identified in 19/23 patients on MR images compared with 15/17 patients with radiography. A focal area of signal void suspected to represent foreign material was seen in 5/23 patients but foreign material was actually found in only two of these five. There was no recurrence of clinical signs following MR imaging and revision surgery. MR imaging permits the severity and extent of changes associated with paraspinal infection to be characterized and allows the location, number and any communication of sinus tracts to be documented.  相似文献   

17.
A specially designed radio frequency receiver coil was used in a low-field-strength (0.1 T) magnetic resonance imager to improve the image quality of the Beagle brain. The aim was to obtain better distinction of anatomic details with a better signal-to-noise ratio in shorter imaging time. The spin-echo (TR/TE = 1200/100; TR is the repetition time and TE is the echo time in ms) brain images of three Beagles indicate that the new receiver coil can fulfill these goals.  相似文献   

18.
The brain of one control dog and two dogs with spontaneous central nervous system pathology (one hydrocephalus, one meningoencepholocoele) were examined with low- and high-field-strength magnetic resonance devices to evalute the suitability of low-field magnets for canine brain imaging. We used 0.1 T and 1.0 T magnetic resonance (MR) imagers. The best image quality was seen 1.0 T imaging due to better signal-to-noise-ratio, but both systems produced satisfactory anatomic images of the brain.  相似文献   

19.
In vivo diagnosis of tick‐borne encephalitis is difficult due to high seroprevalence and rapid viral clearance, limiting detection of antibodies in blood and cerebrospinal fluid. Magnetic resonance imaging (MRI) characteristics of tick‐borne encephalitis have been reported, however MRI studies can also be negative despite the presence of neurologic signs. Magnetic resonance spectroscopy (1H MRS) is an imaging method that provides additional information about the metabolic characteristics of brain tissues. The purpose of this retrospective cross‐sectional study was to describe brain metabolites using short echo time single‐voxel 1H MRS in dogs with confirmed tick‐borne encephalitis and compare them with healthy dogs. Inclusion criteria for the affected dogs were neurological symptoms suggestive of tick‐borne encephalitis, previous endemic stay and tick‐bite, diagnostic quality brain MRI and 1H MRS studies, and positive antibody titers or confirmation of tick‐borne encephalitis with necropsy. Control dogs were 10, clinically normal beagles that had been used in a previous study. A total of six affected dogs met inclusion criteria. All dogs affected with tick‐borne encephalitis had 1H MRS metabolite concentration alterations versus control dogs. These changes included mild to moderate decreases in N‐acetyl aspartate and creatine peaks, and mild increases in glutamate/glutamine peaks. No lactate or lipid signal was detected in any dog. Myoinositol and choline signals did not differ between affected and control dogs. In conclusion, findings supported the use of 1H MRS as an adjunctive imaging method for dogs with suspected tick‐borne encephalitis and inconclusive conventional MRI findings.  相似文献   

20.
The cervical spine of 27 dogs with cervical pain or cervical myelopathy was evaluated using magnetic resonance imaging (MRI). Spin echo T1, T2, and post-contrast T1 weighted imaging sequences were obtained with a 0.5 Tesla magnet in 5 dogs and a 1.5 Tesla magnet in the remaining 22 dogs. MRI provided for visualization of the entire cervical spine including the vertebral bodies, intervertebral discs, vertebral canal, and spinal cord. Disorders noted included intervertebral disc degeneration and/or protrusion (12 dogs), intradural extramedullary mass lesions (3 dogs), intradural and extradural nerve root tumors (3 dogs), hydromyelia/syringomyelia (1 dog), intramedullary ring enhancing lesions (1 dog), extradural synovial cysts (1 dog), and extradural compressive lesions (3 dogs). The MRI findings were consistent with surgical findings in 18 dogs that underwent surgery. Magnetic resonance imaging provided a safe, useful non-invasive method of evaluating the cervical spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号