首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
很多木材细胞中含有少量的二氧化硅、草酸钙、碳酸钙等无机晶体,这些无机物质在木材中起到了提高木材本身机械强度、物理强度,克服木材自身缺陷(如:易腐性、易燃性、尺寸不稳定性、各向异性、变异性、不耐候性)等优点,在结构上这些无机物质与其木材本身构成了一种复合材料,即木材—无机质复合材料.随着材料科学的进步和发展,材料复合化已成为当代材料科学发展的前沿.生物矿化采用有生命的活立木为研究对象,将研究对象从“死”细胞变为“活”材料,为木材传统改性向木材生物改性发展找到了一个契入点.所以要实现木材/无机质生物矿化复合材料的人工模拟,大量地开发该新型材料,其关键还是探讨木材中无机硅石的分布、形态、以及含量等相关情况,从而获取生物矿化所形成的木材/无机质结构复合材料的形成机理,以此来指导木材的生物改性或木材/无机复合材的仿生模拟.因此文中主要对生物矿化木材中矿物质的形状、分布及其含量进行了探讨,以便成功地进行木材/无机质复合材料生物矿化的人工模拟.  相似文献   

2.
We have synthesized inorganic micron-sized filaments, whose microstucture consists of silica-coated nanometer-sized carbonate crystals, arranged with strong orientational order. They exhibit noncrystallographic, curved, helical morphologies, reminiscent of biological forms. The filaments are similar to supposed cyanobacterial microfossils from the Precambrian Warrawoona chert formation in Western Australia, reputed to be the oldest terrestrial microfossils. Simple organic hydrocarbons, whose sources may also be abiotic and indeed inorganic, readily condense onto these filaments and subsequently polymerize under gentle heating to yield kerogenous products. Our results demonstrate that abiotic and morphologically complex microstructures that are identical to currently accepted biogenic materials can be synthesized inorganically.  相似文献   

3.
A synthetic pathway is described to construct "in bulk" two-dimensional (2D) polymers shaped as molecular sheets. A chiral oligomeric precursor is used that contains two reactive sites, a polymerizable group at one terminus and a reactive stereogenic center near the middle of the molecule. The bulk reaction yields bilayer 2D polymers of molecular weight in the order of millions and a monodisperse thickness of 50.2 angstroms. The 2D molecular objects form through molecular recognition by the oligomers, which self-organize into layers that place the reactive groups within specific planes. The oligomers become catenated by two different stitching reactions involving the reactive sites. At room temperature, stacks of these molecular objects can organize as single crystals and at higher temperatures melt into smectic liquid crystals. Nonlinear optical experiments reveal that solid films containing the 2D polymers form structures that are thermally and temporally more stable than those containing analogous 1D polymers. This observation suggests that the transformation of common polymers from a 1D to a 2D architecture may produce generations of organic materials with improved properties.  相似文献   

4.
The current state of materials development in nonlinear optics is summarized, and the promise of these materials is critically evaluated. Properties and important materials constants of current commercial materials and of new, promising, inorganic and organic molecular and polymeric materials with potential in second- and third-order nonlinear optical applications are presented.  相似文献   

5.
The high crystallinity of many inorganic materials allows their band structures to be determined through angle-resolved photoemission spectroscopy (ARPES). Similar studies of conjugated organic molecules of interest in optoelectronics are often hampered by difficulties in growing well-ordered and well-oriented crystals or films. We have grown crystalline films of uniaxially oriented sexiphenyl molecules and obtained ARPES data. Supported by density-functional calculations, we show that, in the direction parallel to the principal molecular axis, a quasi-one-dimensional band structure of a system of well-defined finite size develops out of individual molecular orbitals. In contrast, perpendicular to the molecules, the band structure reflects the periodicity of the molecular crystal, and continuous bands with a large dispersion were observed.  相似文献   

6.
Detailed knowledge of the structure and dynamics of the materials that make up the earth is necessary for fundamental understanding of most geological processes. Nuclear magnetic resonance spectroscopy is beginning to play an important role in investigations of inorganic solid materials, as well as of liquids and organic compounds; it has already contributed substantially to our knowledge of minerals and rocks, compositionally simplified analogs of magmas, and the surfaces of silicate crystals. The technique is particularly useful for determining local structure and ordering state in crystals, glasses, and liquids, and is sensitive to atomic motion at the time scales of diffusion and viscosity in silicates. New techniques offer promise for increased resolution for quadrupolar nuclei and for extension of experiments to high temperature and pressure.  相似文献   

