首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sap flow was measured on five branches of two poplar (Populus trichocarpa Torr. & A. Gray x P. tacamahaca L.) trees from June to September 1994 in the south of England with stem-surface, heat balance gauges, and was scaled up to estimate transpiration from single trees on the basis of leaf area. On six days, stomatal conductance and plant water potential were measured simultaneously with a porometer and pressure chamber, respectively. The effects of solar radiation (S), vapor pressure deficit (D) and stomatal conductance on transpiration were evaluated. Sap flow per unit leaf area (F(a)) was closely related to the time course of demand attributable to S and D throughout the season, and only slightly affected by the water content of the top 120 cm of soil. Although F(a) increased linearly at low values of D, it showed a plateau with increases in D above 1.2 kPa. The canopy coupling coefficient (1 - Omega) ranged from 0.48 to 0.78 with a mean of 0.65 +/- 0.01, indicating that transpiration was controlled more by stomatal conductance than by incident radiation. The seasonal pattern of tree water loss followed potential evaporation with a peak in late June or early July. On bright days, daily transpiration over the projected crown area was 3.6 mm early in the season, 3.8 mm in mid-season, and 2.7 mm late in the season. The water balance of the system indicated that poplar trees took 15-60% of water transpired from groundwater, with the proportion increasing as the soil in the unsaturated zone dried out. Access to the water table resulted in high predawn water potentials throughout the season. Estimated hydraulic resistance to water flow in the soil-tree system was in the range of 1.5 to 1.93 x 10(6) MPa s m(-3).  相似文献   

2.
We estimated carbon and water flows, canopy conductance and the assimilation/transpiration ratio of fruiting and non-fruiting apple trees grown in the field, from daily gas exchange measurements taken during the summer with a whole-canopy enclosure device. The relationships between photosynthetic and transpirational responses and environmental conditions were also investigated, as well as the role of canopy conductance in controlling carbon dioxide and water vapor exchange. Light-saturated net photosynthetic rates, which were higher for the fruiting canopy than for the non-fruiting canopy, showed a general decrease in the afternoon, particularly for the non-fruiting canopy, compared with rates in the morning. When light was not limiting, the afternoon decrease in net photosynthesis appeared to be regulated more by non-stomatal factors than by changes in canopy conductance. Canopy conductance, which was higher for the fruiting canopy than for the non-fruiting canopy, may actively regulate photosynthetic activity and may also be modulated by feedback control in response to assimilation capacity. We conclude that adjustments in canopy conductance, which were partially dependent on the vegetative-reproductive status of the tree, control the equilibrium between photosynthesis and transpiration. We also demonstrated that whole-canopy chambers can be used to estimate photosynthetic and transpirational responses thereby overcoming the difficulty of scaling these physiological responses from the leaf to the whole-canopy level.  相似文献   

3.
Diurnal patterns of leaf conductance, net photosynthesis and water potential of five tree species were measured at the top of the canopy in a tropical lowland rain forest in southwestern Cameroon. Access to the 40 m canopy was by a large canopy-supported raft, the Radeau des Cimes. The measurements were made under ambient conditions, but the raft altered the local energy balance at times, resulting in elevated leaf temperatures. Leaf water potential was equal to or greater than the gravitational potential at 40 m in the early morning, falling to values as low as -3.0 MPa near midday. Net photosynthesis and conductance were typically highest during midmorning, with values of about 10-12 micro mol CO(2) m(-2) s(-1) and 0.2-0.3 mol H(2)O m(-2) s(-1), respectively. Leaf conductance and net photosynthesis commonly declined through midday with occasional recovery late in the day. Photosynthesis was negatively related to leaf temperature above midday air temperature maxima. These patterns were similar to those observed in other seasonally droughted evergreen communities, such as Mediterranean-climate shrubs, and indicate that environmental factors may cause stomatal closure and limit photosynthesis in tropical rain forests during the midday period.  相似文献   

