首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The large-scale conversion of old forests to tree plantations has made it increasingly important to understand how understory vegetation responds to such landscape changes. For instance, in some forest types a reduction in understory richness and cover is thought to result from the development of canopy closure in plantations, although there is a paucity of empirical data demonstrating this relationship. We used a 420-year forest chronosequence as a case study to assess the relationship between stand age, tree canopy cover and understory vascular plant richness and composition in the Siskiyou Mountains of Oregon. The chronosequence consisted of six young managed (age 7–44) and nine older unmanaged (age 90–427) stands. All stands were similar in underlying geology, slope, elevation, and aspect. We found a non-linear relationship between stand age and richness, in which richness was highest in the youngest stands, reached a low in mid-aged stands (∼55 years), then increased in the oldest stands. We also found that percent tree canopy cover was correlated with total understory cover, richness, diversity, and species composition. In general, young stands were characterized by high shrub and graminoid cover and old stands were characterized by an abundant herb layer. Our work suggests that a major component of our study landscape is currently entering the forest stage (canopy closure) characterized by low levels of vascular plant species richness and cover. We use our results to discuss the potential effects of future forest management on understory plants.  相似文献   

2.
As forests age, their structure and productivity change, yet in some cases, annual rates of water loss remain unchanged. To identify mechanisms that might explain such observations, and to determine if widely different age classes of forests differ functionally, we examined young (Y, approximately 25 years), mature (M, approximately 90 years) and old (O, approximately 250 years) ponderosa pine (Pinus ponderosa Dougl. ex P. Laws.) stands growing in a drought-prone region of central Oregon. Although the stands differed in tree leaf area index (LAIT) (Y = 0.9, M = 2.8, O = 2.1), cumulative tree transpiration measured by sap flow did not differ substantially during the growing season (100-112 mm). Yet when water was readily available, transpiration per unit leaf area of the youngest trees was about three times that of M trees and five times that of O trees. These patterns resulted from a nearly sixfold difference in leaf specific conductance (KL) between the youngest and oldest trees. At the time of maximum transpiration in the Y stand in May-June, gross carbon uptake (gross ecosystem production, GEP) was similar for Y and O stands despite an almost twofold difference in stand leaf area index (LAIS). However, the higher rate of water use by Y trees was not sustainable in the drought-prone environment, and between spring and late summer, KL of Y trees declined fivefold compared with a nearly twofold decline for M trees and a < 30% reduction in O trees. Because the Y stand contained a significant shrub understory and more exposed soil, there was no appreciable difference in mean daily latent energy fluxes between the Y stand and the older stands as measured by the eddy-covariance technique. These patterns resulted in 60 to 85% higher seasonal GEP and 55 to 65% higher water-use efficiency at the M and O stands compared with the Y stand.  相似文献   

3.
4.
Old-growth forests are ecologically relevant reservoirs of biodiversity and provide valuable and unique ecosystem functions in the landscape. However, what constitutes an old-growth stand is confusing because the definition depends largely on the forest type under study. Despite the ecological importance of old-growth temperate rainforests in southern Chile in comparison to other global forests, no attempts have been made to characterize them as a way to assess their structural variability. Here, we characterized old-growth stands of Valdivian and North Patagonian rain forest types located in Chiloé Island (Chile, 42°30′S) using inventory data from 23 permanent plots (0.1 ha each) located in rural landscapes and protected areas of northern Chiloé Island. For each stand, its age (average age of the oldest trees present in each stand) and disturbance regimes (evidence of recent human impact, e.g. cuttings or fires, and tree growth rates) were used as defining old-growth criteria. We characterized the structure (tree species richness, size-density distributions, vertical stratification and presence of snags) and floristic composition of each stand. Environmental variables (i.e. temperature, distance to coastline and elevation) were related to stand structure using multivariate constrained correspondence analysis. Old-growth forests were commonly characterized by (a) tree basal areas >80 m2/ha; (b) density of shade-tolerant tree species in the emergent and dominant canopy layer >36%; (c) higher tree species richness (>7 tree species) than successional stands; (d) presence of large canopy emergents (>80 cm dbh, >25 m tall); (e) high vertical heterogeneity; and (f) minimum stand ages older than 200 years. Old-growth forests showed a distinctive structural variability and floristic diversity influenced both by stand age and disturbance history of the stands. Structural variability was also related to environmental differences among sites (e.g. air temperature, distance to coastline, soil types). Old-growth forest features described here can offer a baseline for managers interested in maintaining and restoring old-growth forest structure in southern temperate rain forests.  相似文献   

