首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Context

Eco-environmental effects of urbanization are a focus in landscape ecology.

Objective

The influences of population, economic and spatial development during the urbanization process in Beijing City, China on net primary productivity (NPP) were analyzed. The responding mechanism of NPP in different urbanization stages was also examined to develop advice about eco-environmental sustainability of urban development.

Methods

Using the Carnegie Ames Stanford Approach model, we estimated NPP. Using linear regression and polynomial regression analysis, we analyzed NPP responses to stages of urbanization.

Results

High NPP areas were located in northeast Yanqing, northwest Miyun, northern Huairou and Pinggu. The distribution of NPP generally occurred in the following order from high NPP to low NPP: outer suburbs, inner suburbs, encircled city center, and inner city. Because of the heat island effect in winter, the estimated NPP in the encircled city center and inner city was higher in 2009 than in 2001. There was a negative correlation between NPP and both economic and spatial urbanization, but an increase in population did not necessarily lead to an immediate decrease in NPP. An analysis of NPP dynamics in five kinds of urban development zones showed that urbanization resulted in a lasting and observable loss of NPP over time and space, although there was some promotion of NPP in highly urbanized zones.

Conclusion

There are three stages in the response of NPP to urbanization: damage stage, antagonistic stage, and coordination stage. The stage threshold depends on local eco-environmental management and urban planning interventions.
  相似文献   

2.

Context

Ecological research, from organismal to global scales and spanning terrestrial, hydrologic, and atmospheric domains, can contribute more to reducing health vulnerabilities. At the same, ecological research directed to health vulnerabilities provides a problem-based unifying framework for urban ecologists.

Objective

Provide a framework for expanding ecological research to address human health vulnerabilities in cities.

Methods

I pose an urban ecology of human health framework that considers how the ecological contributions to health risks and benefits are driven by interacting influences of the environment, active management, and historical legacies in the context of ecological self-organization. The ecology of health framework is explored for contrasting examples including heat, vector borne diseases, pollution, and accessible greenspace both individually and in a multifunctional landscape perspective.

Results

Urban ecological processes affect human health vulnerability through contributions to multiple hazard and well-being pathways. The resulting multifunctional landscape of health vulnerability features prominent hotspots and regional injustices. A path forward to increase knowledge of the ecological contributions to health vulnerabilities includes increased participation in in interdisciplinary teams and applications of high resolution environmental sensing and modeling.

Conclusions

Research and management from a systems and landscape perspective of ecological processes is poised to help reduce urban health vulnerability and provide a better understanding of ecological dynamics in the Anthropocene.
  相似文献   

3.
4.

Context

Quantifying landscape-scale vegetation disturbances by surface coal mining (SCM) is crucial for assessing and mitigating its negative impacts on the environment. Methods for detecting such disturbances in woody ecosystems exist, but these methods do not work well for deserts and grasslands in arid and semiarid regions because of their sensitive responses to precipitation variations.

Objectives

The objective of this study was to develop a new index to reliably detect the locations and spatial extents of SCM-induced vegetation disturbances in dryland regions in the face of fluctuating precipitation.

Methods

We have developed a vegetation disturbance index (VDI) that combines MODIS EVI data with precipitation data to detect vegetation disturbances by SCM on the Mongolian Plateau during 2000–2015. The VDI is computed by comparing vegetation production per unit precipitation for a given year with a multi-year mean, and by considering distances from coal-mining areas.

Results

Our results show that the VDI was able to adequately distinguish vegetation disturbances by SCM from climate-driven vegetation changes in five selected sites across the Mongolian Plateau.

Conclusions

The VDI provides an effective tool for quantifying the locations, spatial extents, and severity of vegetation disturbances by SCM in arid and semiarid regions.
  相似文献   

5.

Context

Wild bee populations are currently under threat, which has led to recent efforts to increase pollinator habitat in North America. Simultaneously, U.S. federal energy policies are beginning to encourage perennial bioenergy cropping (PBC) systems, which have the potential to support native bees.

Objectives

Our objective was to explore the potentially interactive effects of crop composition, total PBC area, and PBC patches in different landscape configurations.

Methods

Using a spatially-explicit modeling approach, the Lonsdorf model, we simulated the impacts of three perennial bioenergy crops (PBC: willow, switchgrass, and prairie), three scenarios with different total PBC area (11.7, 23.5 and 28.8% of agricultural land converted to PBC) and two types of landscape configurations (PBC in clustered landscape patterns that represent realistic future configurations or in dispersed neutral landscape models) on a nest abundance index in an Illinois landscape.

