首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to determine the dietary vitamin E requirement of juvenile hybrid striped bass ( Morone chrysops female ×  Morone saxatilis male). Semi-purified diets supplemented with 0.2 mg Se kg−1 from Na2SeO3 and either 0 (basal), 10, 20, 40, 60, or 80 mg vitamin E kg−1 as  DL -α-tocopheryl acetate were fed to hybrid striped bass initially averaging 1.8 ± 0.1 g (mean ± SD) for 12 weeks. Fish fed the basal diet, which contained 5.8 mg α-tocopherol kg−1 dry weight, were darker in colour and had reduced weight gain, as well as generally reduced haematocrit values compared with fish fed diets supplemented with vitamin E. In addition, fish fed diets containing less than 20 mg supplemental vitamin E kg−1 had significantly ( P  < 0.05) reduced weight gain and feed efficiency compared with those fed diets supplemented with vitamin E at 20–80 mg kg−1. Dietary supplementation of vitamin E caused incremental increases in the concentration of α-tocopherol in both plasma and liver tissues. However, hybrid striped bass fed graded levels of vitamin E did not exhibit a dose response in terms of ascorbic acid-stimulated lipid peroxidation of hepatic microsomes. Regression analysis of weight gain data using the broken-line model indicated a minimum vitamin E requirement ( ±  SE) of 28 ( ±  3) mg kg−1 dry diet. Based on these data, the dietary vitamin E requirement of hybrid striped bass appears to be similar to that determined for other fish species.  相似文献   

2.
Live adult brine shrimp, Artemia franciscana (Latreille), were enriched with erythromycin to determine if Artemia could accumulate therapeutic levels for subsequent feeding to young fish. Three trials were conducted to determine the erythromycin incorporation and survival rates of enriched Artemia when fed either liposomes containing erythromycin or various erythromycin suspensions. Erythromycin concentration in Artemia fed a liposome suspension was low (∼ 5 μg mL−1) relative to Artemia fed the direct suspension (> 100 μg mL−1) over the same time period. When enriched with suspensions up to 1 g erythromycin L−1 sea water for 14 h, Artemia survival was not significantly affected ( P > 0.05) relative to controls. Using a suspension of 1 g L−1, tissue erythromycin concentrations of 109 ± 16 μg erythromycin mL−1  Artemia homogenate (mean ± SEM) were achieved after 12 h. Concentrations above 170 μg mL−1 were obtained using suspensions of 2–5 g L−1, but Artemia survival significantly ( P < 0.05) decreased.  相似文献   

3.
Two concurrent 12-week feeding trials were conducted to evaluate the bioavailability of inorganic sodium selenite and organic seleno-DL-methionine and to investigate the potential interaction between selenium and vitamin E in juvenile hybrid striped bass. In experiment 1, purified diets utilizing casein, gelatin and an amino acid premix as protein sources with a basal selenium concentration of 0.11 mg Se   kg−1 were supplemented with either Na2SeO3 to provide selenium concentrations of 1.19, 2.00, 5.17 and 21.23 mg Se kg−1 or with seleno-DL-methionine to provide 0.90, 1.26 and 2.55 mg Se kg−1 and fed to juvenile hybrid striped bass in aquaria. A second experiment evaluated potential interactions by feeding these purified diets with or without supplemental vitamin E or sodium selenite, singularly or in combination. No overt selenium deficiency signs were exhibited by fish in either of the experiments; however, signs of selenium toxicity including retarded weight gain (WG), reduced feed intake and feed efficiency ratio (FER) as well as increased mortality, were observed in fish fed the diet containing more than 20 mg Se kg−1. Whole-body selenium and whole-body selenium retention were linearly influenced by sodium selenite and selenomethionine. However, there was no significant effect of dietary selenium, vitamin E or their interaction on WG, FER and survival. Slope-ratio analysis showed that bioavailability of seleno-DL-methionine as a selenium source for juvenile hybrid striped bass was significantly ( P  < 0.01) higher (3.3-fold) than sodium selenite.  相似文献   