5.
Analyses of distribution patterns and genetic structures of forest stands can address distinct family structures and provide insights into the association of genetic and phenotypic variation patterns. In this study, point pattern analysis and spatial autocorrelation were used to examine the spatial and genetic structures in two naturally generated beech stands, which differ in age, trunk morphology, and stand management. Significant tree clumping was observed at distances up to 20 m in the young forest stand, whereas dispersion at distances under 10 m was observed in the old stand. The spatial analysis based on Ripley’s k function of the two different groups of trees showed that the non-forked trees match in both stands the spatial pattern of all trees while the forked were randomly distributed. Additionally, according to the bivariate analysis, forked trees in both stands were randomly distributed as related to non-forked tree positions. Finally, Moran’s I values were not very high, though significant genetic autocorrelation was identified at distances up to 20 m in the young stand, suggesting the existence of distinct family structures. However, no significant genetic structuring was observed in the old stand. Our findings suggest that spatial genetic patterns are impacted by stand age, environmental factors and human activities. The spatial distribution of forked trees was not clearly associated to family structures. Random effects and also micro-environmental variation could be additional factors explaining forking of beech individuals.  相似文献   

6.
The relationships between the structural complexity of coniferous forests and the epiphytic lichen communities that inhabit them were examined in 51 conifer-dominated stands in southwestern Nova Scotia. One hundred and fifteen lichen species were studied in stands in the age range of 50–300 years. Environmental variables shaping the structural complexity of each forest stand were measured and their relationship with lichen species were assessed using a canonical correspondence analysis (CCA). The CCA revealed that the considerable variation in lichen community composition can be explained by several environmental variables associated with forest structure. The stand orientation on the first axis of the CCA found the most important variables for lichen richness to be stand age, tree stem density and snag stem density. The stand orientation on the second axis is strongly correlated with deciduous stem density and abundance including specific deciduous tree species such as Acer rubrum abundance. The analysis indicates that the greater the structural complexity in the forest, and thus the more microhabitats available, the greater the lichen species richness. These results should provide forest managers with a better understanding of the environmental variables that influence lichen diversity, and contribute to the development of more sustainable forest management strategies.  相似文献   

7.
Managed forest stands are typically younger and structurally less diverse than natural forests. Introduction of non-native tree species might increase the structural changes to managed forest stands, but detailed analyses of tree- and stand-structures of native and non-native managed forests are often lacking. Improved knowledge of non-native forest structure could help clarify their multiple values (e.g. habitat for native biodiversity, bioenergy opportunities). We studied the structural differences between the introduced, non-native Pinus contorta and the native Pinus sylvestris and Picea abies over young forest stand ages (13–34 years old) in managed forests in northern Sweden. We found that P. contorta stands had greater mean basal areas, tree heights, diameters at breast height, and surface area of living branches than the two native species in young stands. The surface area of dead attached branches was also greater in P. contorta than P. abies. Although this indicates greater habitat availability for branch-living organisms, it also contributes to the overall more shaded conditions in stands of P. contorta. Only one older 87 years old P. contorta stand was available, and future studies will tell how structural differences between P. contorta and native tree species develop over the full forestry cycle.  相似文献   