Results

Our modeling results suggest that crop composition and PBC area are particularly important for bee nest abundance, whereas landscape configuration is associated with bee nest abundance at the local scale but less so at the regional scale.

Conclusions

Strategies to enhance wild bee habitat should therefore emphasize the crop composition and amount of PBC.
  相似文献   

6.

Context

To understand, even improve, the land of shrinking nature and spreading urbanization, a science applicable from remote natural areas to cities is needed.

Objective

Today’s scientific principles of urban ecology are articulated and compared with ecology based primarily on natural ecosystems; we either robustly merge the trajectories or watch them diverge.

Methods

A literature review emphasizes that the field of ecology emerged from late 19th century and early 20th century research mostly in semi-natural environments, whereas urban ecology mainly developed from studying plants, habitat types, and ecosystem nutrient flows in late 20th century city environments.

Results

Ninety urban ecology principles are identified and succinctly stated. Underlying the principles, 18 distinctive types of urban attributes are recognized in four major groups: land uses; built objects; permeating anthropogenic flows; human decisions/activities. The attributes or objects studied in “natural area” ecology and urban ecology differ sharply, as do the primary objects present in late 19th century and late 20th century cities. None of the 90 basic principles would have emerged from research on natural areas, and all are readily usable for improving urban and urbanizing areas.

Conclusion

Incorporating urban ecology science into ecology’s body of principles and theory now should catapult the field of ecology to the next level, and noticeably increase its usefulness for society.
  相似文献   

7.

Context

Despite decades of research, there is an intense debate about the consistency of the hump-shaped pattern describing the relationship between diversity and disturbance as predicted by the intermediate disturbance hypothesis (IDH). Previous meta-analyses have not explicitly considered interactive effects of disturbance frequency and intensity of disturbance on plant species diversity in terrestrial landscapes.

Objective

We conducted meta-analyses to test the applicability of IDH by simultaneously examining the relationship between species richness, disturbance frequency (quantified as time since last disturbance as originally proposed) and intensity of disturbance in forest landscapes.

Methods

The effects of disturbance frequency, intensity, and their interaction on species richness was evaluated using a mixed-effects model.

Results

We found that species richness peaks at intermediate frequency after both high and intermediate disturbance intensities, but the richness-frequency relationship differed between intensity classes.

Conclusions

Our study highlights the need to measure multiple disturbance components that could help reconcile conflicting empirical results on the effect of disturbance on plant species diversity.
  相似文献   

8.
9.

Purpose

Urbanisation is a leading cause of biotic homogenisation in urban ecosystems. However, there has been little research examining the effect of urbanisation and biotic homogenisation on aquatic communities, and few studies have compared findings across different urban landscapes. We assessed the processes that structure aquatic macroinvertebrate diversity within five UK cities and characterise the heterogeneity of pond macroinvertebrate communities within and among urban areas.

Methods

A total of 132 ponds were sampled for invertebrates to characterise biological communities of ponds across five UK cities. Variation among sites within cities, and variation among urban settlements, was partitioned into components of beta diversity relating to turnover and nestedness.

Results

We recorded 337 macroinvertebrate taxa, and species turnover almost entirely accounted for the high beta-diversity recorded within each urban area and when all ponds were considered. A total of 40% of all macroinvertebrates recorded were unique to a particular urban settlement. In contrast to the homogenisation of terrestrial and lotic communities in urban landscapes reported in the literature, ponds support highly heterogeneous communities within and among urban settlements.

Conclusions

The high species turnover (species replacement) recorded in this study demonstrates that urban pond biodiversity conservation would be most efficient at a landscape-scale, rather than at the individual ponds scale. Pond conservation practices need to consider the spatial organization of ecological communities (landscape-scale) to ensure that the maximum possible biodiversity can be protected.
  相似文献   

10.

Context

Habitat destruction is the leading threat to terrestrial biodiversity, isolating remnant habitat in a matrix of modified vegetation.

Objectives

Our goal was to determine how species richness in several broad taxonomic groups from remnant forest was influenced by matrix quality, which we characterized by comparing plant biomass in forest and the surrounding matrix.

Methods

We coupled data on species-area relationships (SARs) in forest remnants from 45 previously published studies with an index of matrix quality calculated using new estimates of plant biomass derived from satellite imagery.

