首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lunar mare basalt 15555 from the edge of Hadley Rille has been dated at 3.3x10(9) years by both rubidium-strontium and potassium-argon techniques. Age and trace element abundances closely resemble those of the Apollo 12 mare basalts. Data from lunar basalts obtained thus far indicate that they cannot be derived by simple fractionation from a homogeneous source.  相似文献   

2.
An age of 3.33+/-0.05x10(9) years was obtained for Apollo 15 sample 15555 by argon40-argon-39 dating. The age of rock 15555, a basalt from the rim of Hadley Rille, establishes an upper limit to the age of the rille. The basalt flows filling the Hadley Rille section of the Imbrium basin postdate the formation of the basin-as measured by the Apollo 14 samples of the Fra Mauro formation-by at least 500x10(6) years. Therefore, the mare basalts cannot be simple impact melts but rather must result from some igneous activity on the moon.  相似文献   

3.
Two basalts, two breccias, and two soils from Apollo 15 were analyzed by nondestructive gamma-ray spectrometry. The concentrations of potassium, thorium, and uranium in the basalts were similar to those in the Apollo 12 basalts, but the potassium: uranium ratios were somewhat higher. Primordial radioelements were enriched in the soils and breccia, consistent with a two-component mixture of mare basalt and up to 20 percent foreign component (KREEP). The abundance patterns for cosmogenic radionuclides implied surface sampling for all specimens. The galactic cosmic-ray production rate of vanadium-48 was determined as 57 +/- 11 disintegrations per minute per kilogram of iron. Cobalt-56 concentrations were used to estimate the intensity of the solar flare of 25 January 1971.  相似文献   

4.
A neuttron activation scheme for determining 25 elements in lunar samples weighing 20 milligrams is described and applied to a suite of Apollo 11 lunar materials. Concentrations of titanium, chromium, scandium, tantalum, hafnium, and rare earths are higher than in avercage basalt, whereas cobalt, nickel, and copper are lower. Chemical variations show groupings of elements possibly associated with the major phases, pyroxene, plagioclase, and ilmenite. The high concentration of "refractory oxides" and low volatile content implies that the raw material for the Apollo 11 samples was condensed from the primitive solar nebula at high temperatures.  相似文献   

5.
Concentrations of potassium, rubidium, strontium, barium, and rareearth elements have been determined by mass spectrometric isotope dilution for eight Apollo 11 lunar samples and for some separated phases. Potassiumn and ritbidium are at chondritic levels, strontium at 15 times, and barium and rare earths at 30 to 100 times chondritic levels. There are trace element similarities between the lunar samples and basaltic achondrites, terrestrial dredge basalts and the bulk earth. The trace element data appear to be consistent with these lunar samples being the result of limited partial fusion of some material similar to the brecciated eucrite meteorites.  相似文献   

6.
Elemental abundances of major (Ti, Al, Fe, and Ca), minor (Na, Mn, and Cr), and trace elements [14 rare-earth elements (REE), Y, In, Cd, Rb, Cs, Ba, Co, and Sc] in lunar anorthosites separated from Apollo 11 sample 10085 coarse fines have been determined by means of instrumental and radiochemical neutron activation analysis. The REE distribution pattern of lunar anorthosites, relative to ordinary chondrites, has a positive Eu anomaly. On the assumption that (i) the lunar composition is similar to that of ordinary chondritic meteorites low in total Fe ( approximately 13 percent); (ii) lunar anorthosites are derived from highland cratering events and are representative of the highlands; and (iii) the moon differentiated into olivine, hypersthene, and basaltic and anorthositic phases, and plagioclase crysstallization began after approximately 93 percent solidification, then mass balance calculations yield approximately 30-kilometer and approximately 10-kilometer thicknesses for the lunar highlands for the melting and chemical differentiation of the entire moon and of the upper 200 kilometers, respectively. Corresponding thicknesses of the basaltic basement rocks were approximately 5 kilometers and approximately 2 kilometers, respectively. Alternatively, if the anorthosites of this study are representative of the highlands and the onset of plagioclase crystallization occurred after approximately 50 percent solidification of the initially melted moon, calculations with REE and Ba partition coefficients suggest that the REE and Ba abundances in the primeval moon were similar to those observed in basaltic achondrites.  相似文献   