8.
We focused our attention on quantifying the factor complex of forest regeneration in 423 mature and old stands with contrasting environmental conditions. We recorded the microhabitat selection of tree recruits, the frequency of tree seedlings, and evaluated the drivers of sapling abundance and diversity. The majority of forest regeneration was established on undisturbed forest floor. Dead wood was a frequent substrate in spruce-(co)dominated forests. Seedling frequency within a stand was related to the site-type specific productivity gradient of stands—pine seedlings were common in low-productivity and spruce in high-productivity boreal forests. Seedlings of temperate broad-leaved trees dominated in productive boreonemoral forests, except for oak, which showed a uniform distribution of abundance in all forest site-types. Sapling abundance was dictated by forest site-type, and facilitated by stand diversity, variability in stand closure, lying dead wood, abundant moss, and a thick organic layer. Only in boreal forests was sapling abundance suppressed by the abundant spruce and younger trees. Upon considering the relationship between sapling abundance and species richness, sapling diversity was dependent on forest site-type, suppressed by stand density and dead wood (old gap) abundance, and facilitated by stand diversity. In addition, boreonemoral stands, competition from herbs, and facilitation by mosses occurred. The observed pattern of tree recruitment points to the importance of top-down effects of the overstory, competing or facilitating interactions with forest floor vegetation, and availability of regeneration microhabitats, which in complex make their ecology comparable with forest herbs. Natural forest regeneration can be enhanced if silvicultural methods support mixed stands and enhance field layer diversity. Oak can provide the universal tree species to improve stand structure over a wide range of habitats.  相似文献   

9.
The vegetation of Pinus radiata plantation forests in New Zealand was studied to examine how the indigenous flora has responded to this novel habitat. A chronosequence of stands about 5, 16 and 27 years was assessed in each of four different biogeographic regions to test the effects of several stand and site factors on the succession of vascular understorey plant communities. A total of 202 indigenous and 70 adventive vascular plant species were found across all study areas, with considerable geographic variation among forests in species composition, species richness (range 48–135 species), and the percentage of indigenous species (50–86%). Both richness and cover of adventive species decreased significantly over time, whereas richness and cover of indigenous species was highest in the oldest stands, and overall species richness was lowest at mid-rotation. The guild composition changed from dominance of grasses and forbs in young stands to dominance of ferns and understorey trees in mature stands. These temporal changes were accompanied by a decrease in light-demanding pioneer species and an increase in shade tolerant, later seral species adapted to a forest environment. Measurements of the degree of canopy closure in stands with low or high stocking and modelling of temporal changes of canopy closure indicated that these understorey plant dynamics are influenced by changes in light availability as stands age. Despite the successional changes within forests, geographic variation more strongly influenced understorey communities because stands within a forest area were grouped together in DCA and TWINSPAN analyses, along rainfall and temperature gradients. Although the canopy species of such intensively managed plantation forests is an alien element in the New Zealand flora, the sheltered forest environment of older stands allows the establishment of a mostly indigenous forest understorey community with considerable similarities to indigenous forests located nearby.  相似文献   

10.
 The species richness of trees, shrubs and climbing plants was investigated in 41 sugi (Cryptomeria japonica D. Don) plantations of different stand age and area in southern Kyushu, southwestern Japan. Altogether 174 species were found, of which 145 infrequent species were selected for analysis. Two groups were extracted from the species list according to their occurrence in older (49 spp.) or younger (28 spp.) stands, the latter containing a higher percentage of climbing plants and species with wind-dispersed seeds. In contrast, the older stand group contained major tree components typical of seminatural, evergreen broadleaved forests in the region and was more heavily dependent on stand age, especially for species with gravity- and frugivore-dispersed seeds, showing a gradual increase up to 60 years old. The species richness was less correlated with edge perimeter facing seminatural forests and the years after latest thinning. The juxtaposition of plantation compartments with stands of seminatural forest or other plantations, as well as the compartment's origin as former plantation site or a seminatural stand, had relatively little influence on species richness. However, topographic variation was important in determining the species composition, with valley stands having higher species richness and containing many plants typical of the regional seminatural forests. These results suggest that (1) the major trend of species richness is determined by the presence of old stand type species, (2) topographic variation of species richness remains even after establishment of plantations, and (3) the normal rotation period of sugi plantations (35–40 years) may therefore be too short to conserve the maximum potential species diversity within the working forest. Received: June 4, 2001 / Accepted: August 26, 2002 Acknowledgments We wish to thank the staff of the Miyazaki University Forests for cooperation in the fieldwork. A part of this study was supported by the Grant-in-Aid for Scientific Study from the Ministry of Education, Science and Culture of Japan (no. 09041071 and no. 10460068). Correspondence to:S. Ito  相似文献   

