首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Deformation on nearby faults induced by the 1999 Hector Mine earthquake   总被引:3,自引:0,他引:3  
Interferometric Synthetic Aperture Radar observations of surface deformation due to the 1999 Hector Mine earthquake reveal motion on several nearby faults of the eastern California shear zone. We document both vertical and horizontal displacements of several millimeters to several centimeters across kilometer-wide zones centered on pre-existing faults. Portions of some faults experienced retrograde (that is, opposite to their long-term geologic slip) motion during or shortly after the earthquake. The observed deformation likely represents elastic response of compliant fault zones to the permanent co-seismic stress changes. The induced fault displacements imply decreases in the effective shear modulus within the kilometer-wide fault zones, indicating that the latter are mechanically distinct from the ambient crustal rocks.  相似文献   

2.
Two recent large earthquakes in the Mojave Desert, California-the magnitude 7.3 1992 Landers and magnitude 7.1 1999 Hector Mine earthquakes-have each been followed by elevated crustal strain rates over periods of months and years. Geodetic data collected after the Hector Mine earthquake exhibit a temporally decaying horizontal velocity field and a quadrant uplift pattern opposite to that expected for localized shear beneath the earthquake rupture. We interpret the origin of this accelerated crustal deformation to be vigorous flow in the upper mantle in response to the stress changes generated by the earthquake. Our results suggest that transient flow in the upper mantle is a fundamental component of the earthquake cycle and that the lower crust is a coherent stress guide coupling the upper crust with the upper mantle.  相似文献   

3.
The Landers earthquake, which had a moment magnitude (M(w)) of 7.3, was the largest earthquake to strike the contiguous United States in 40 years. This earthquake resulted from the rupture of five major and many minor right-lateral faults near the southern end of the eastern California shear zone, just north of the San Andreas fault. Its M(w) 6.1 preshock and M(w) 6.2 aftershock had their own aftershocks and foreshocks. Surficial geological observations are consistent with local and far-field seismologic observations of the earthquake. Large surficial offsets (as great as 6 meters) and a relatively short rupture length (85 kilometers) are consistent with seismological calculations of a high stress drop (200 bars), which is in turn consistent with an apparently long recurrence interval for these faults.  相似文献   

4.
The 2001 Kunlunshan earthquake was an extraordinary event that produced a 400-km-long surface rupture. Regional broadband recordings of this event provide an opportunity to accurately observe the speed at which a fault ruptures during an earthquake, which has important implications for seismic risk and for understanding earthquake physics. We determined that rupture propagated on the 400-km-long fault at an average speed of 3.7 to 3.9 km/s, which exceeds the shear velocity of the brittle part of the crust. Rupture started at sub-Rayleigh wave velocity and became supershear, probably approaching 5 km/s, after about 100 km of propagation.  相似文献   

5.
Changes in the ground elevation observed before and immediately after the 1971 San Fernando, California, earthquake are consistent with a theoretical model in which fault zone rocks are strain-softening after peak stress. The model implies that the slip rate of the fault increased to aboul 0.1 meter per year near the focus before the earthquake.  相似文献   

6.
Stein RS  King GC  Lin J 《Science (New York, N.Y.)》1994,265(5177):1432-1435
A model of stress transfer implies that earthquakes in 1933 and 1952 increased the Coulomb stress toward failure at the site of the 1971 San Fernando earthquake. The 1971 earthquake in turn raised stress and produced aftershocks at the site of the 1987 Whittier Narrows and 1994 Northridge ruptures. The Northridge main shock raised stress in areas where its aftershocks and surface faulting occurred. Together, the earthquakes with moment magnitude M >/= 6 near Los Angeles since 1933 have stressed parts of the Oak Ridge, Sierra Madre, Santa Monica Mountains, Elysian Park, and Newport-lnglewood faults by more than 1 bar. Although too small to cause earthquakes, these stress changes can trigger events if the crust is already near failure or advance future earthquake occurrence if it is not.  相似文献   