4.
Two growth studies were conducted to determine the dietary threonine requirement of reciprocal cross hybrid striped (sunshine) bass. Semipurified diets were prepared with crystalline amino acids and lyophilized fish muscle to supply 350 g crude protein kg−1 diet. The basal diet contained 4.9 g threonine kg−1 from fish muscle, and test diets were supplemented with graded levels of L-threonine. In the first experiment, fish initially averaging ≊ 9.8 g each were fed diets containing threonine levels of 4.9, 7.5, 10.0, 12.5, 15.0 and 17.5 g kg−1 dry diet for 7 weeks. Weight gain, feed efficiency and protein efficiency ratio (PER) were significantly ( P < 0.01) influenced by dietary threonine level. Based on weight-gain responses, a threonine requirement (± SE) of 8.4 (± 0.8) g kg−1 dry diet was determined, and dietary threonine levels of 10.0 g kg−1 diet or greater resulted in the highest levels of free threonine in plasma.
Based on the results of the first experiment, a second feeding trial was conducted with diets containing threonine levels of 4.9, 6.5, 8.0, 9.5, 11.0 and 12.5 g kg−1 dry diet. Fish initially averaging ≊ 3.0 g each were fed each diet for 8 weeks. Weight gain, feed efficiency and PER values of fish were markedly improved, with increases in dietary threonine up to 8.0 g kg−1 dry diet. Regression analysis of weight gain, feed efficiency and PER data using the broken-line model resulted in threonine requirement estimates of 9.7, 8.5 and 8.6 g kg−1 dry diet, respectively. Based on these data, the threonine requirement of juvenile sunshine bass was determined to be ≊ 9.0 g kg−1 dry diet or 26 g kg−1 of dietary protein.  相似文献   

5.
Juvenile rainbow trout Oncorhynchus mykiss (Walbaum) were fed six low-phosphorus (P) diets supplemented with two different sizes of ground fish bone-meals (fine, 68 μm or less; coarse, 250–425 μm) and a coarse bone-meal diet containing four levels of citric acid (0, 4, 8 or 16 g kg−1 diet) to investigate the effects of pH and bone particle size on P bioavailability. The basal diet provided 3.4 g P   kg−1 and bone-meal increased P contents to 5.4–6.0 g P   kg−1. Coarse bone-meal diets supplemented with 0, 4, 8 or 16 g kg−1 of citric acid had pH values of 6.0, 5.7, 5.4 and 5.0, respectively. Weight gain and whole-body water, protein and lipid contents were not influenced by bone-meal supplementation. Supplementing the basal diet with both coarse and fine bone-meal significantly increased whole-body ash content. Fish fed no bone-meal were hypophosphataemic compared with fish fed with either fine or coarse bone-meals. Phosphorus in fine bone-meal had higher availability than P in coarse bone-meal. Bone-meal supplementation significantly decreased whole-body manganese content from 8.9 μg g−1 in fish fed no bone-meal to 2.3 and 4.5 μg g−1 in fish fed with fine and coarse bone-meals, respectively. The concentration of magnesium increased but zinc concentration was not affected by bone-meal supplements. Citric acid increased whole-body ash content but the influence of citric acid on the body P content was not significant ( P  = 0.07). Dietary acidification by citric acid significantly increased whole-body iron in a linear fashion. The bioavailability of dietary P can be improved by fine grinding the bone in fish meals.  相似文献   