4.
We compared differences in leaf properties, leaf gas exchange and photochemical properties between drought-deciduous and evergreen trees in tropical dry forests, where soil nutrients differed but rainfall was similar. Three canopy trees (Shorea siamensis Miq., Xylia xylocarpa (Roxb.) W. Theob. and Vitex peduncularis Wall. ex Schauer) in a drought-deciduous forest and a canopy tree (Hopea ferrea Lanessan) in an evergreen forest were selected. Soil nutrient availability is lower in the evergreen forest than in the deciduous forest. Compared with the evergreen tree, the deciduous trees had shorter leaf life spans, lower leaf masses per area, higher leaf mass-based nitrogen (N) contents, higher leaf mass-based photosynthetic rates (mass-based P(n)), higher leaf N-based P(n), higher daily maximum stomatal conductance (g(s)) and wider conduits in wood xylem. Mass-based P(n) decreased from the wet to the dry season for all species. Following onset of the dry season, daily maximum g(s) and sensitivity of g(s) to leaf-to-air vapor pressure deficit remained relatively unchanged in the deciduous trees, whereas both properties decreased in the evergreen tree during the dry season. Photochemical capacity and non-photochemical quenching (NPQ) of photosystem II (PSII) also remained relatively unchanged in the deciduous trees even after the onset of the dry season. In contrast, photochemical capacity decreased and NPQ increased in the evergreen tree during the dry season, indicating that the leaves coped with prolonged drought by down-regulating PSII. Thus, the drought-avoidant deciduous species were characterized by high N allocation for leaf carbon assimilation, high water use and photoinhibition avoidance, whereas the drought-tolerant evergreen was characterized by low N allocation for leaf carbon assimilation, conservative water use and photoinhibition tolerance.  相似文献   

5.
We investigated tree water relations in a lower tropical montane rain forest at 1950-1975 m a.s.l. in southern Ecuador. During two field campaigns, sap flow measurements (Granier-type) were carried out on 16 trees (14 species) differing in size and position within the forest stand. Stomatal conductance (g(s)) and leaf transpiration (E(l)) were measured on five canopy trees and 10 understory plants. Atmospheric coupling of stomatal transpiration was good (decoupling coefficient Omega = 0.25-0.43), but the response of g(s) and E(l) to the atmospheric environment appeared to be weak as a result of the offsetting effects of vapor pressure deficit (VPD) and photosynthetic photon flux (PPF) on g(s). In contrast, sap flow (F) followed these atmospheric parameters more precisely. Daily F depended chiefly on PPF sums, whereas on short time scales, VPD impeded transpiration when it exceeded a value of 1-1.2 kPa. This indicates an upper limit to transpiration in the investigated trees, even when soil water supply was not limiting. Mean g(s) was 165 mmol m(-2) s(-1) for the canopy trees and about 90 mmol m(-2) s(-1) for the understory species, but leaf-to-leaf as well as tree-to-tree variation was large. Considering whole-plant water use, variation in the daily course of F was more pronounced among trees differing in size and crown status than among species. Daily F increased sharply with stem diameter and tree height, and ranged between 80 and 120 kg day(-1) for dominant canopy trees, but was typically well below 10 kg day(-1) for intermediate and suppressed trees of the forest interior.  相似文献   