Results

The effect size of SARs was greatest in landscapes with low matrix quality and little forest cover. SARs were generally stronger for volant than for non-volant species. For the terrestrial taxa included in our analysis, matrix quality decreased as the proportion of water, ice, or urbanization in a landscape increased.

Conclusions

We clearly demonstrate that matrix quality plays a major role in determining patterns of species richness in remnant forest. A key implication of our work is that activities that increase matrix quality, such as active and passive habitat restoration, may be important conservation measure for maintaining and restoring biodiversity in modified landscapes.
  相似文献   

11.

Context

Knowing which factors determine the spread of plant invaders is a relevant issue in global ecology. Cultural landscapes both influence and are affected by exotic species. Although bioclimatic boundaries, seed sources and landscape configuration all control the invasion process, they have been mostly studied separately and independently from their distant drivers.

Objectives

We followed a multiscale approach to describe the invasion dynamics of the Asian tree (Ligustrum lucidum) in subtropical NW Argentina cultural landscapes by: (1) identifying the potential bioclimatic area of invasion, (2) mapping the currently invaded area in peri-urban focal sectors, and (3) quantitatively describing the landscape-scale patterns of invasion in relation to environmental and cultural variables.

Method

Niche models were used to map potential invasion area, remote sensing, GIS and field surveys to map patterns of invasion and their association to landscape and environmental variables.

Results

Climate suitability to L. lucidum extends over important ranges of the studied area, but currently invaded areas are mostly restricted to clusters around the main cities. The historical and demographic features of cities (e.g., date foundation, population) are important in predicting invaded forest location and spread. At local scale, invasion is associated to abandoned fields nearby urban centers, roads and rivers.

Conclusions

The invasion patterns of L. lucidum reflect the combined effect of historical socioeconomic connections between Asia and America, as well as the local cultural landscape history and configuration. Teleconnected cultural landscapes need to be explored as a theoretical framework for the study of biological invasions in the Anthropocene.
  相似文献   

12.

Context

Traditionally soils have not received much attention in urban planning. For this, tools are needed that can both be understood both by soil scientists and urban planners.

Purpose

The purpose of this paper is to enhance the role of soil knowledge in urban planning practice, through the following objectives: (1) identifying the role soil plays in recent urban plans; (2) analysing the ecosystem services and indicators used in soil science in an urban context; and (3) inferring the main challenges and opportunities to integrate soil into urban planning.

Methods

Seven urban plans and reports of world cities that include sustainability goals were analysed using text-mining and qualitative analysis, with a critical view on the inclusion of soil-related concepts. Secondly, the contribution of soil science to urban planning was assessed with an overview of case studies in the past decade that focus on soil-related ecosystem services in urban context.

Results

The results show an overall weak attention to soil and soil-related ecosystem services in the implementation and monitoring phases of urban plans. The majority of soil science case studies uses a haphazard approach to measure ecosystem service indicators which may not capture the ecosystem services appropriately and hence lack relevance for urban planning.

Conclusions

Even though the most urban plans assessed recognize soil as a key resource, most of them fail to integrate indicators to measure or monitor soil-related functions. There is a need to develop soil-related ecosystem services that can be easily integrated and understood by other fields.
  相似文献   

13.

Context

A recent hypothesis, the habitat amount hypothesis, predicts that the total amount of habitat in the landscape can replace habitat patch size and isolation in studies of species richness in fragmented landscapes.

Objectives

To test the habitat amount hypothesis by first evaluating at which spatial scale the relationship between species richness in equal-sized sample quadrats and habitat amount was the strongest, and then test the importance of spatial configuration of habitat—measured as local patch size and isolation—when habitat amount was taken into account.

Methods

A quasi-experimental setup with 20 habitat patches of dry calcareous grasslands varying in patch size, patch isolation and habitat amount at the landscape scale was established in the inner Oslo fjord, Southern Norway. We recorded species richness of habitat specialists of vascular plants in equal-sized sample quadrats and analysed the relationship between species richness, habitat amount in the landscape and patch size and isolation.

Results

Although the total amount of habitat in a 3 km-radius around the local patch was positively related to species richness in the sample quadrats, local patch size had an additional positive effect, and the effect of patch size was higher when the amount of habitat within the 3 km-radius was high than when it was low.

Conclusions

In our study system of specialist vascular plants in dry calcareous grasslands, we do not find support for the habitat amount hypothesis.
  相似文献   

14.

Context

Remotely sensed differenced normalized burn ratios (DNBR) provide an index of fire severity across the footprint of a fire. We asked whether this index was useful for explaining patterns of bird occurrence within fire adapted xeric pine-oak forests of the southern Appalachian Mountains.