6.
In order to determine the essential amino acid requirements (EAA) of striped bass Morone saxatilis , fillets were analysed to ascertain the relative amino acid concentrations for determining A/E ratios ((EAA/total EAA) × 1000)). Analysis of the striped bass fillets yielded the following concentrations of essential amino acids (g kg–1) and A/E ratios, respectively: arginine, 12.5, 115; histidine, 5.1, 47; isoleucine, 8.0, 74; leucine, 17.1, 157; lysine, 20.2, 186; methionine + cysteine, 9.2, 85; phenylalanine + tyrosine, 16.0, 147; threonine, 9.8, 90; tryptophan, 1.9, 18; and valine, 9.1, 84. In two experiments, diets with graded levels of EAA were fed to striped bass weighing 111 ± 3 g and 790 ± 122 g per fish, respectively. In both experiments, the dietary A/E ratios were maintained in the same relative concentrations as determined in the striped bass fillets. Statistical analysis of weight gains, feed conversions and nitrogen balance indicated significant differences ( P  < 0.05) between treatments. Non-linear regression analysis of the response criteria pooled from both experiments yielded the following estimates of dietary EAA requirements (g kg–1 dry diet) when digestible energy equalled 13.39 MJ kg–1 diet: arginine, 14; histidine, 6; isoleucine, 9; leucine, 19; lysine, 22; methionine + cysteine, 10; phenylalanine + tyrosine, 17; threonine, 11; tryptophan, 3; and valine, 10. The use of fillet A/E ratios allows for the rapid estimation of quantitative EAA requirements and the development of species specific diets for new aquaculture species. The data presented here are the first to simultaneously describe all the dietary EAA requirements for M. saxatilis.  相似文献   

7.
Juvenile northern Chilean scallops of 937±55 μm shell height were exposed to five different concentrations of chloramphenicol (CHL) (5, 10, 25, 50 and 100 μg mL−1), plus a control without antibiotics. To determine the effect of CHL on the accompanying microflora, the number of colony-forming units (CFU) that grew on TGE culture medium was counted in the seawater of containers with juveniles, and in containers with microalgae used as food. Both were exposed to the same concentrations of CHL. The growth rates of juveniles treated with CHL and the control without antibiotic showed highly significant differences ( P =0.0001). The growth rate was inversely proportional to the CHL concentration. The control sample presented the highest growth rate (84.4±14.3 μm day−1), followed by the sample treated with 5 μg mL−1 (64.2±14.3 μm day−1). The survival in the control and in the treated samples with 5–50 μg mL−1 was rather high, with a mean value of 95%. Only the sample treated with 100 μg mL−1 had a low survival (36.7%). The CFU count was larger in the containers with juveniles, when compared with the ones with food. The CFU count tended to decrease with increasing CHL concentration in the juveniles.  相似文献   

8.
Abstract— Grow-out performance of striped bass Morone saxatilis , palmetto bass ( M. saxatilis ♀ × M. chrysops ♂ ) and backcross hybrids [sunshine bass ♀( M. chtysops ♀ × M. saxatilis ♂) × M. saxatilis ♂] was examined in a two-part study. During part I fish (mean weight = 20.1 g) were stocked at a density of 56 fish/m3 in 1.8-m3 cylindrical fiberglass tanks connected to a central biological filter. Fish were fed a 38% protein trout ration daily and the study duration was 273 d. At harvest, no differences ( P > 0.05) in mean weight or feed conversion were detected among the fish types. However, there were differences in specific growth, with the striped bass having a significantly higher growth rate than the palmetto bass and the backcross hybrids being intermediate. The condition factor (K) for striped bass was also significantly lower (1.2) than that recorded for either of the other two groups. In addition, survival of striped bass (91%) was significantly higher than that of backcross hybrids (74%), while survival of palmetto bass (87%) was intermediate. The survival of backcross hybrids was adversely impacted by an infestation of the dinoflagellate Amyloodinium sp . During part II stocking density in each tank was reduced to 19 fish/m3. The study lasted 104 d. At harvest, no differences were detected in weight, survival, or feed conversion. However, there were significant differences in specific growth, length and K. Striped bass and backcross hybrids gained weight faster than palmetto bass. Length and K were inversely related with all groups being significantly different. Striped bass had the largest TL and the lowest K while, palmetto bass were the shortest with the highest K.  相似文献   