6.
Sap flux density in branches, leaf transpiration, stomatal conductance and leaf water potentials were measured in 16-year-old Quercus suber L. trees growing in a plantation in southern Portugal to understand how evergreen Mediterranean trees regulate water loss during summer drought. Leaf specific hydraulic conductance and leaf gas exchange were monitored during the progressive summer drought to establish how changes along the hydraulic pathway influence shoot responses. As soil water became limiting, leaf water potential, stomatal conductance and leaf transpiration declined significantly. Predawn leaf water potential reflected soil water potential measured at 1-m depth in the rhizospheres of most trees. The lowest predawn leaf water potential recorded during this period was -1.8 MPa. Mean maximum stomatal conductance declined from 300 to 50 mmol m(-2) s(-1), reducing transpiration from 6 to 2 mmol m(-2) s(-1). Changes in leaf gas exchange were attributed to reduced soil water availability, increased resistances along the hydraulic pathway and, hence, reduced leaf water supply. There was a strong coupling between changes in soil water content and stomatal conductance as well as between stomatal conductance and leaf specific hydraulic conductance. Despite significant seasonal differences among trees in predawn leaf water potential, stomatal conductance, leaf transpiration and leaf specific hydraulic conductance, there were no differences in midday leaf water potentials. The strong regulation of changes in leaf water potential in Q. suber both diurnally and seasonally is achieved through stomatal closure, which is sensitive to changes in both liquid and vapor phase conductance. This sensitivity allows for optimization of carbon and water resource use without compromising the root-shoot hydraulic link.  相似文献   

7.
Selected tropical Acacia species are used extensively for short-rotation plantation forestry in many parts of Asia and, to a limited degree, in Australia. We explored leaf-level photosynthetic activity and leaf water potential (Ψleaf) of three field-grown Acacia tree species (aged between 7 and 18 months) in contrasting wet–dry tropical plantations in southern Vietnam and northern Australia. Light-saturated photosynthetic rate (A1500) declined throughout the morning and early afternoon in the dry season; in the wet season, levels remained high and relatively constant throughout most of the day. Maximum daily A1500 at 09:00 ranged from 22.2 μmol?m?2?s?1 in the wet to 10.4 μmol?m?2?s?1 in the dry season. At both locations, trees were able to extract soil water such that pre-dawn leaf water potential (Ψpd) remained>?1.5?MPa even at the end of the dry season. Stomatal conductance to water vapour (gs) did not respond to decreasing Ψleaf during the wet season but was sensitive to changes in Ψleaf in the dry season. Species comparisons of the relationships between A1500 and Ψleaf revealed different strategies to balance carbon uptake and water loss in a wet–dry environment. Acacia crassicarpa and A. mangium regulated Ψleaf to a greater extent than the A. mangium×A. auriculiformis hybrid such that ?Ψleaf (determined as Ψpd?midday Ψleaf) was unaffected by season. This result suggests that the hydraulic regulation of tree water status varies amongst young tropical Acacia species. From a management perspective, for Acacia species that tend to strongly regulate water loss in environments with an extended dry season, overall productivity at the end of a rotation may be less than for species that prioritise carbon gain.  相似文献   

8.
We analyzed the partition of nocturnal sap flow into refilling of internal water storage and transpiration in Acacia mangium. Sap flow of trees was monitored continuously with Granier’s sensors for estimating the whole-tree transpiration. Possible night transpiration and stomatal conductance at the leaf level in the canopy were measured with a LI-6400 photosynthesis measuring system. For nocturnal leaf transpiration and stomatal conductance were weak, nocturnal sap flow of mature A. mangium trees was mainly associated with water recharge in the trunk. No significant change in night water recharge of the trunk was found at both seasonal and inter-annual scales. Morphological features of trees including diameter at the breast height (DBH), tree height, and canopy size could explain variances of night water recharge. Furthermore, although the contribution of nocturnal sap flow to the total transpiration varied among seasons and DBH classes, the error caused by night water recharge on wholetree transpiration was negligible. __________ Translated from Journal of Plant Ecology (Chinese Version), 2007, 31 (5): 777–786 [译自: 植物生态学报]  相似文献   

