首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Response of Faidherbia albida (Del.) to five levels of Kodjari rock phosphate (KRP) application (0, 310, 620, 1240 and 2480 ppm P, equivalent to 0, 775, 1550, 3100 and 6200 kg P/ha) and vesicular-arbuscular mycorrhizal fungi (VAMF) Glomus manihotis Howeler, Sieverding & Schenck or Glomus aggregatum Schenck & Smith emend. Koske was evaluated in an alkaline sandy soil. The F. albida seedlings grew poorly without mycorrhizal colonization and without KRP applications. For non-VAM Faidherbia, the maximum growth response and both P and N uptake in shoots was achieved with the 620 ppm P. However, even without KRP application, VAM plants achieved better results in terms of biomass. VAM plants with G. manihotis and G. aggregatum improved plant growth and increased nutrient contents at any KRP application rate. Although mycorrhizal colonization was comparable at all levels of KRP application, the impact of nutrient content of the shoot varied. Finally, VAM plants did not accumulate more biomass than non-VAM plants at 620 ppm P and above. Growth response and mycorrhizal dependency decreased as KRP applied levels increased. These results suggest that VAM Faidherbia seedlings take up more P from soil and KRP than non-VAM.  相似文献   

2.
An investigation was carried out to screen and select efficient vesicular arbuscular mycorrhizal (VAM) fungi for inoculating the forest tree species, Casuarina equisetifolia. The seedlings were inoculated with 10 different VAM fungi, obtained from various sources. Inoculated seedlings generally had greater plant height, stem girth, biomass and P content than uninoculated plants. They also had more mycorrhizal root colonization and spore numbers in root zone soil. C. equisetifolia seedlings responded best (in biomass) to inoculation with Glomus mosseae (Nicolson and Gerdemann) Gerdemann and Trappe, closely followed by Acaulospora laevis Gerdemann and Trappe and G. fasciculatum (Thaxter Sensu Gerdemann) Gerdemann and Trappe; all the three being statistically on par with each other.  相似文献   

3.
为了揭示长期淹水对河竹鞭根系统生物量分配及异速生长模式的影响,调查测定了人工喷灌供水(CK)和淹水处理(TR)3、6个月的河竹1年生竹鞭及其根系的生物量,分析了河竹鞭、根生物量分配对淹水环境的适应和响应策略。结果表明: 淹水条件下河竹根系生长受到抑制,生物量分配比例鞭>根。与CK相比,淹水条件下河竹根系生物量及根系生物量/总生物量显著降低,鞭生物量/总生物量升高。随着淹水时间的延长,河竹鞭、根大量生长,生物量显著升高,但根生物量/总生物量、鞭生物量/总生物量和水中鞭生物量/总生物量变化并不明显。河竹鞭、根生物量间的关系在TR和CK处理下均符合幂函数增长关系,但淹水条件下的异速生长指数b要高于CK。研究表明河竹在鞭根系统生长和物质分配上具有较大的生态可塑性和可调节性,可以通过鞭根系统的生物量合理分配和异速生长调节以逐步适应淹水环境。研究结果可为河竹在水湿地和江河湖库消落带植被恢复中的应用提供参考。  相似文献   

4.
Physiological responses and changes in growth of Indocalamus decorus Q.H.Dai under different ecological conditions are essential for further understanding growth regulation and adaptive mechanisms and establishing an evidence-based management system for optimal growth. In this study, the endogenous hormone content in tillering stem bases, germination of lateral buds, and biomass allocation of this bamboo species in different growth environments were investigated. Among the endogenous hormones in the basal stems of tillers, indole-3-pyruvic acid and zeatin riboside were highly correlated with lateral buds that germinated to form shoots, while gibberellic acid was highly correlated with lateral buds that germinated to form rhizomes. The best lateral bud germination characteristics were achieved with full sun, a density of six plantlets per pot, and watering every 6 days. I. decorus plantlets used different resource allocation strategies depending on treatment. Different ecological factors influenced endogenous hormones in the bamboo stem base, which affected lateral bud germination and biomass allocation.  相似文献   