9.
Triplicate groups of Mystus nemurus (Cuvier & Valenciennes) were fed isoenergetic semipurified diets containing seven dietary protein levels from 200 to 500 g kg–1 diet for 10 weeks. Dietary protein was supplied by graded amounts of a protein mixture (tuna muscle meal:casein:gelatine) at a fixed ratio of 50:37.5:12.5. Mystus nemurus fingerlings of initial weight 7.6 ± 0.2 g were fed close to apparent satiation at 2.5% of their body weight per day in two equal feedings. Growth performance and feed utilization efficiency increased linearly with dietary protein level from 202 to 410 g kg–1 diet and declined with protein levels of 471 g kg–1 diet or above. Protein efficiency ratio and apparent net protein utilization started to decline when the fish were fed with dietary protein levels exceeding 471 g kg–1 diet. Fish fed with lower protein diets (202–295 g kg–1 diet) had significantly ( P  < 0.05) higher carcass lipid content compared with fish fed with higher protein diets. Carcass lipid contents were inversely related to moisture content. Dietary protein did not significantly affect fish carcass protein and ash content. Using two-slope broken-line analysis, the dietary protein requirement for M. nemurus based on percentage weight gain was estimated to be 440 g kg–1 diet with a protein to energy ratio of 20 mg protein kJ–1 gross energy. This level of protein in the diet is recommended for maximum growth of M. nemurus fingerlings weighing between 7 and 18 g under the experimental conditions used in this study.  相似文献   

10.
This study was conducted to evaluate the efficacy of β-glucan and selenium supplements to the diet on increasing survival of hybrid striped bass Morone chrysops X M. saxatilis exposed to Streptococcus iniae. A 2 × 2 × 2 factorial design was employed by including purified casein/gelatin-based diets and practical menhaden fish meal-based diets with supplement! of either β-glucan from barley at 0 and 0.1 % of diet or sodium selenite at 0 or 0.2 mg/kg diet or a combination of these supplements. All diets were formulated to meet the nutritional needs of hybrid striped bass with the exception of selenium. The purified and practical basal diets contained 0.03 and 1.03 mg Se/kg, respectively, and the diets supplemented with sodium selenite had an additional 0.07 mg Se/kg on average. Juvenile hybrid striped bass initially averaging 2.44 ± 0.17 g/fish were fed the eight experimental diets in triplicate 110-L recirculating aquaria for 6 wk, after which they were immersed in a bath of S. iniae at 6.2 × 106 CFU/mL for 2 h and monitored for 21 d. Weighi gain and feed efficiency were significantly (P < 0.05) affected by diet type and selenium supplementation, with fish fed practical diets and those supplemented with selenium having the greatest values. Supplementation of β-glucan to the purified or practical type diets did not significantly affect survival of fish after experimental infection. The most notable difference (P < 0.0001) was in the comparison of diet type; the survival rate of fish fed the practical diets was 75% compared to 35% for those fed the purified diets. Dietary supplementation of β-glucan did not enhance disease resistance in the present study. Fish fed menhaden fish meal-based diets were significantly more resistant to 5. iniae in comparison to the those fed the purified diets. Thus, nutritional influences on disease resistance of hybrid striped bass were evident in this study and warrant further investigation.  相似文献   

11.
Sea bass Dicentrarchus labrax fillet quality was investigated after feeding with four diets (A, B, C or D) containing different levels of dietary vitamin E (139 mg kg–1, 254 mg kg–1, 493 mg kg–1 and 942 mg kg–1, respectively). Six-hundred and eighty fish (mean initial weight 208 g) were equally divided into four 20 m3 tanks and fed for 87 days. Filtered seawater with a temperature ranging from 18.2 to 26.3 °C was supplied continuously. At the end of the experiment, fish were stored at 1 °C for 12 days. At one, three, six, nine and 12 days, 20 fish per group were processed for proximate composition, vitamin E and induced thiobarbituric acid reactive substances (TBARs) analyses. No significant differences in proximate composition were registered between groups. The flesh lipid content ranged from 88.0 g kg–1 (group B) to 96.8 g kg–1 (group A). Vitamin E fillet content was significantly different between groups, reaching levels of 98.0, 150.7, 225.2 and 302.0 μg g–1 lipids for group A, B, C and D, respectively. Induced TBARs values were statistically different only for group A compared with the other groups. No significant variations were registered in relation to preservation time. Because of the positive influence of vitamin E on seafood quality and the correlation between its dietary level and flesh deposition, the α-tocopherol content of the diet should be well above fish minimum requirements.  相似文献   