9.
Panek JA 《Tree physiology》2004,24(3):277-290
This paper describes 3 years of physiological measurements on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growing along an ozone concentration gradient in the Sierra Nevada, California, including variables necessary to parameterize, validate and modify photosynthesis and stomatal conductance algorithms used to estimate ozone uptake. At all sites, gas exchange was under tight stomatal control during the growing season. Stomatal conductance was strongly correlated with leaf water potential (R2=0.82), which decreased over the growing season with decreasing soil water content (R2=0.60). Ozone uptake, carbon uptake, and transpirational water loss closely followed the dynamics of stomatal conductance. Peak ozone and CO2 uptake occurred in early summer and declined progressively thereafter. As a result, periods of maximum ozone uptake did not correspond to periods of peak ozone concentration, underscoring the inappropriateness of using current metrics based on concentration (e.g., SUM0, W126 and AOT40) for assessing ozone exposure risk to plants in this climate region. Both Jmax (maximum CO2-saturated photosynthetic rate, limited by electron transport) and Vcmax (maximum rate of Rubisco-limited carboxylation) increased toward the middle of the growing season, then decreased in September. Intrinsic water-use efficiency rose with increasing drought stress, as expected. The ratio of Jmax to Vcmax was similar to literature values of 2.0. Nighttime respiration followed a Q10 of 2.0, but was significantly higher at the high-ozone site. Respiration rates decreased by the end of the summer as a result of decreased metabolic activity and carbon stores.  相似文献   

10.
Foster JR 《Tree physiology》1992,11(2):133-149
During summer, gas exchange and water relations were measured in mature boxelder (Acer negundo L.) trees growing on a floodplain in central Indiana, USA. A shallow (< 1.25-m deep) water table and repeated flooding kept the soil water potential above -0.5 MPa at all times. Net photosynthesis and stomatal conductance were influenced primarily by light and, to a lesser extent, by leaf temperature, but showed no relationships with leaf-to-air water vapor gradient or leaf water potential. Throughout the summer, there was no midday stomatal closure on any measurement day, and leaf water potential at dawn and minimum daily leaf water potential remained above -0.4 and -1.4 MPa, respectively. Nevertheless, there was a seasonal decline in leaf osmotic potentials at saturation and turgor-loss point. Seasonal changes in maximum daily net photosynthesis and stomatal conductance, minimum daily leaf water potential and soil-to-leaf hydraulic conductance were not related to seasonal changes in soil water potential, air or soil temperature, or water table depth. Seasonal responses of net photosynthesis to intercellular CO(2) indicated that net photosynthesis was controlled primarily by nonstomatal factors. High soil water and a shallow water table may have kept soil-to-leaf hydraulic conductance large (5-9 mmol m(-1) s(-1) MPa(-1)) throughout the summer, permitting the trees to keep their stomata open, yet maintain leaf turgor and high net photosynthesis during the hot, low-humidity afternoons. This could also account for the dominance of nonstomatal influences on net photosynthesis.  相似文献   

11.
Huang Z  Xu Z  Blumfield TJ  Bubb K 《Tree physiology》2008,28(10):1535-1543
Weed control may improve the growth of forest plantations by influencing soil water and nutrient availability, but our knowledge of leaf-level physiological responses to weed control at different within-canopy positions is limited for tropical and subtropical plantations. Foliar carbon (delta(13)C) and oxygen (delta(18)O) isotope compositions, gas exchange, and nitrogen (N(mass)) and phosphorus (P(mass)) concentrations at four canopy positions were assessed in a young spotted gum (Corymbia citriodora subsp. Variegata (F. Muell.) A.R. Bean & M.W. McDonald) plantation subjected to either weed control or no weed control treatment, to test if leaves at different positions within the tree canopy had the same physiological responses to the weed control treatment. Weed control increased foliar delta(13)C but lowered delta(18)O in the upper-outer and upper-inner canopy, indicating that weed control resulted in a higher foliar photosynthetic capacity at upper-canopy positions, a conclusion confirmed by gas exchange measurements. The increased photosynthetic capacity resulting from weed control can be explained by an increase in foliar N(mass). In the lower-outer canopy, weed control reduced foliar delta(13)C while lowering delta(18)O even more than in the upper-canopy, suggesting strong enhancement of the partial pressure of CO(2) in the leaf intercellular spaces and of foliar stomatal conductance in lower-canopy foliage. This conclusion was supported by gas exchange measurements. Foliar photosynthesis in the lower-inner canopy showed no significant response to weed control. The finding that leaves at different canopy positions differ in their physiological responses to weed control highlights the need to consider the canopy position effect when examining competition for soil nutrient and water resources between weeds and trees.  相似文献   