Objectives

We evaluated the use of DNBR indices for linking ecosystem process with patterns of bird occurrence. We compared field-based and remotely sensed fire severity indices and used each to develop occupancy models for six bird species to identify patterns of bird occurrence following fire.

Methods

We identified and sampled 228 points within fires that recently burned within Great Smoky Mountains National Park. We performed avian point counts and field-assessed fire severity at each bird census point. We also used Landsat? imagery acquired before and after each fire to quantify fire severity using DNBR. We used non-parametric methods to quantify agreement between fire severity indices, and evaluated single season occupancy models incorporating fire severity summarized at different spatial scales.

Results

Agreement between field-derived and remotely sensed measures of fire severity was influenced by vegetation type. Although occurrence models using field-derived indices of fire severity outperformed those using DNBR, summarizing DNBR at multiple spatial scales provided additional insights into patterns of occurrence associated with different sized patches of high severity fire.

Conclusions

DNBR is useful for linking the effects of fire severity to patterns of bird occurrence, and informing how high severity fire shapes patterns of bird species occurrence on the landscape.
  相似文献   

15.

Context

Movement is one of the key mechanisms for animals to deal with changes within their habitats. Therefore, resource variability can impact animals’ home range formation, especially in spatially and temporally highly dynamic landscapes, such as farmland. However, the movement response to resource variability might depend on the underlying landscape structure.

Objectives

We investigated whether a given landscape structure affects the level of home range size adaptation in response to resource variability. We tested whether increasing resource variability forces herbivorous mammals to increase their home ranges.

Methods

In 2014 and 2015 we collared 40 European brown hares (Lepus europaeus) with GPS-tags to record hare movements in two regions in Germany with differing landscape structures. We examined hare home range sizes in relation to resource availability and variability by using the normalized difference vegetation index as a proxy.

Results

Hares in simple landscapes showed increasing home range sizes with increasing resource variability, whereas hares in complex landscapes did not enlarge their home range.

Conclusions

Animals in complex landscapes have the possibility to include various landscape elements within their home ranges and are more resilient against resource variability. But animals in simple landscapes with few elements experience shortcomings when resource variability becomes high. The increase in home range size, the movement related increase in energy expenditure, and a decrease in hare abundances can have severe implications for conservation of mammals in anthropogenic landscapes. Hence, conservation management could benefit from a better knowledge about fine-scaled effects of resource variability on movement behaviour.
  相似文献   

16.

Context

There are few detailed data for short-term (≤?monthly) fluctuations in flowering and nectar availability at relatively large spatial scales. Such information is critical for understanding the governors of variation in flowering and for the management of floral resources assisting the persistence of nectar consumers in landscapes.

Objectives

To obtain monthly measurements of patterns of nectar availability in a 314,400 ha region, and to relate these patterns to potential environmental predictors.

Methods

Flowering was measured at 83 sites in natural vegetation and in eight domestic gardens in subtropical, eastern Australia. A nectar-availability index was developed was based on nectarivore visitation rates and plant-specific flowering patterns. Spatial–temporal patterns were related to environmental variables using boosted regression trees.

Results

The large between-year variation was due mostly to irregular flowering by several eucalypt species. There was a ‘lean season’ in the austral spring (August–September). Coastal vegetation was an important source of nectar for much of the year, including the lean season. Gardens produced prolific nectar throughout the year, peaking in August–October.

Conclusions

Nectar availability was most closely associated with primary productivity over the previous 12 months, average annual solar radiation, topographic wetness, and rainfall over the previous 6 months, although some relationships seemed counter-intuitive. There were large differences in nectar availabilities among broad vegetation types (especially rainforests vs. sclerophyllous forests), which partially accounted for the unintuitive results.
  相似文献   

17.

Context

Methods for detecting contemporary, fine-scale population genetic structure in continuous populations are scarce. Yet such methods are vital for ecological and conservation studies, particularly under a changing landscape.

Objectives

Here we present a novel, spatially explicit method that we call landscape relatedness (LandRel). With this method, we aim to detect contemporary, fine-scale population structure that is sensitive to spatial and temporal changes in the landscape.

Methods

We interpolate spatially determined relatedness values based on SNP genotypes across the landscape. Interpolations are calculated using the Bayesian inference approach integrated nested Laplace approximation. We empirically tested this method on a continuous population of brown bears (Ursus arctos) spanning two counties in Sweden.