12.
Non-faecal phosphorus (P) was determined for large yellowtail to estimate a minimum available P requirement (Experiment  1) and to justify inorganic P supplementation in a fish meal-based diet (Experiment 2). In Experiment 1, purified diets with incremental P concentrations were fed to yellowtail (mean weight 917 g) at a feeding rate of 1.5% of body weight. The peaks of non-faecal P excretion appeared 5–6 h after feeding in fish fed more than 4.5 g available P kg−1 dry diet. Broken-line analysis indicated that the minimum available P requirement was 4.4 g kg−1 dry diet. In Experiment 2, a purified diet (PR) containing 6.5 g available P kg−1 and a fish meal-based diet with (F1) and without (F0) additional phosphorus were fed to yellowtail (mean weight 1.1 kg) at 1.5% (PR) and 2% (F0 and F1) feeding rates respectively. There was no significant difference in P excretion between fish fed the F0 (5.5 g soluble P kg−1 dry diet) and the PR diet. However, significantly higher (34.5%) amounts of non-faecal P excretions (7.4 g soluble P kg−1 dry diet) were found in fish fed F1 compared with the F0 diet. This suggested that there was an excess of dietary P in the F1 diet and that supplementation is not needed in fish meal-based diets for large yellowtail.  相似文献   

13.
In a 8-week production-scale experiment at a commercial trout farm, the effects of dietary lipid level and phosphorus level on phosphorus (P) and nitrogen (N) utilization of rainbow trout (initial mean weight 99 g) were assessed. A low-phosphorus, high-lipid experimental diet (457 g protein, 315 g lipid, 9.1 g P  kg–1 dry diet) was compared with a commonly used commercial diet (484 g protein, 173 g lipid, 13.6 g P  kg–1 dry diet). P and N budgets were constructed using data from the production-scale experiment and digestibility data for the two diets. In addition, orthophosphate and ammonia-N waste were measured in effluent over one 24-h period. Relative to the commercial diet, the experimental diet resulted in significantly increased feed efficiency ratio, N retention and P retention, and substantially reduced dissolved, solid and total P waste (g kg–1 dry feed). Although N retention resulting from the experimental diet was higher, this was attributable to higher N (protein) digestibility of the experimental diet. Solid N waste (g kg–1 dry feed) resulting from the experimental diet was substantially lower, but dissolved N waste (g kg–1 dry feed) was not significantly different relative to the commercial diet. Mean effluent orthophosphate production (mg day–1 kg–1 fish) of fish fed the experimental diet was substantially lower than that of fish fed the commercial diet ( P  < 0.05), but effluent ammonia-N production (mg day–1 kg–1 fish) was not significantly affected by dietary treatment.  相似文献   

14.
The efficacy of emamectin benzoate as an oral treatment of sea lice, Lepeophtheirus salmonis (KrÒyer), infestations in Atlantic salmon, Salmo salar L., was evaluated in a dose titration study and two dose confirmation studies. Replicated groups of salmon with induced infestations of sea lice were given emamectin benzoate on pelleted feed at doses of 0, 25, 50 and 100 μg kg−1 biomass day−1 for seven consecutive days. Sea lice were counted at 7, 14 and 21 days from the start of treatment, and comparisons made with control fish given the same diet without emamectin benzoate. Total numbers of sea lice were significantly reduced at all doses in all three studies when compared to control fish. There was no significant difference between doses of 50 and 100 μg kg−1, but the 50 μg kg−1 dose resulted in significantly fewer lice than the 25 μg kg−1 dose. Emamectin benzoate was highly effective in reducing numbers of preadult and adult lice and prevented the maturation of chalimus to motile stages. The optimum therapeutic dose was selected as 50 μg kg−1 day−1 for seven days. Treatment reduced the incidence of epidermal damage by sea lice and, in one study, survival of treated fish was 48% higher than in control groups. No fish mortalities or adverse effects were attributed to treatment with emamectin benzoate at any of the doses tested.  相似文献   