12.
Rust S  Roloff A 《Tree physiology》2002,22(8):597-601
We tested the hypothesis that changes in crown architecture of old pedunculate oak trees (Quercus robur L. ssp. robur Kl. et Kr. et Rol.) reduce leaf specific hydraulic conductance of shoots, thereby limiting stomatal conductance and assimilation of affected shoots. At the end of summer 1999, hydraulic conductance and leaf specific hydraulic conductance, measured with a high-pressure flow meter in 0.5- to 1.5-m long shoots, were 27 and 39% lower, respectively, in shoots of low vigor compared with vigorously growing shoots in a 165-year- old stand in southeastern Germany. Two types of bottlenecks to water transport can be identified in shoots of old oak trees, namely nodes and abscission zones. The reduction in hydraulic conductance was especially severe in shoots with diameters of less than 2 mm. Maximum stomatal conductance and maximum net assimilation rate increased significantly with hydraulic conductance and leaf specific hydraulic conductance. Our data support the hypothesis that changes in shoot and consequently crown architecture observed in aging trees can limit photosynthesis by reducing shoot hydraulic conductance. Thus, in addition to increasing pathway length and lower conductivity of xylem in old trees, structural changes in shoot and crown architecture need to be considered when analyzing water relations and photosynthesis in mature and declining trees.  相似文献   

13.
The biochemically based leaf photosynthesis model proposed by Farquhar et al. (1980) and the stomatal conductance model proposed by Jarvis (1976) were parameterized for walnut. Responses of photosynthesis to CO(2) and irradiance were used to determine the key parameters of the photosynthesis model. Concurrently, stomatal conductance responses to leaf irradiance (Q), leaf temperature (T(l)), water vapor pressure deficit at the leaf surface (D), and air CO(2) concentration at the leaf surface (C(s)) were used to parameterize the stomatal conductance model. To test the generality of the model parameters, measurements were made on leaves from a 20-year-old tree growing in the field, and from sunlit and shaded greenhouse-grown seedlings. The three key parameters of the photosynthesis model (maximum carboxylation rate V(cmax), electron transport capacity J(max), and dark respiration rate R(d)) and the key parameter of the conductance model (reference stomatal conductance, g(sref)) were linearly correlated with the amount of leaf nitrogen per unit leaf area. Unique relationships could be used to describe nitrogen effects on these parameters for leaves from both the tree and the seedlings. Our data allowed separation of the effects of increasing total photosynthetic apparatus per unit leaf area from the effects of partitioning nitrogen among different pools of this apparatus for foliage acclimation to leaf irradiance. Strong correlations were found between stomatal conductance g(s) and Q, D and C(s), whereas the relationship between g(s) and T(l) was weak. Based on these parameterizations, the model adequately predicted leaf photosynthesis and stomatal conductance when tested with an independent set of data obtained for the tree and seedlings. Total light-driven electron flows derived from chlorophyll fluorescence data obtained at different leaf temperatures were consistent with values computed by the model. The model was also tested with branch bag data acquired from a three-year-old potted walnut tree. Despite a relatively large variance between observed and simulated values, the model predicted stomatal conductance and photosynthesis reasonably well at the branch scale. The results indicate that the photosynthesis-conductance model developed here is robust and can be applied to walnut trees and seedlings under various environmental conditions where water is non-limiting.  相似文献   