5.
Seedlings of Juglans nigra from three seed sources were grown in fumigated soil without vesicular-arbuscular mycorrhizal (VAM) fungi or inoculated with Gigaspora margarita, Glomus deserticola or Glomus etunicatum. Vesicular-arbuscular mycorrhizal development varied significantly between fungal symbionts within a black walnut source. Glomus deserticola and G. etunicatum produced the highest levels of root colonization in all sources. Significant differences in seedling shoot and root growth were attributed to root colonization by specific VAM fungi in each black walnut source. Glomus deserticola stimulated seedling leaf area and root weight 26 and 52%, respectively, in one seed source. Seedling leaf N, P and K concentrations were significantly improved by VAM in two seed sources. Juglans nigra seedlings respond favorably to VAM colonization. However, differences between seed sources suggest a strong host-symbiont interaction.  相似文献   

6.
为阐明不同竹种生产力和种群更新能力差异,选取9种混生地被竹种进行竹苗盆栽试验,分析2个生长周期内各竹种竹苗生物量分配与积累规律,为优良混生地被竹经营管理和推广应用提供参考。结果表明:1)各竹种第1年竹根生物量,第2年竹鞭、竹根、竹叶生物量显著影响了竹种总生物量积累率(P<0.05);2)以5~6 cm长育苗小鞭段为基本统计和比较单位,大叶竹种美丽箬竹(Indocalamus decorus)第2年总生物量高达36.51±2.13 g,小叶竹种翠竹(Sasa pygmaea)第2年总生物量仅15.36±1.34 g,两者差异显著(P<0.05);3)美丽箬竹、黄条金刚竹(Pleioblastus kongosanensis f. aureostriaus)等大叶竹种总生物量积累率明显高于菲白竹(Sasa fortune)、翠竹等小叶竹种(P<0.05)。研究发现:1)竹子在不同更新世代出现了不同的生物量分配策略,以使竹子种群快速拓殖;2)大叶地被竹种生物量、生物量积累率均明显大于小叶地被竹种,在一定生长期与环境条件下,大叶地被竹种环境适应能力可能高于小叶地被竹种。  相似文献   

7.
Bamboo is a type of biomass material and has great potential as a bio-energy resource of the future in China. Some properties of bamboo pellets, length, diameter, moisture content (MC), particle density, bulk density, durability, fine content, ash, gross calorific value, combustion rate and heat release rate, were determined and the effects of MC and particle size (PS) on these properties were investigated in this research. The results showed that bamboo pellets will be the proposed new biomass solid fuel and have the potential to be developed as commercial pellets. All properties of bamboo pellets met the requirement of Pellet Fuels Institute Standard Specification for Residential/Commercial Densified Fuel. The gross calorific value of bamboo pellets also met the minimum requirement for making commercial pellets according to DIN 51731 (>17,500 J/g). The effects of MC on length, diameter, MC, particle density and bulk density were significant at p = 0.05. There were no significant differences between PS and all properties of bamboo pellets. Due to higher MC and larger PS, bamboo pellets exhibited higher combustion rates and heat release rates. This research represents an initial stage in the study of bamboo pellets, and its objectives provide guidelines for further research.  相似文献   

8.
The interactions of root-knot nematode and VAM fungus on common bean plants (Phaseolus vulgaris L.), and the sequence of nematode infection were studied in the greenhouse. The inoculation with VAM fungus caused a significant increase in plant height and fresh weight compared with non treated plants.Meloidogyne infection unsignificantly decreased plant height and dry weight. When fungus was inoculated at 15 and 30 days prior toM. incognita infection, a significant increase in fresh weight was observed. There were no significant differences in total nitrogen (mg/plant) between plants inoculated withM. incognita alone or those inoculated with bothM. incognita and VAM fungus at the same time or 15 days after the fungus inoculation. Plants preinoculated with VAM fungus 30 days prior to nematode infection had a significant increase in total nitrogen. The inoculation with VAM fungus caused a significant increase in phosphorus content. However, it was significantly decreased in plants inoculated with nematode alone and in plants inoculated with VAM fungus andM. incognita at the same time. Gall index and final nematode population were significantly increased when nematodes were treated at the same time with fungus, although there were significant decrease in nematode final population and gall index when the plants were treated with nematodes at 15 and 30 days after mycorrhizal infection. A decrease in percentage of fungal colonization was observed when nematodes were inoculated with fungus at the same time.  相似文献   