11.
In densely populated regions, forests can help protect communities and infrastructures from natural hazards such as avalanches and rockfall. To promote the protective function, substantial efforts are made to actively manage forest stands. In 2009 alone the Swiss government invested more than 60 million sfr for the maintenance of protection forests. However, to date there has been no comprehensive evaluation of how the structural development of actively managed stands differs from that of passively managed stands in the Alps. Over the past century the structure of Norway-spruce dominated subalpine forests of the Swiss Alps has been changing and it is not clear how these changes affect the potential protective function of these forests, as well as other forest functions such as wildlife habitat. Furthermore, it is not clear how stand dynamics and structural changes differ between stands that are actively managed and those that are passively managed, and thus to what degree active efforts of forest management are contributing to stands that actually have a greater protective function than passively managed forests.In this study, we analyzed the dynamics of subalpine forests using time series of forest inventory data and examined the influence of active vs. passive management, exposition, distance to treeline, elevation and slope steepness on stand structure and dynamics. We analyzed data from 395 plots in dense, subalpine, spruce-dominated forests in the Swiss Alps. Data were collected during three distinct periods (1983-1985, 1993-1995 and 2004-2006) as part of the Swiss National Forest Inventory (NFI). Using regression trees and multivariate statistics, we investigated which factors have the most important influence on tree growth and stand development.Overall, forest density increased significantly over the last 20 years and the predominance of dense forests increased at higher elevations. However, forest density has not increased in actively managed forests over the past 10 years. In passively managed stands, density was higher on south-facing slopes than on north-facing slopes. The volume and density of dead wood has increased over the last 20 years in both actively managed and passively managed forests. Active management over the last 20 years has maintained forest conditions that adequately maintain stands’ protection functions in the Swiss Alps. However, stand development, especially increasing density, in the passively managed stands of the Swiss Alps suggests that the majority of passively managed stands also provide adequate protective functions against rock and avalanche hazards without the high costs of active management.  相似文献   

12.
Forests long subjected to management for timber production contain only a fraction of the volumes of coarse woody debris (CWD) found in pristine forests. This is a threat to many organisms that depend on CWD. Forest management practices have been altered to achieve an increase in the amounts of CWD. Few studies have attempted to analyze the occurrence of CWD at the landscape level. We studied the occurrence of CWD in stands of different ages and management background in a boreal forest landscape in central Sweden. Volume of CWD in unmanaged stands (nature reserves and set-asides) was twice that in managed stands. The composition of CWD was influenced by stand age and management regime. Standing CWD was more common in unmanaged stands than in managed stands. Pine CWD was particularly prevalent in young forest stands (8–59 years of age). Bark-covered CWD was most common on deciduous and spruce wood and uncommon on pine. Bark area in young forest stands was almost 10 times lower than that in other managed stands. Using the age distribution of stands, we estimated the volume and bark area of CWD in the landscape. Recent clear-cuts harvested in accordance with new management guidelines contained more early decay CWD per ha than old managed stands. Young forests covered over half the landscape and had significantly lower volumes of spruce and deciduous CWD compared with other stands. The consequences of these results for biodiversity-oriented forest management are discussed.  相似文献   

13.
对“永林公司”经营区9种森林经营模式林分结构比较研究,结果表明:应用Weibull分布、正态分布、对数正态分布、贝塔分布、伽玛分布等方法,对9种不同经营模式下的林分直径分布进行拟合,贝塔分布拟合效果较为理想,说明由于受到了人为的干扰破坏,林分结构发生了显著的变化.林分总体混交度均小于0.8,林分结构的均匀程度要优于整齐程度,在样地中封禁保护模式、集约经营模式的均匀度已经十分接近5,也就是接近一般均匀林的程度.  相似文献   