15.
Six isonitrogenous (350 g kg−1 crude protein) and isoenergetic (17573 kJ kg−1) experimental diets incorporating raw and fermented sesame ( Seasamum indicum ) seed meal at 200, 300, and 400 g kg−1 into a fishmeal based diet were fed to rohu Labeo rohita fingerlings for 60 days and the growth performance and feed utilization efficiency of the fish was studied. The antinutritional factor phytic acid, from raw sesame seed meal, could be reduced below detection limit by fermentation with lactic acid bacteria ( Lactobacillus acidophilus ). Fermentation of the oilseed meal resulted in reduction of the tannin content from 20 to 10 g kg−1. In terms of growth response, feed conversion ratio and protein efficiency ratio, a diet containing 400 g kg−1 fermented sesame seed meal resulted in a significantly ( P  < 0.01) best fish performance. In general, growth and feed utilization efficiencies of fish fed fermented sesame seed meal diets were superior to those fed raw oilseed meal diets. Apparent protein digestibility (APD) values decreased with increasing levels of raw oilseed meal. APD was, however, significantly ( P  < 0.01) higher at all levels of incorporation of fermented sesame seed meal, while diets containing raw oilseed meal resulted in poor protein and lipid digestibility. Carcass protein and lipid contents of fish fed fermented sesame seed meal diets increased with increasing level of incorporation, being highest with 400 g kg−1 fermented oilseed meal-containing diet. The results showed that sesame seed meal may be incorporated in carp diets up to 200 g kg−1 and 400 g kg−1 in raw and treated (fermented) forms respectively.  相似文献   

16.
The objective of the present study was to investigate the effect of dietary phospholipid (PL) level on growth and feed intake of juvenile amberjack ( Seriola dumerili ) fed non-fishmeal (non-FM) diet containing alternative protein sources; soybean protein isolate, tuna muscle by-product powder and krill meal. Three non-FM diets were prepared to contain three levels (14, 37 and 54 g kg−1 dry diet) of PL (soybean lecithin acetone insoluble, 886 g kg−1) and growth performance was monitored in a 30-day growth trial by using 2.6 g of fish. The results indicated that final body weight, weight gain and feed intake significantly increased with increasing dietary PL level. At the highest dietary PL level (54 g kg−1 dry diet), the fish consumed 14.8% and 10.2% as much feed as those fish fed diets containing 14 g kg−1 dry diet and 37 g kg−1 dry diet PL, respectively. An increasing tendency with increasing dietary PL level on feed efficiency was observed. In conclusion, the present study demonstrated that dietary PL supplementation could increase feed intake, and improve the growth of juvenile S. dumerili fed non-FM diets. Therefore, purified PL might be a good candidate to stimulate the growth of fish through enhancing the feed intake when they are fed diets containing alternative protein sources.  相似文献   

17.
To investigate potential use of increasing nutritional density of diets for rapid growth of warm‐water fishes, a feeding trial was conducted in which growth performance, body indexes, and whole‐body composition of juvenile hybrid striped bass fed diets comprising protein (49, 54, and 59%), lipid (16, 20, 23, and 28%), and energy (22.0–25.1 kJ/g) concentrations beyond established minimum levels were compared to those of fish fed a more typical commercial reference diet (37.5% crude protein, 10.5% crude lipid, and 19.6 kJ/g energy on a dry matter basis). A subset of the experimental diets and the commercial reference diet also were fed to juvenile red drum. After 6 wk of feeding, hybrid striped bass fed the high‐protein and high‐lipid diets showed much greater growth performance compared to fish fed the commercial diet. Increasing dietary protein level, but not lipid level, tended (P ≤ 0.1) to enhance weight gain and feed efficiency of hybrid striped bass. Hepatosomatic index (HSI), intraperitoneal fat (IPF) ratio, and whole‐body protein were significantly (P < 0.01) influenced by dietary protein level. The dietary lipid and associated energy level had significant negative linear effects on daily feed intake. Linear regression analysis showed that dietary energy : protein ratio, largely influenced by dietary protein level, moderately but significantly influenced weight gain, HSI, IPF ratio, and whole‐body protein of hybrid striped bass and red drum. Red drum grew very similar to hybrid striped bass in response to the experimental diets. However, significant differences in HSI, IPF ratio, whole‐body protein, lipid, moisture, and ash between hybrid striped bass and red drum were observed, indicating species differences in protein and energy partitioning. In particular, the excessive lipid in the diet increased HSI and whole‐body lipid of red drum but not of hybrid striped bass.  相似文献   