7.
An experiment in earthquake control at rangely, colorado   总被引:6,自引:0,他引:6  
An experiment in an oil field at Rangely, Colorado, has demonstrated the feasibility of earthquake control. Variations in seismicity were produced by controlled variations in the fluid pressure in a seismically active zone. Precise earthquake locations revealed that the earthquakes clustered about a fault trending through a zone of high pore pressure produced by secondary recovery operations. Laboratory measurements of the frictional properties of the reservoir rocks and an in situ stress measurement made near the earthquake zone were used to predict the fluid pressure required to trigger earthquakes on preexisting fractures. Fluid pressure was controlled by alternately injecting and recovering water from wells that penetrated the seismic zone. Fluid pressure was monitored in observation wells, and a computer model of the reservoir was used to infer the fluid pressure distributions in the vicinity of the injection wells. The results of this experiment confirm the predicted effect of fluid pressure on earthquake activity and indicate that earthquakes can be controlled wherever we can control the fluid pressure in a fault zone.  相似文献   

8.
We have estimated the stress field before the 1995 Kobe, Japan, earthquake (moment magnitude 6.9) using in situ post-shock stress measurements obtained from hydraulic fracturing experiments near the fault. We reconstructed the pre-shock stress field using a kinematic source model inverted from seismic waveforms and geodetic deformations. We found that at the center of the fault, two sides of the fault surface coupled completely before the earthquake, with a coefficient of friction of 0.6, which is equivalent to strong crust. At the edge of the fault, a possible aseismic slip is expected to occur from the pre-shock stress orientation.  相似文献   

9.
Seismological investigations show that the Point Mugu earthquake involved north-south crustal shortening deep within the complex fault zone that marks the southern front of the Transverse Ranges province. This earthquake sequence results from the same stress system responsible for the deformation in this province in the Pliocene through Holocene and draws attention to the significant earthquake hazard that the southern frontal fault system poses to the Los Angeles metropolitan area.  相似文献   

10.
Conspicuous changes in gas composition were observed at a fumarole and a mineral spring just before the occurrence of an inland earthquake (magnitude, 6.8) in central Japan in September 1984; the fumarole and spring were 9 and 50 kilometers, respectively, from the earthquake's epicenter. Deep-seated fluids emitted as a result of the compressional stress of the earth tide had been observed previously at this mineral spring and at a lava lake in Hawaii. By analogy, the gas anomaly observed before the earthquake in Japan probably resulted from deepseated fluids being squeezed to the surface by the tectonic stress that caused the earthquake.  相似文献   

11.
Wyss M  Wiemer S 《Science (New York, N.Y.)》2000,290(5495):1334-1338
The Landers earthquake in June 1992 redistributed stress in southern California, shutting off the production of small earthquakes in some regions while increasing the seismicity in neighboring regions, up to the present. This earthquake also changed the ratio of small to large events in favor of more small earthquakes within about 100 kilometers of the epicenter. This implies that the probabilistic estimate for future earthquakes in southern California changed because of the Landers earthquake. The location of the strongest increase in probability for large earthquakes in southern California was the volume that subsequently produced the largest slip in the magnitude 7.1 Hector Mine earthquake of October 1999.  相似文献   

12.
The magnitude 7.3 Landers earthquake of 28 June 1992 triggered a remarkably sudden and widespread increase in earthquake activity across much of the western United States. The triggered earthquakes, which occurred at distances up to 1250 kilometers (17 source dimensions) from the Landers mainshock, were confined to areas of persistent seismicity and strike-slip to normal faulting. Many of the triggered areas also are sites of geothermal and recent volcanic activity. Static stress changes calculated for elastic models of the earthquake appear to be too small to have caused the triggering. The most promising explanations involve nonlinear interactions between large dynamic strains accompanying seismic waves from the mainshock and crustal fluids (perhaps including crustal magma).  相似文献   

13.
Recent earthquake prediction research in Japan   总被引:1,自引:0,他引:1  
Mogi K 《Science (New York, N.Y.)》1986,233(4761):324-330
Japan has experienced many major earthquake disasters in the past. Early in this century research began that was aimed at predicting the occurrence of earthquakes, and in 1965 an earthquake prediction program was started as a national project. In 1978 a program for constant monitoring and assessment was formally inaugurated with the goal of forecasting the major earthquake that is expected to occur in the near future in the Tokai district of central Honshu Island. The issue of predicting the anticipated Tokai earthquake is discussed in this article as well as the results of research on major recent earthquakes in Japan-the Izu earthquakes (1978 and 1980) and the Japan Sea earthquake (1983).  相似文献   