14.
Boreal forests are crucial to climate change predictions because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through more frequent wildfires, warmer, longer growing seasons and potential drainage of forested wetlands. This study aims at quantifying controls over tree transpiration with drainage condition, stand age and species in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 2007 and data were collected through 2008 on 118 trees (69 Picea mariana (Mill.) Britton, Sterns & Poggenb. (black spruce), 25 Populus tremuloides Michx. (trembling aspen), 19 Pinus banksiana Lamb. (jack pine), 3 Larix laricina (Du Roi) K. Koch (tamarack) and 2 Salix spp. (willow)) at four stand ages (18, 43, 77 and 157 years old) each containing a well- and poorly-drained stand. Transpiration estimates from sap flux were expressed per unit xylem area, J(S), per unit ground area, E(C) and per unit leaf area, E(L), using sapwood (A(S)) and leaf (A(L)) area calculated from stand- and species-specific allometry. Soil drainage differences in transpiration were variable; only the 43- and 157-year-old poorly-drained stands had?~?50% higher total stand E(C) than well-drained locations. Total stand E(C) tended to decrease with stand age after an initial increase between the 18- and 43-year-old stands. Soil drainage differences in transpiration were controlled primarily by short-term physiological drivers such as vapor pressure deficit and soil moisture whereas stand age differences were controlled by successional species shifts and changes in tree size (i.e., A(S)). Future predictions of boreal climate change must include stand age, species and soil drainage heterogeneity to avoid biased estimates of forest water loss and latent energy exchanges.  相似文献   

15.
The prediction of the distribution of quantitative variables in a forest stand is of great interest to forest managers, for the evaluation of forest resources and scheduling of future silvicultural treatments. The aim of this research was to model the distribution of quantitative variables for Quercus persica in open forests in Iran. To investigate the probability distribution of trees in natural stands, 642 trees were selected for measurement using a systematic random sampling method. Selected trees were measured and data were analyzed. Gamma, beta, normal,lognormal, exponential and Weibull probability distributions were fitted to the height distribution of trees. Variables of distribution functions were estimated using the maximum likelihood estimation method. Actual probability and probability which derived from functions was compared using Kolmogorov–Smirnov and Anderson–Darling tests. Beta, Weibull and Weibull probability distributions explained the distributions of tree height, DBH and crown area.  相似文献   

16.
An understanding of spatial patterns of plant species diversity and the factors that drive those patterns is critical for the development of appropriate biodiversity management in forest ecosystems. We studied the spatial organization of plant species in human-modified and managed oak forests (primarily, Quercus faginea) in the Central Pre-Pyrenees, Spain. To test whether plant community assemblages varied non-randomly across the spatial scales, we used multiplicative diversity partitioning based on a nested hierarchical design of three increasingly coarser spatial scales (transect, stand, region). To quantify the importance of the structural, spatial, and topographical characteristics of stands in patterning plant species assemblages and identify the determinants of plant diversity patterns, we used canonical ordination. We observed a high contribution of β-diversity to total γ-diversity and found β-diversity to be higher and α-diversity to be lower than expected by random distributions of individuals at different spatial scales. Results, however, partly depended on the weighting of rare and abundant species. Variables expressing the historical management intensities of the stand such as mean stand age, the abundance of the dominant tree species (Q. faginea), age structure of the stand, and stand size were the main factors that explained the compositional variation in plant communities. The results indicate that (1) the structural, spatial, and topographical characteristics of the forest stands have the greatest effect on diversity patterns, (2) forests in landscapes that have different land use histories are environmentally heterogeneous and, therefore, can experience high levels of compositional differentiation, even at local scales (e.g., within the same stand). Maintaining habitat heterogeneity at multiple spatial scales should be considered in the development of management plans for enhancing plant diversity and related functions in human-altered forests.  相似文献   