9.
The purpose of this study was to estimate biomass and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi). The study site was located in central Taiwan and the makino bamboo plantation had a stand density of 21191 ± 4107 culms ha−1. A diameter distribution model based on the Weibull distribution function and an allometric model was used to predict aboveground biomass and carbon storage. For an accurate estimation of carbon storage, the percent carbon content (PCC) in different sections of bamboo was determined by an elemental analyzer. The results showed that bamboos of all ages shared a similar trend, where culms displayed a carbon storage of 47.49–47.82%, branches 45.66–46.23%, and foliage 38.12–44.78%. In spite of the high density of the stand, the diameter distribution of makino bamboo approached a normal distribution and aboveground biomass and carbon storage were 105.33 and 49.81 Mg ha−1, respectively. Moreover, one-fifth of older culms from the entire stand were removed by selective cutting. If the distribution of the yield of older culms per year was similar to the current stand, the yields of biomass and carbon per year would be 21.07 and 9.89 Mg ha−1 year−1. An astonishing productivity was observed, where every 5 years the yield of biomass and carbon was equal to the current status of stockings. Thus, makino bamboo has a high potential as a species used for carbon storage.  相似文献   

10.
This study was carried out to assess the relationship of the status of nodulation (i.e., the number of nodules, their shape and size) in root and biomass production of plant growth parameters (i.e., number of leaves, root and shoot lengths, root biomass and shoot biomass) in Albizia saman and Leucaena leucocephala. The assessment started 60 days after seeding. The study revealed that nodulation response and biomass production in both species showed significant dif- ferences over time (p 〈 0.05) in all variables except in the root-shoot ratio (oven-dry) of L. leucocephala. The study also showed significant differences (p 〈 0.05) in nodule formation and biomass production at the end of the study period be- tween the two species except in the number of nodules and leaves and the green root-shoot ratio. There were strong pos- itive correlations between nodule formation and biomass production, i.e., the number of nodules and the age of plants, the number of nodules and leaves, as well as the number of nodules and biomass (root biomass and shoot biomass) in both species. The results obtained using principal component analysis (PCA) and correlation coefficients of the different characteristics of nodulation and biomass production were similar in both species. The PCA showed that shoot biomass (shoot green weight and shoot oven-dry weight) is positively correlated with PC1 (with an eigenvalue of 7.50) and root length is positively correlated with PC2 (with an eigenvalue of 0.19) in the case of A. saman. In the case of L. leucocephala, the PCA revealed that root biomass (root green weight and root oven-dry weight), shoot biomass and shoot length are also positively correlated with PC1, while nodule formation and the number of leaves are positively correlated with PC2 (with an eigenvalue PC1 of 6.92 and PC2 of 0.49).  相似文献   

11.
The purpose of this study was to compare carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests. The study site was located in the lower mountain area of central Taiwan, where both moso bamboo and China fir were rich. In addition, moso bamboo and China fir forests were surveyed on 12 and 19 plantations, respectively. We predicted carbon sequestration based on the allometric model for moso bamboo and China fir forests and compared the relationships between characteristics of bamboo forests and elevation. The results showed that mean diameter at breast height (DBH), culms per hectare and aboveground biomass were not clearly affected by elevation, whereas a negative correlation (R = −0.600, p = 0.039) between mean DBH and stand density was found for moso bamboo forests. Moreover, the aboveground carbon storage was higher for China fir forests than for moso bamboo (99.5 vs. 40.6 Mg ha−1). However, moso bamboo is an uneven-aged stand which is only composed of 1-5-year-old culms, while China fir is an even-aged stand and the age range is from 15 to 54 years, such that, per year, the mean aboveground carbon sequestration is 8.13 ± 2.15 and 3.35 ± 2.02 Mg ha−1 for moso bamboo and China fir, respectively. On the other hand, the mean carbon sequestration of China fir decreases with increasing the age class. Furthermore, the ratio of moso bamboo to China fir is 2.39 and a T-test showed that the aboveground carbon levels were significantly different between these two species; thus, moso bamboo is a species with high potential for carbon sequestration.  相似文献   

12.
Bamboos are among the largest woody grasses and grow very rapidly. Although lignin is a crucial factor for the utilization of bamboo biomass, the lignification mechanism of bamboo shoots is poorly understood. We studied lignification in the bamboo Sinobambusa tootsik during culm development. Elongation growth began in May and ended in late-June, when the lignin content was approximately half that in mature culms. Thioacidolysis analysis indicated that p-hydroxyphenyl units in lignin formed even at late stages of lignification. The syringyl/guaiacyl ratio varied during culm development. Various lignin precursors were detected in developing culms by liquid chromatography–mass spectrometry. The ferulic acid content decreased from May to June, indicating that ferulic acid was utilized in early stages of cell wall formation. Monolignol glucosides were detected at early stages of lignification, whereas the contents of monolignols, coniferaldehyde, sinapaldehyde, p-coumaric acid, and ferulic acid peaked at later stages of lignification. Therefore, lignin precursors may be supplied differentially during the lignification process. In August, the rate of lignification decreased, although the contents of various lignin precursors peaked, implying that the rate-limiting step in the cessation of lignification in bamboo is transport or polymerization of lignin precursors, rather than their biosynthesis.  相似文献   