Results

Two areas were identified as differentiated from the remaining population. Further analysis suggests that inbreeding has occurred in at least one of these areas.

Conclusions

LandRel enabled us to identify previously unknown fine-scale structuring in the population. These results will help direct future research efforts, conservation action and aid in the management of the Scandinavian brown bear population. LandRel thus offers an approach for detecting subtle population structure with a focus on contemporary, fine-scale analysis of continuous populations.
  相似文献   

18.

Context

Identifying the drivers shaping biological assemblages in fragmented tropical landscapes is critical for designing effective conservation strategies. It is still unclear, however, whether tropical biodiversity is more strongly affected by forest loss, by its spatial configuration or by matrix composition across different spatial scales.

Objectives

Assessing the relative influence of forest patch and landscape attributes on dung beetle assemblages in the fragmented Lacandona rainforest, Mexico.

Methods

Using a multimodel inference approach we tested the relative impact of forest patch size and landscape forest cover (measures of forest amount at the patch and landscape scales, respectively), patch shape and isolation (forest configuration indices at the patch scale), forest fragmentation (forest configuration index at the landscape scale), and matrix composition on the diversity, abundance and biomass of dung beetles.

Results

Patch size, landscape forest cover and matrix composition were the best predictors of dung beetle assemblages. Species richness, beetle abundance, and biomass decreased in smaller patches surrounded by a lower percentage of forest cover, and in landscapes dominated by open-area matrices. Community evenness also increased under these conditions due to the loss of rare species.

Conclusions

Forest loss at the patch and landscape levels and matrix composition show a larger impact on dung beetles than forest spatial configuration. To preserve dung beetle assemblages, and their key functional roles in the ecosystem, conservation initiatives should prioritize a reduction in deforestation and an increase in the heterogeneity of the matrix surrounding forest remnants.
  相似文献   

19.

Context

Protecting wetlands in cities is challenging. A cost-effective spatial prioritization approach taking into account stakeholder motivations is needed to identify wetlands of conservation interest.

Objectives

This study aims to optimize the efficiency of a systematic conservation planning (SCP) approach to protect nine urban wetland ecosystem services (ES) and biodiversity.

Methods

First, we mapped ES supply and demand to capture their spatial variation as they occur at the wetland scale. Secondly, using wetland property value as cost data, we compared the efficiency of SCP to two multicriteria scoring approaches. Thirdly, we compared SCP alternatives by changing the planning unit scale and conservation objectives (i.e. emphasizing ES demand and focusing on the most important ES).

Results

The total cost of the scoring approach networks was minimally 13 times higher, when compared to the SCP approaches. Consequently, the scoring approaches were at least five times less efficient than SCP per unit of network area ($/m2). Decreasing the size of planning units resulted in further cost reduction, with networks that were up to 92% less costly. We also highlighted that beneficiary demand fulfillment in networks could be optimized without a loss in efficiency. Finally, SCP secured nine ES for the same expenditure as that required to protect four public safety related ES. However, planning solely for these four important ES failed to represent those of other ES.

Conclusions

Our results may provide a tool to better inform land use decision planning in order to mitigate the impacts of urban growth on ES.
  相似文献   

20.

Context

Habitats characterized by improved soil moisture availability can function as microrefugia (hereafter referred to as “refugia”) for the persistence of rare plant species in dry environments. Such areas are dominated by Mediterranean woody vegetation (shrubland and woodland). An analysis of these refugia elucidates their spatial distribution at the landscape scale.

Objectives

Explore whether potential refugia, detected using the upper quantile of the normalized difference vegetation index (NDVI), are related, in space and time, with the survivability of rare species in dry environments.

Methods

We used upper NDVI quantile (25%) values to predict potential refugia in nine selected areas in northern parts of Israel from 1992 to 2011. Next, we developed an index based on the ratio of density (number of observations per area) of rare species in non-refugia versus refugia patches, per site (density of rare species index, DRSI). Finally, we examined the temporal stability of the DRSI using ANOVA and Augmented Dickey–Fuller (ADF) tests.

Results

Refugia classifications and DRSI values for all areas were stable over time (1992–2011). The DRSI values were significantly lower than 1; that is, the density of rare species in the predicted refugia areas was higher than in non-refugia areas.

Conclusions

We assumed that patches of dense woody vegetation, determined by the upper 25% quantile of the NDVI, could be used to identify potential biodiversity refugia in dry environments. This assumption was validated by the DRSI results; it confirms that the local conditions in refugia support rare species.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号