14.
Physiological reactions of 25-year-old Norway spruce (Picea abies (L.) Karst.) trees to drought were examined during 2009 vegetation period. During the second half of summer, the decrease in soil water content was observed and irrigation was applied to a group of spruce trees, while the second group was treated under natural soil drought. The response to water deficit was recorded at the level of leaf water potential (ΨL). However, it appears that ΨL plays minor role in early stomata regulation of Norway spruce as CO2 assimilation rate (P N) and stomatal conductance (g S) were reduced already before water potential decrease. Leaf water potential decreased significantly only in case when soil water content was low in the long run and when transpiration losses were simultaneously relatively high. Almost complete stomatal closure even of the irrigated trees was caused by the increase in the vapour pressure deficit of the air (D) above the value of approximately 1.5?kPa. Low values of D were accompanied by partial stomata opening of drought-treated trees. In non-irrigated spruce trees, the values of P N decreased by 35–55% in comparison with irrigated trees. No drought-induced significant changes were found either in chlorophyll and carotenoid concentration (chl a?+?b, car) or in maximal photochemical efficiency of photosystem II (F v/F m). High rates of sap flow (F) did not always lead to stomatal closure during midday. It?appears that high transpiration rates do not control stomatal response to D.  相似文献   

15.
Diurnal and seasonal photosynthesis patterns were studied in poplar clones Populus tristis Fisch. x P. balsamfera L. cv. Tristis #1 (NC 5260) and Populus x euramericana (Dode) Guiner cv. Eugenei (NC 5326, Carolina poplar) during their first season in the field in a short rotation, intensive culture plantation. Photosynthetic rates were low in immature leaves; increased basipetally on the shoot and peaked in leaves that had recently reached full expansion; and thereafter declined in lower-crown leaves in both clones. Photosynthesis was associated with leaf age and stomatal conductance in immature leaves; adaxial photosynthetic photon flux density (PPFD) and leaf temperature in recently mature leaves; and leaf age and adaxial PPFD in lower-crown leaves. Diurnal photosynthesis patterns within trees were highly variable due to differential light interception among leaves. Results of clonal comparisons of photosynthetic rates were dependent on which leaves were pooled for comparison and how photosynthesis was expressed. Compared to Eugenei, Tristis produced smaller leaves which had higher unit-area photosynthesis rates. The more indeterminate Eugenei outgrew Tristis principally because it more fully utilized the growing season for leaf area production. Photosynthetic production integrated over the growing season was closely related to dry matter production in both clones.  相似文献   

16.
We investigated effects of heterogeneous stomatal behavior on diurnal patterns of leaf gas exchange in 10 tree species. Observations were made in middle and upper canopy layers of potted tropical rainforest trees in a nursery at the Forest Research Institute Malaysia. Measurements were taken from 29 January to 3 February 2010. We measured in situ diurnal changes in net photosynthetic rate and stomatal conductance in three leaves of each species under natural light. In both top-canopy and sub-canopy species, midday depression of net assimilation rate occurred in late morning. Numerical analysis showed that patchy bimodal stomatal behavior occurred only during midday depression, suggesting that the distribution pattern of stomatal apertures (either uniform or non-uniform stomatal behavior) varies flexibly within single days. Direct observation of stomatal aperture using Suzuki's Universal Micro-Printing (SUMP) method demonstrated midday patchy stomatal closure that fits a bimodal pattern in Shorea leprosula Miq., Shorea macrantha Brandis. and Dipterocarpus tempehes V.Sl. Inhibition of net assimilation rate and stomatal conductance appears to be a response to changes in vapor pressure deficit (VPD). Variable stomatal closure with increasing VPD is a mechanism used by a range of species to prevent excess water loss from leaves through evapotranspiration (viz., inhibition of midday leaf gas exchange). Bimodal stomatal closure may occur among adjacent stomata within a single patch, rather than among patches on a single leaf. Our results suggest the?occurrence of patches at several scales within single leaves. Further analysis should consider variable spatial scales in heterogeneous stomatal behavior between and within patches and within single leaves.  相似文献   