17.
Large areas of forests in the Pacific Northwest are being transformed to younger forests, yet little is known about the impact this may have on hydrological cycles. Previous work suggests that old trees use less water per unit leaf area or sapwood area than young mature trees of the same species in similar environments. Do old forests, therefore, use less water than young mature forests in similar environments, or are there other structural or compositional components in the forests that compensate for tree-level differences? We investigated the impacts of tree age, species composition and sapwood basal area on stand-level transpiration in adjacent watersheds at the H.J. Andrews Forest in the western Cascades of Oregon, one containing a young, mature (about 40 years since disturbance) conifer forest and the other an old growth (about 450 years since disturbance) forest. Sap flow measurements were used to evaluate the degree to which differences in age and species composition affect water use. Stand sapwood basal area was evaluated based on a vegetation survey for species, basal area and sapwood basal area in the riparian area of two watersheds. A simple scaling exercise derived from estimated differences in water use as a result of differences in age, species composition and stand sapwood area was used to estimate transpiration from late June through October within the entire riparian area of these watersheds. Transpiration was higher in the young stand because of greater sap flux density (sap flow per unit sapwood area) by age class and species, and greater total stand sapwood area. During the measurement period, mean daily sap flux density was 2.30 times higher in young compared with old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Sap flux density was 1.41 times higher in young red alder (Alnus rubra Bong.) compared with young P. menziesii trees, and was 1.45 times higher in old P. menziesii compared with old western hemlock (Tsuga heterophylla (Raf.) Sarg.) trees. Overall, sapwood basal area was 21% higher in the young stand than in the old stand. In the old forest, T. heterophylla is an important co-dominant, accounting for 58% of total sapwood basal area, whereas P. menziesii is the only dominant conifer in the young stand. Angiosperms accounted for 36% of total sapwood basal area in the young stand, but only 7% in the old stand. For all factors combined, we estimated 3.27 times more water use by vegetation in the riparian area of the young stand over the measurement period. Tree age had the greatest effect on stand differences in water use, followed by differences in sapwood basal area, and finally species composition. The large differences in transpiration provide further evidence that forest management alters site water balance via elevated transpiration in vigorous young stands.  相似文献   

18.

This study investigated the stand structure in pine, spruce and deciduous forests in the border district of Finland and Russia. A total of 46 mature forest stands was selected as pairs, the members of each pair being as similar as possible with respect to their forest site type, age, moisture and topography. The stands were then compared between the two countries by means of basal areas and number of stems. The proportions of dominating tree species were 2-12% lower, and correspondingly the proportions of secondary tree species higher, in Russian forests. The density of the forest stock was also higher in each forest type in Russia. The forests in the two countries differed most radically in terms of the abundance of dead trees. The amount was two to four times higher in Russian deciduous and spruce forests, and in pine forests the difference was 10-fold. The stand structures indicated that Russian coniferous stands, in particular, were more heterogeneous than intensively managed pine and spruce stands in Finland.  相似文献   

19.
We quantified structural features and the aboveground biomass of the deciduous conifer, Metasequoia glyptostroboides (Hu and Cheng) in six plantations in central Japan. In order to derive biomass estimates we dissected 14 M. glyptostroboides trees into three structural components (stem wood, branch wood and foliage) to develop allometric equations relating the mass of these components and of the whole tree to diameter at breast height (DBH). We found robust relationships at the branch and whole tree level that allow accurate prediction of component and whole tree biomass. Dominant tree height was similar within five older (>40 years) plantations (27–33 m) and shorter in a 20-year-old plantation (18 m). Average stem diameter varied from 12.8 cm in the youngest stand to greater than 35 cm in the oldest stand.

Metasequoia have relatively compact crowns distributed over the top 30% of the tree although the youngest stand had the deepest crown relative to tree height (up to 38%). At the individual tree level in older stands, 87% of the aboveground biomass was allocated to the stem, 9% to branch wood and 4% to foliage. We found little difference in the relative distribution of above ground biomass among the stands with the exception of lower foliage biomass in larger diameter trees. Total aboveground biomass of the older stands varied twofold, ranging from a maximum of 450 Mg ha−1 in a 42-year-old stand to a minimum of 196 Mg ha−1 in a 48-year-old stand. Total above ground biomass of the 20-year-old stand was 176 Mg ha−1.  相似文献   


20.
We modeled cavity tree abundance on a landscape as a function of forest stand age classes and as a function of aggregate stand size classes. We explored the impact of five timber harvest regimes on cavity tree abundance on a 3261 ha landscape in southeast Missouri, USA, by linking the stand level cavity tree distribution model to the landscape age structure simulated by the LANDIS model. Over 100 years, mean cavity tree density increased constantly under all timber harvest regimes except for even-aged intensive management. This was due in large part to the continued maturation of the numerous stands that were >70 years old at the start of the simulations. However, compared to the no harvest (control) regime, the uneven-aged, the mixed, the even-aged long rotation, and the even-aged intensive harvest regimes reduced the cavity tree density by 9–11, 11–13, 15–18, and 28–34%, respectively, as more old stands were cut. Forest managers and planners can use this information to evaluate the practical consequences of alternative timber harvest regimes and consider the need for activities such as cavity tree retention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号