7.
We report a nanoscale "lost-wax" method for forming colloids with size distributions around 5% and their corresponding colloidal crystals. Macroporous polymer templates are first prepared from a silica colloidal crystal. We then use the uniform and interconnected voids of the porous polymer to generate a wide variety of highly monodisperse inorganic, polymeric, and metallic solid and core-shell colloids, as well as hollow colloids with controllable shell thickness, as colloidal crystals. We can also uniformly deform the polymer template to alter colloidal shape and demonstrate the formation of elliptical particles with precisely controlled aspect ratios.  相似文献   

8.
High-quality crystals of the organic molecular semiconductors tetracene and pentacene were used to prepare metal-insulator-semiconductor (MIS) structures exhibiting hole and electron mobilities exceeding 10(4) square centimeters per volt per second. The carrier concentration in the channel region of these ambipolar field-effect devices was controlled by the applied gate voltage. Well-defined Shubnikov-de Haas oscillations and quantized Hall plateaus were observed for two-dimensional carrier densities in the range of 10(11) per square centimeter. Fractional quantum Hall states were observed in tetracene crystals at temperatures as high as approximately 2 kelvin.  相似文献   

9.
Zeolites are crystalline nanoporous aluminosilicates widely used in industry. In order for zeolites to find applications as innovative materials, they need to be organized into large two- and three-dimensional (2D and 3D) arrays. We report that uniformly aligned polyurethane films can serve as templates for the synthesis of uniformly aligned 2D and possibly 3D arrays of silicalite-1 crystals, in which the orientations of the crystals are controlled by the nature of the polymers. We propose that the supramolecularly organized organic-inorganic composites that consist of the hydrolyzed organic products and the seed crystals are responsible for this phenomenon.  相似文献   

10.
Microstructured particles were synthesized by growing colloidal crystals in aqueous droplets suspended on fluorinated oil. The droplets template highly ordered and smooth particle assemblies, which diffract light and have remarkable structural stability. The method allows control of particle size and shape from spheres through ellipsoids to toroids by varying the droplet composition. Cocrystallization in colloidal mixtures yields anisotropic particles of organic and inorganic materials that can, for example, be oriented and turned over by magnetic fields. The results open the way to controllable formation of a wide variety of microstructures.  相似文献   

11.
Biological matrices can direct the absolute alignment of inorganic crystals such as calcite. Cooperative effects at an organic-inorganic interface resulted in similar co-alignment of calcite at polymeric Langmuir-Schaefer films of 10,12-pentacosadiynoic acid (p-PDA). The films nucleated calcite at the (012) face, and the crystals were co-aligned with respect to the polymer's conjugated backbone. At the same time, the p-PDA alkyl side chains reorganized to optimize the stereochemical fit to the calcite structure, as visualized by changes in the optical spectrum of the polymer. These results indicate the kinds of interactions that may occur in biological systems where large arrays of crystals are co-aligned.  相似文献   

12.
Some of the current directions of scientific research on electrically conducting organic solids are reviewed. Both molecular charge transfer salts and polymers are included, with emphasis on the present level of understanding of the novel solid-state properties of these materials in terms of their chemistry and structure. For the charge transfer salts the various types of metal-to-insulator phase transitions which dominate the properties of most of these materials are discussed. Also described are the superconducting and magnetic states which have been found recently. In the case of the polymers the chemistry and physics of the conduction mechanism is examined and contrasted with that of their classical inorganic counterparts.  相似文献   

13.
Microbial polysaccharides template assembly of nanocrystal fibers   总被引:3,自引:0,他引:3  
Biological systems can produce extraordinary inorganic structures and morphologies. The mechanisms of synthesis are poorly understood but are of great interest for engineering novel materials. We use spectromicroscopy to show that microbially generated submicrometer-diameter iron oxyhydroxide (FeOOH) filaments contain polysaccharides, providing an explanation for the formation of akaganeite pseudo-single crystals with aspect ratios of approximately 1000:1. We infer that the cells extrude the polysaccharide strands to localize FeOOH precipitation in proximity to the cell membrane to harness the proton gradient for energy generation. Characterization of organic compounds with high spatial resolution, correlated with mineralogical information, should improve our understanding of biomineralization mechanisms.  相似文献   