7.
The major findings of the preliminary examination of the lunar samples are as follows: 1) The samples from Fra Mauro base may be contrasted with those from Tranquillity base and the Ocean of Storms in that about half the Apollo 11 samples consist of basaltic rocks, and all but three Apollo 12 rocks are basaltic, whereas in the Apollo 14 samples only two rocks of the 33 rocks over 50 grams have basaltic textures. The samples from Fra Mauro base consist largely of fragmental rocks containing clasts of diverse lithologies and histories. Generally the rocks differ modally from earlier lunar samples in that they contain more plagioclase and contain orthopyroxene. 2) The Apollo 14 samples differ chemically from earlier lunar rocks and from their closest meteorite and terrestrial analogs. The lunar material closest in composition is the KREEP component (potassium, rare earth elements, phosphorus), "norite," "mottled gray fragments" (9) from the soil samples (in particular, sample 12033) from the Apollo 12 site, and the dark portion of rock 12013 (10). The Apollo 14 material is richer in titanium, iron, magnesium, and silicon than the Surveyor 7 material, the only lunar highlands material directly analyzed (11). The rocks also differ from the mare basalts, having much lower contents of iron, titanium, manganese, chromium, and scandium and higher contents of silicon, aluminum, zirconium, potassium, uranium, thorium, barium, rubidium, sodium, niobium, lithium, and lanthanum. The ratios of potassium to uranium are lower than those of terrestrial rocks and similar to those of earlier lunar samples. 3) The chemical composition of the soil closely resembles that of the fragmental rocks and the large basaltic rock (sample 14310) except that some elements (potassium, lanthanum, ytterbium, and barium) may be somewhat depleted in the soil with respect to the average rock composition. 4) Rocks display characteristic surface features of lunar material (impact microcraters, rounding) and shock effects similar to those observed in rocks and soil from the Apollo 11 and Apollo 12 missions. The rocks show no evidence of exposure to water, and their content of metallic iron suggests that they, like the Apollo 11 and Apollo 12 material, were formed and have remained in an environment with low oxygen activity. 5) The concentration of solar windimplanted material in the soil is large, as was the case for Apollo 11 and Apollo 12 soil. However, unlike previous fragmental rocks, Apollo 14 fragmental rocks possess solar wind contents ranging from approximately that of the soil to essentially zero, with most rocks investigated falling toward one extreme of this range. A positive correlation appears to exist between the solar wind components, carbon, and (20)Ne, of fragmental rocks and their friability (Fig. 12). 6) Carbon contents lie within the range of carbon contents for Apollo 11 and Apollo 12 samples. 7) Four fragmental rocks show surface exposure times (10 x 10(6) to 20 x 10(6) years) about an order of magnitude less than typical exposure times of Apollo 11 and Apollo 12 rocks. 8) A much broader range of soil mechanics properties was encountered at the Apollo 14 site than has been observed at the Apollo 11, Apollo 12, and Surveyor landing sites. At different points along the traverses of the Apollo 14 mission, lesser cohesion, coarser grain size, and greater resistance to penetration was found than at the Apollo 11 and Apollo 12 sites. These variations are indicative of a very complex, heterogeneous deposit. The soils are more poorly sorted, but the range of grain size is similar to those of the Apollo 11 and Apollo 12 soils. 9) No evidence of biological material has been found in the samples to date.  相似文献   

8.
Four core and soil samples from Apollo 12 are enriched in a number of trace elements of meteoritic origin to virtually the same degree as Apollo 11 soil. An average meteoritic influx rate of about 4 x 10(-9) gram per square centimeter per year thus seems to be valid for the entire moon. A sample from a light gray, coarse-grained layer in the core resembles lunar basalts in composition, but is enriched by factors of 10(4) to 10(5) in bismuth and cadmium.  相似文献   