13.
Chusquea ramosissima is a native monocarpic bamboo species growing in subtropical forests of northeastern Argentina, which can dominate gaps and open forests in the region, particularly after human disturbance. This bamboo species started to flower in different areas of northeastern Argentina in 2001, with the flowering peak during 2002 and 2003 and small isolated flowering events still occurring until 2010. We studied the effects of C. ramosissima flowering and die-back on microclimate, litter decomposition, nutrient availability, sapling growth, abundance and regeneration of tree canopy species. We wanted to know how environmental conditions and ecosystem processes change through time after bamboo flowering and if bamboo die-back would favor regeneration of canopy trees. Twenty 50 × 50 m plots of flowering and non-flowering bamboo were permanently marked and vegetation dynamics as well as nutrient cycling and microclimate studies were performed. C. ramosissima die-back enhanced growth and reduced mortality rate of tree saplings during the first year after flowering. Only growth of tree saplings previously established was enhanced by the flowering event and tree-species richness and saplings abundance of canopy trees did not change as expected due to bamboo flowering. The short-term effect of tree saplings growth was likely due to incident solar radiation at the forest floor which doubled in the first year after the bamboo flowering event. Increased light availability at the forest floor simultaneously promoted the growth of other understory plants such as ferns, lianas and Piper spp. that rapidly colonized gaps and intercepted a percentage of the incident solar radiation after the first year, which together with an increased litter layer due to the senescence of the bamboo, may have inhibited establishment of new tree individuals and affected tree growth. Contrary to predictions, soil water, litter decomposition and soil nutrients were not significantly affected by bamboo flowering. Thus, successful tree regeneration in gaps following bamboo flowering appears to be restricted to a very narrow window of increased light availability (i.e., 1 year) before growth of other understory plants and rapid re-colonization of bamboo. Changes in resource availability, and the opportunity for overstory regeneration after bamboo flowering events appears to depend on climatic and community characteristics of the ecosystem where the flowering event occurs and also, on the flowering patterns and their synchronicity.  相似文献   

14.
We investigated the browsing effect of sika deer (Cervus nippon Temminck) on the biomass and morphology of Sasa nipponica Makino et Shibata, a dwarf bamboo, in Mt. Ohdaigahara, central Japan. The investigation was performed through comparison of S. nipponica inside and outside a deer-proof fence. The S. nipponica outside the fence decreased in biomass (292.7 d.w.g./50×50 cm inside and 105.1 d.w.g. outside in August 1994), became miniaturized in culm height (49.1 cm inside and 15.6 cm outside), decreased in top leaf length (118.9 mm inside and 69.8 mm outside) and in culm diameter (2.0 mm inside and 1.2 mm outside) and densified in culm number (254/50×50 cm inside and 622 outside). After the destruction of the deer-proof fence, S. nipponica inside the fence underwent similar changes, that is, biomass decrease, miniaturization and densification in the next flush.  相似文献   

15.
Bamboos’ vegetative growth are frequently associated to negative effects on tree recruitment and survival and despite this process, the effects of bamboo dieback after flowering events are poorly understood due the rarity of these events. 2 years after the massive flowering of the woody bamboo Merostachys multiramea in a southern South America subtropical forest, we compared changes in environmental conditions; tree species regeneration and production of new culms in canopy gaps resulted from bamboo dieback and areas of continuous canopy allowed by sparse bamboo cover. We observed sharp differences in environment conditions mainly resulted from differences in canopy openness and a NPMANOVA revealed differences among the stands regeneration directions (species composition and density). Average density, number of culms per sapling and total height of M. multiramea did not differ between stands, although slight differences were detected with increasing values toward opened sites.  相似文献   