14.
Stein RS  King GC  Lin J 《Science (New York, N.Y.)》1992,258(5086):1328-1332
The 28 June Landers earthquake brought the San Andreas fault significantly closer to failure near San Bernardino, a site that has not sustained a large shock since 1812. Stress also increased on the San Jacinto fault near San Bernardino and on the San Andreas fault southeast of Palm Springs. Unless creep or moderate earthquakes relieve these stress changes, the next great earthquake on the southern San Andreas fault is likely to be advanced by one to two decades. In contrast, stress on the San Andreas north of Los Angeles dropped, potentially delaying the next great earthquake there by 2 to 10 years.  相似文献   

15.
The sliding resistance of faults during earthquakes is a critical unknown in earthquake physics. The friction coefficient of rocks at slow slip rates in the laboratory ranges from 0.6 to 0.85, consistent with measurements of high stresses in Earth's crust. Here, we demonstrate that at fast, seismic slip rates, an extraordinary reduction in the friction coefficient of crustal silicate rocks results from intense "flash" heating of microscopic asperity contacts and the resulting degradation of their shear strengths. Values of the friction coefficient due to flash heating could explain the lack of an observed heat flow anomaly along some active faults such as the San Andreas Fault. Nearly pure velocity-weakening friction due to flash heating could explain how earthquake ruptures propagate as self-healing slip pulses.  相似文献   

16.
The 1989 Loma Prieta, California, earthquake perturbed the static stress field over a large area of central California. The pattern of stress changes on major faults in the region predicted by models of the earthquake's dislocation agrees closely with changes in the regional seismicity rate after the earthquake. The agreement is best for models with low values of the coefficient of friction (0.1 相似文献   

17.
As surface waves from the 26 December 2004 earthquake in Sumatra swept across Alaska, they triggered an 11-minute swarm of 14 local earthquakes near Mount Wrangell, almost 11,000 kilometers away. Earthquakes occurred at intervals of 20 to 30 seconds, in phase with the largest positive vertical ground displacements during the Rayleigh surface waves. We were able to observe this correlation because of the combination of unusually long surface waves and seismic stations near the local earthquakes. This phase of Rayleigh wave motion was dominated by horizontal extensional stresses reaching 25 kilopascals. These observations imply that local events were triggered by simple shear failure on normal faults.  相似文献   

18.
Frictional melting during the rupture of the 1994 bolivian earthquake   总被引:1,自引:0,他引:1  
The source parameters of the 1994 Bolivian earthquake (magnitude Mw = 8.3) suggest that the maximum seismic efficiency eta was 0.036 and the minimum frictional stress was 550 bars. Thus, the source process was dissipative, which is consistent with the observed slow rupture speed, only 20% of the local S-wave velocity. The amount of nonradiated energy produced during the Bolivian rupture was comparable to, or larger than, the thermal energy of the 1980 Mount St. Helens eruption and was sufficient to have melted a layer as thick as 31 centimeters. Once rupture was initiated, melting could occur, which reduces friction and promotes fault slip.  相似文献   

19.
Nur A  Ron H  Beroza GC 《Science (New York, N.Y.)》1993,261(5118):201-203
The Landers, California, earthquake of 28 June 1992 (magnitude = 7.3) is the latest of six significant earthquakes in the past 60 years whose epicenters and slip directions define a 100-kilometer alignment running approximately N15 degrees W across the central Mojave region. This pattern may indicate a geologically young throughgoing fault that replaces numerous older strike-slip faults by obliquely cutting across them. These older faults, and perhaps also the bend in the San Andreas fault, may be losing their ability to accommodate upper crustal deformation because they have become unfavorably oriented with respect to the regional stress field.  相似文献   

20.
By using seismic records of the 2004 magnitude 6.0 Parkfield earthquake, we identified a burst of high-frequency seismic radiation that occurred about 13 kilometers northwest of the hypocenter and 5 seconds after rupture initiation. We imaged this event in three dimensions by using a waveform back-projection method, as well as by timing distinct arrivals visible on many of the seismograms. The high-frequency event is located near the south edge of a large slip patch seen in most seismic and geodetic inversions, indicating that slip may have grown abruptly at this point. The time history obtained from full-waveform back projection suggests a rupture velocity of 2.5 kilometers per second. Energy estimates for the subevent, together with long-period slip inversions, indicate a lower average stress drop for the northern part of the Parkfield earthquake compared with that for the region near its hypocenter, which is in agreement with stress-drop estimates obtained from small-magnitude aftershocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号