9.
Ten Apollo 11 specimnens were divided into 24 samtples. Sodillim contents of 8 diverse specimens clluster tightly abolit 0.3 percent. Plagioclase separated from sample 10044 contains aboltt 1.09 percent Na; barium is not enriched in the plagioclase separate. Contents of the rare earths are strikingly high, and relative abtmndances resemble those of calcium-rich achondrites or abyssal basalts but are depleted in Eu by factors of 2 to 3 and in La by about 20 percent. The plagioclase separate is enriched in Eu and pyroxenes (and opaqtte minerals are Eu-depleted. Fine fractions of 10044 are abotit 20 to 40 percent richer in most rare earths (50 percent for Eu) than coarse fractions, probably becaitse of the presence of small grains in which rare earths are mnarkedly concentrated. "Microgabbro" 10045 is imnpoverished, relative to the soil, in rare eartlhs and Hf. Ratios by mass of Zr to Hf are comlparatively low. Abttndances of Mn, Co, Fe, Sc and Cr stiggest systematic differences between igneous rocks on one hanid and breccias and "soil" on the other. Fromn the Co abuindances, no more than about 3 percent of the present "soil" can consist of chondritic mleteorite conitamination.  相似文献   

10.
An experiment-based model for the petrogenesis of high-alumina basalts   总被引:1,自引:0,他引:1  
To understand magmatism at convergent margins, one must know the origin of their characteristic, plagioclase-rich, high-alumina basalts (HABs). Wet melting experiments on basalts at 3 kilobars yielded high-alumina liquids and a coexisting mineral assemblage with little or no plagioclase. An isothermal pressure drop to 1 kilobar caused 20 to 30 percent plagioclase crystallization in these melts, while mafic minerals underwent limited crystallization or even resorption. These results suggest that hydrous (>/=4 percent H(2)O) HAB liquids, presumably formed by fractionation of a hydrous basalt at depth, will precipitate voluminous plagioclase as pressure drops during ascent and eruption. Plagioclase accumulation is not necessarily required to explain the petrogenesis of plagioclase-rich HAB.  相似文献   

11.
The preliminary characterization of the rocks and soils returned from the Apollo 16 site has substantiated the inference that the lunar terra are commonly underlain by plagioclase-rich or anorthositic rocks. No evidence has been found for volcanic rocks underlying the regolith in the Apollo 16 region. In their place, we have found anorthositic rocks that are thoroughly modified by crushing and partial melting. The textural and chemical variations in these rocks provide some evidence for the existence of anorthositic complexes that have differentiated on a scale of tens to hundreds of meters. The occurrence of deep-seated or plutonic rocks in place of volcanic or pyroclastic materials at this site suggests that the inference from physiographic evidence that the latter materials are widespread in terra regions may be incorrect. Several additional, more specific conclusions derived from this preliminary examination are: 1) The combination of data from the Descartes region with data from the orbital x-ray fluorescence experiment indicates that some backside, highland regions are underlain by materials that consist of more than 80 percent plagioclase. 2) The soil or upper regolith between North Ray and South Ray has not been completely homogenized since the time of formation of these craters. 3) The chemistry of the soil indicates that rocks rich in potassium, uranium, and thorium, similar to those that prevail at the Fra Mauro site, are relatively abundant (10 to 20 percent) in the Descartes region. 4) The K/U ratio of the lunar crust is similar to that of the KREEP basalts. 5) The carbon content of the premare lunar crust is even lower than that of the mare volcanic rocks.  相似文献   

12.
Hotspots, basalts, and the evolution of the mantle   总被引:2,自引:0,他引:2  
The trace element concentration patterns of continental and ocean island basalts and of mid-ocean ridge basalts are complementary. The relative sizes of the source regions for these fundamentally different basalt types can be estimated from the trace element enrichment-depletion patterns. Their combined volume occupies most of the mantle above the 670 kilometer discontinuity. The source regions separated as a result of early mantle differentiation and crystal fractionation from the resulting melt. The mid-ocean ridge basalts source evolved from an eclogite cumulate that lost its late-stage enriched fluids at various times to the shallower mantle and continental crust. The mid-ocean ridge basalts source is rich in garnet and clinopyroxene, whereas the continental and ocean island basalt source is a garnet peridotite that has experienced secondary enrichment. These relationships are consistent with the evolution of a terrestrial magma ocean.  相似文献   

13.
Weill DF  Drake MJ 《Science (New York, N.Y.)》1973,180(4090):1059-1060
The partition of europium between plagioclase feldspar and magmatic liquid is considered in terms of the distribution coefficients for divalent and trivalent europium. A model equation is derived giving the europium anomaly in plagioclase as a function of temperature and oxygen fugacity. The model explains europium anomalies in plagioclase synthesized under controlled laboratory conditions as well as the variations of the anomaly observed in natural terrestrial and extraterrestrial igneous rocks.  相似文献   