17.
We studied the response of stomatal conductance at leaf (gS) and canopy (GS) scales to increasing vapor pressure deficit (D) in mature Pinus palustris Mill. (longleaf pine) growing in a sandhill habitat in the coastal plain of the southeastern USA. Specifically, we determined if variation in the stomatal response to D was related to variation in hydraulic conductance along the soil-to-leaf pathway (KL) over the course of a growing season. Reductions in KL were associated with a severe growing season drought that significantly reduced soil water content (theta) in the upper 90-cm soil profile. Although KL recovered partially following the drought, it never reached pre-drought values. Stomatal sensitivity to D was well correlated with maximum gS at low D at both leaf and canopy scales, and KL appeared to influence this response by controlling maximum gS. Our results are consistent with the hypothesis that stomatal response to D occurs to regulate minimum leaf water potential, and that the sensitivity of this response is related to changes in whole-plant hydraulics.  相似文献   

18.
The atmospheric hydrocarbon budget is important for predicting ozone episodes and the effects of pollution mitigation strategies. Isoprene emission from plants is an important part of the atmospheric hydrocarbon budget. We measured isoprene emission capacity at the bottom, middle, and top of the canopies of a white oak (Quercus alba L.) tree and a red oak (Quercus rubra L.) tree growing adjacent to a tower in the Duke University Forest. Leaves at the top of the white oak tree canopy had a three- to fivefold greater capacity for emitting isoprene than leaves at the bottom of the tree canopy. Isoprene emission rate increased with increasing temperature up to about 42 degrees C. We conclude that leaves at the top of the white oak tree canopy had higher isoprene emission rates because they were exposed to more sunlight, reduced water availability, and higher temperature than leaves at the bottom of the canopy. Between 35 and 40 degrees C, white oak photosynthesis and stomatal conductance declined, whereas red oak (Quercus rubra) photosynthesis and stomatal conductance increased over this range. Red oak had lower rates of isoprene emission than white oak, perhaps reflecting the higher stomatal conductance that would keep leaves cool. The concentration of isoprene inside the leaf was estimated with a simplified form of the equation used to estimate CO(2) inside leaves.  相似文献   

19.
Effects of soil and atmospheric drought on whole-tree transpiration (E(T)), leaf water potential (Ψ(L)) and whole-tree hydraulic conductance (K(T)) were investigated in mature rubber trees (Hevea brasiliensis, clone RRIM 600) during the full canopy stage in the rainy season in a drought-prone area of northeast Thailand. Under well-watered soil conditions, transpiration was tightly regulated in response to high evaporative demand, i.e., above reference evapotranspiration (ET(0)) ~2.2 mm day(-1) or maximum vapor pressure deficit ~1.8 kPa. When the trees experienced intermittent soil drought E(T) decreased sharply when relative extractable water in the top soil was?相似文献   

20.
We studied the effect of scion donor-tree age on the physiology and growth of 6- to 7-year-old grafted Scots pine (Pinus sylvestris L.) trees (4 and 5 years after grafting). Physiological measurements included photosynthethetic rate, stomatal conductance, transpiration, whole plant hydraulic conductance, needle nitrogen concentration and carbon isotope composition. Growth measurements included total and component biomasses, relative growth rates and growth efficiency. Scion donor trees ranged in age from 36 to 269 years at the time of grafting. Hydraulic conductance was measured gravimetrically, applying the Ohm's law analogy, and directly, with a high-pressure flow meter. We found no effect of scion donor-tree age on any of the variables measured. There was, however, great variation within scion donor-tree age groups, which was related to the size of the grafted trees. Differences in size may have been caused by variable initial grafting success, but there was no indication that grafting success and age were related. At the stem level, hydraulic conductance scaled with total leaf area so that total conductance per unit leaf area did not vary with crown size. However, leaf specific hydraulic conductance (gravimetric), transpiration, photosynthesis and stomatal conductance declined with increasing total tree leaf area and needle width. We hypothesize that needle width is inversely related to mesophyll conductance. We conclude that canopy and needle size and not scion donor-tree age determined gas exchange in our grafted trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号