16.
Nitrogen fixing and non-N2 fixing legumes such as Gliricidia speium and Senna siamea have been used in alley cropping systems for soil improvement and source of N for food crops. However their establishments could be limited by P and moisture deficiencies in degraded soils. Vesicular-arbuscular mycorrhizal fungi can help to overcome these deficiencies. We examined the effects of a vesicular-arbuscular mycorrhizal (VAM) fungus, Glomus deserticola, on the performance of sole hedgerow trees of Gliricidia sepium and Senna siamea and their mixtures (interplanted) in a fallowed alley cropping experiment on a degraded Alfisol in southwestern Nigeria. Percentage root infection by VAM fungi was higher in inoculated plants than in uninoculated ones irrespective of whether they were interplanted or non-interplanted. Inoculation with G. deserticola increased dry matter accumulation and nutrient uptake (N. P, Mg and K) but there was no significant interaction between mycorrhizal inoculation and interplanting for growth and nutrient uptake except for the uptake of P, Mg and K in G. sepium. Inoculation with G. deserticola reduced leaf shedding of G. sepium by 50% but did not have the same effect for S. siamea. For both tree species inoculated plants extracted more water from 0–30 cm depth than the uninoculated ones.  相似文献   

17.
为摸清福建酸竹生物量积累与分配特征,测定了1~4年生福建酸竹的秆、枝、叶生物量,分析了立竹地上构件生物积累与分配特征及其相对生长关系。结果表明,不同年龄福建酸竹构件含水率、生物量及其分配比例与相对生长关系差异明显。随立竹年龄增加,秆、枝、叶含水率明显下降,而其生物量及总生物量则显著增加;秆生物分配比例及异速生长指数总体下降,而枝、叶生物量分配比例及其异速生长指数总体升高。综合分析表明,福建酸竹丰产林经营宜多留养2年生、3年生立竹,适量留养4年生立竹。  相似文献   

18.
密度对肿节少穗竹生长影响的研究   总被引:6,自引:2,他引:4  
本文通过对不同密度的肿节少穗竹的生长效应、生物量结构、竹冠结构和出笋量情况进行调查研究表明:密度在6万株/hm2的竹林具有最大出笋量、生物量、单株重量、胸径、竹高、冠幅和冠层厚;Ⅱ度竹对出笋量起着显著的影响,该密度有利于培育丰产优质的竹林。  相似文献   

19.
为提高赤水河流域毛竹林的生产力,采用随机区组设计,试验研究了尿素和不同氮、磷和钾配比的复合肥B、C、D对毛竹林出笋成竹、新竹质量和地上生物量的影响。结果表明:1)尿素对毛竹林成竹量和枝叶生物量的影响达显著水平,其出笋量、成竹量、新竹平均胸径、胸高断面积、秆材量和地上生物量分别为对照的120.17%、130.70%、93.49%、114.03%、111.37%、113.74%,表现出生物量上升而新竹质量降低的效果,生产上需慎用; 2)复合肥B对毛竹林的新竹胸高断面积、秆材量、枝叶量和地上生物量的影响均达显著水平,其出笋量、成竹量、新竹平均胸径、胸高断面积、秆材量和地上生物量分别为对照的112.50%、121.69%、101.76%、125.69%、126.41%、125.81%,表现为新竹质量和生物量上升,适宜于培育大径用材林; 3)复合肥C对毛竹林各项生产力指标的影响均未达显著水平,其出笋量、成竹量、新竹平均胸径、胸高断面积、秆材量和地上生物量分别为对照的101.42%、118.28%、100.10%、118.80%、119.07%、118.89%,适宜于培育笋用林和笋材兼用林; 4)生产力综合效应指数大小呈复合肥B (682.63%) > 复合肥C(476.35%) > 尿素(445.26%) > 复合肥D(261.37%) > 对照(100.00%)的变化趋势。  相似文献   

20.
对福建省华安县瓜多竹开展引种试验,研究其生长情况、出笋期、出笋量、病虫害情况、越冬受冻情况及各器官生物量分配等。结果表明:瓜多竹一年四季均有出笋,4月下旬至8月下旬出笋最多;新长竹子的竹高和地径均随竹龄增长而增大,竹林栽植第3年可逐渐郁闭成林;瓜多竹生物量大,竹材产量高,其地上部分干生物量占总生物量的77.15%~83.58%,其中以竹秆所占生物量比例最大,为58.26%~71.16%;瓜多竹长势高,根浅,容易被风吹倒,无明显病虫害影响,但受寒冷低温天气影响大,建议在试验地以南、受台风影响较少的地区进行引种栽培。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号