14.
Samples returned from the Apollo 15 site consist of mare basalts and breccias with a variety of premare igneous rocks. The mare basalts are from at least two different lava flows. The bulk chemical compositions and textures of these rocks confirm the previous conclusion that the lunar maria consist of a series of extrusive volcanic rocks that are rich in iron and poor in sodium. The breccias contain abundant clasts of anorthositic fragments along with clasts of basaltic rocks much richer in plagioclase than the mare basalts. These two rock types also occur as common components in soil samples from this site. The rocks and soils from both the front and mare region exhibit a variety of shock characteristics that can best be ascribed to ray material from the craters Aristillus or Autolycus.  相似文献   

15.
The last lava flow in the Hadley Rille area of Mare Imbrium, as inferred from an argon-40-argon-39 experiment on a plagioclase separate from the lunar basalt 15555, occurred 3.31+/-0.03x10(9) years ago. An argon-40-argon-39 experiment on a whole rock sample shows significant loss of radiogenic argon-40 and yields a well-defined, high-temperature plateau indicating a lower age of 3.22+/-0.03x10(9) years. A cosmic-ray exposure age of 90+/-10x10(6) years is determined from the ratio of spallogenic argon-38 to calcium.  相似文献   

16.
Elemental abundance (20 trace elements, 3 major elements) comparisons for Ivory Coast microtektites and Australasian microtektites indicate that there are distinct chemical similarities between microtektites and nearby tektites. Several trace element abundances in microtektites are quite different from those observed in Apollo 11 and Apollo 12 samples.  相似文献   

17.
Abundances of 30 elements in seven lunar rocks and soil were determined by instrumental and radiochemical activation analysis. Seven major and minor elements in chips from 27 rocks were determined by instrumental activation analysis. Abundances of ten bulk elements overlap for the breccia rocks and soil samples. All lunar rare earth elements distribution patterns resemble those found in terrestrial abyssal subalkaline basalt, but with Eu depleted by about 60 percent in all lunar samples compared to the adjacent rare earth elements. Precipitation of plagioclase and hypersthene achondritic-like minerals from a melt could account for Eu depletion and the observed distribution of rare earth elements. Abundances of Ti, Al, Ca, Na, and Mn determined by instrumental activation analysis in five core-tube soil samples indicate uniformity for Al and Mn and apparent differences (10 to 20 percent) for Ti, Ca, and Na at 7.8 and 10.5 centimeters as compared to 0to5.2 centimeter depths.  相似文献   

18.
All phases in a thin section of sample 10022 have been analyzed by electron microprobe. Augite grains show strong iron enrichment in the outer 15 to 20 microns. Pigeonite cores occur within augite grains. The plagioclase has an anorthite content of between 73 and 81 mole percent and is high in Si and low in Al compared to stoichiometric feldspar. Residual phases include microcrystalline Fe-rich "pyroxene," plagioclase, K-rich alkali feldspar, silica, and rare areas rich in P and Zr with concentrations of Ba, Y, and rare earth elements. The density, viscosity, and crystallization history of the lava of sample 10022 are discussed.  相似文献   

19.
Rock fragments consisting of orthopyroxene-calcic plagioclase assemblages appear to be more common in Apollo 12 soil samples than in the breccias or soil from Apollo 11 and are mineralogically and chemically different from any of the crystalline rocks returned by either Apollo 11 or Apollo 12. Compositionally, these fragments are orthopyroxenites and feldspathic orthopyroxenites. They are probably not fragments of meteorites; other considerations point to a near-surface lunar origin.  相似文献   

20.
The Miniature Thermal Emission Spectrometer (Mini-TES) on Spirit has studied the mineralogy and thermophysical properties at Gusev crater. Undisturbed soil spectra show evidence for minor carbonates and bound water. Rocks are olivinerich basalts with varying degrees of dust and other coatings. Dark-toned soils observed on disturbed surfaces may be derived from rocks and have derived mineralogy (+/-5 to 10%) of 45% pyroxene (20% Ca-rich pyroxene and 25% pigeonite), 40% sodic to intermediate plagioclase, and 15% olivine (forsterite 45% +/-5 to 10). Two spectrally distinct coatings are observed on rocks, a possible indicator of the interaction of water, rock, and airfall dust. Diurnal temperature data indicate particle sizes from 40 to 80 microm in hollows to approximately 0.5 to 3 mm in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号