14.
Micropatterning of single crystals for technological applications is a complex, multistep process. Nature provides alternative fabrication strategies, when crystals with exquisite micro-ornamentation directly develop within preorganized frameworks. We report a bio-inspired approach to growing large micropatterned single crystals. Micropatterned templates organically modified to induce the formation of metastable amorphous calcium carbonate were imprinted with calcite nucleation sites. The template-directed deposition and crystallization of the amorphous phase resulted in the fabrication of millimeter-sized single calcite crystals with sub-10-micron patterns and controlled crystallographic orientation. We suggest that in addition to regulating the shape, micropatterned frameworks act as sites for stress and impurity release during the amorphous-to-crystalline transition. The proposed mechanisms may have direct biological relevance and broad implications in materials synthesis.  相似文献   

15.
Epitaxy is a widely used method to grow high-quality crystals. One of the key challenges in the field of inorganic solids is the development of epitaxial single-crystal nanostructures. We describe their formation from block copolymer self-assembly-directed nanoporous templates on single-crystal Si backfilled with Si or NiSi through a laser-induced transient melt process. Depending on thickness, template removal leaves either an array of nanopillars or porous nanostructures behind. For stoichiometric NiSi deposition, the template pores provide confinement, enabling heteroepitaxial growth. Irradiation through a mask provides access to hierarchically structured materials. These results on etchable and non-etchable materials suggest a general strategy for growing epitaxial single-crystal nanostructured thin films for fundamental studies and a wide variety of applications, including energy conversion and storage.  相似文献   

16.
Computer-assisted physics can be considered the third approach besides experimental and theoretical physics. Numerical simulations are especially useful in the study of non-crystalline materials such as liquids, glasses, amorphous solids, and liquid crystals. Some applications of computer simulations to these materials are discussed.  相似文献   

17.
Protein crystal growth in microgravity   总被引:3,自引:0,他引:3  
The crystals of most proteins or other biological macromolecules are poorly ordered and diffract to lower resolutions than those observed for most crystals of simple organic and inorganic compounds. Crystallization in the microgravity environment of space may improve crystal quality by eliminating convection effects near growing crystal surfaces. A series of 11 different protein crystal growth experiments was performed on U.S. space shuttle flight STS-26 in September 1988. The microgravity-grown crystals of gamma-interferon D1, porcine elastase, and isocitrate lyase are larger, display more uniform morphologies, and yield diffraction data to significantly higher resolutions than the best crystals of these proteins grown on Earth.  相似文献   

18.
Precise information about the molecular structure, stereochemistry, and environment of paramagnetic species can be obtained by electron nuclear double resonance (ENDOR) spectroscopy. This technique has been applied in a wide range of disciplines to liquid-phase, single-crystal, and powder samples. In some cases-the study of defects in ionic single crystals, for instance-the volume and complexity of data obtained by ENDOR can hinder interpretation. Such difficulties have been overcome by the use of supplemental ENDOR techniques that simplify the assignment of ENDOR lines. The increased use of computers for the automation of instrumentation, the design of experiments, and the analysis of data has made possible the study of a wider range of problems. With these improvements, as well as with the increased sensitivity provided by optically detected ENDOR, it is now feasible to study polycrystalline and amorphous materials, such as thin-film semiconductors and biological samples in vivo.  相似文献   

19.
Diamond or cubic boron nitride particles can be sintered into strong masses at high temperatures and very high pressures at which these crystalline forms are stable. Most of the desirable physical properties of the sintered masses, such as hardness and thermal conductivity, approach those of large single crystals; their resistance to wear and catastrophic splitting is superior. The sintered masses are produced on a commercial scale and are increasingly used as cutting tools on hard or abrasive materials, as wire-drawing dies, in rock drills, and in special high-pressure apparatus.  相似文献   

20.
Closed-shell carbon nanostructures, such as carbon onions, have been shown to act as self-contracting high-pressure cells under electron irradiation. We report that controlled irradiation of multiwalled carbon nanotubes can cause large pressure buildup within the nanotube cores that can plastically deform, extrude, and break solid materials that are encapsulated inside the core. We further showed by atomistic simulations that the internal pressure inside nanotubes can reach values higher than 40 gigapascals. Nanotubes can thus be used as robust nanoscale jigs for extruding and deforming hard nanomaterials and for modifying their properties, as well as templates for the study of individual nanometer-sized crystals under high pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号