18.
This study was conducted to determine the effects of feeding increasing lipid concentrations (310, 380 and 470 g kg–1 lipid on dry weight) in diets based mainly on herring byproducts to Atlantic salmon Salmo salar . The diets were isonitrogenous, varying in dietary lipid content at the expense dietary starch. Average fish weight increased from 1.2 kg in April to 2.2–2.7 kg at the end of the feeding trial in September. Significantly greater growth was found in fish fed either the 380 g kg−1 or the 470 g kg−1 lipid diets compared with the 310 g kg−1 lipid diet. Muscle lipid content increased in all dietary groups on a wet weight basis from 7.7 ± 1.4% to 12 ± 3% in salmon fed the 310 g kg−1 lipid diet, and to 16 ± 2% in salmon fed the 380 g kg−1 and 470 g kg−1 lipid diets. In fish of similar weight there was a positive correlation between dietary lipid and muscle lipid concentrations. Low concentrations of muscle glycogen were detected in fish fed each of the diets, while muscle vitamin E concentrations slowly decreased as muscle lipid increased. Muscle fatty acid composition reflected dietary fatty acid profiles, containing similar percentages of total saturated, monoenic and n-3 fatty acids (20:5n-3 and 22:6n-3) in fish from all dietary treatment groups. However, a higher ratio of n-3/n-6 was found in muscle from fish fed the 470 g kg−1 lipid diet compared with the other two groups. Blood chemistry values varied somewhat, but all values were within normal ranges for Atlantic salmon of these sizes.  相似文献   

19.
Four diets (T0–T3) were formulated reducing the fishmeal (Indian) component by 100 g kg–1 from 300 to 0 g kg–1 and including proportionately increasing quantities of maize. Diets were fed for 120 days at 50 g kg–1 body weight to triplicate groups of common carp (av. wt. 2.11–2.18 g) stocked at 1 m–2 in mud bottomed cement tanks (18 m2), fertilized with poultry manure. Fish growth, SGR and FCR in the different treatments were statistically not significantly different ( P  > 0.05). PER was lowest for the 300 g fishmeal kg–1 diet treatment (diet T0), increasing with decrease in dietary fishmeal content (diets T1–T3). Fish survival ranged from 96.29 to 100%. Diets influenced carcass composition and digestive enzyme activity. A significant increase in lipid deposition was recorded with increasing dietary carbohydrate content. Amylase, protease and lipase activities were higher in fish fed with diets T2 and T3. The protein sparing effect of dietary carbohydrate and the economic implication of eliminating fishmeal from the diet are discussed.  相似文献   

20.
Five iso-nitrogenous (300 g crude protein kg−1 diet) semi-purified diets with graded levels of carbohydrate at 220 (D-1), 260 (D-2), 300 (D-3), 340 (D-4) and 380 (D-5) g kg−1 diet were fed ad libitum to Puntius gonionotus fingerlings (average weight 0.59±0.01 g) in triplicate groups (20 fish replicate−1) for a period of 90 days to determine the effect of the dietary carbohydrate level on the growth, nutrient utilization, digestibility, gut enzyme activity and whole-body composition of fish. Fifteen flow-through cement tanks of 100 L capacity with a flow rate of 0.5 L min−1 were used for rearing the fish. The maximum weight gain, specific growth rate, protein efficiency ratio, RNA:DNA ratio, whole-body protein content, protease activity, protein and energy digestibility and minimum feed conversion ratio (FCR) were found in the D-2 group fed with 260 g carbohydrate kg−1 diet. The highest protein and energy retention was also recorded in the same group. However, from the second-order polynomial regression analysis, the maximum growth and nutrient utilization of P. gonionotus fingerlings was 291.3–298.3 g carbohydrate kg−1 diet at a dietary protein level of 300 g kg−1 with a protein/energy (P/E) ratio of 20.58 −20.75 g protein MJ−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号