首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reyes CL  Chang G 《Science (New York, N.Y.)》2005,308(5724):1028-1031
Select members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter family couple ATP binding and hydrolysis to substrate efflux and confer multidrug resistance. We have determined the x-ray structure of MsbA in complex with magnesium, adenosine diphosphate, and inorganic vanadate (Mg.ADP.Vi) and the rough-chemotype lipopolysaccharide, Ra LPS. The structure supports a model involving a rigid-body torque of the two transmembrane domains during ATP hydrolysis and suggests a mechanism by which the nucleotide-binding domain communicates with the transmembrane domain. We propose a lipid "flip-flop" mechanism in which the sugar groups are sequestered in the chamber while the hydrophobic tails are dragged through the lipid bilayer.  相似文献   

2.
Locher KP  Lee AT  Rees DC 《Science (New York, N.Y.)》2002,296(5570):1091-1098
The ABC transporters are ubiquitous membrane proteins that couple adenosine triphosphate (ATP) hydrolysis to the translocation of diverse substrates across cell membranes. Clinically relevant examples are associated with cystic fibrosis and with multidrug resistance of pathogenic bacteria and cancer cells. Here, we report the crystal structure at 3.2 angstrom resolution of the Escherichia coli BtuCD protein, an ABC transporter mediating vitamin B12 uptake. The two ATP-binding cassettes (BtuD) are in close contact with each other, as are the two membrane-spanning subunits (BtuC); this arrangement is distinct from that observed for the E. coli lipid flippase MsbA. The BtuC subunits provide 20 transmembrane helices grouped around a translocation pathway that is closed to the cytoplasm by a gate region whereas the dimer arrangement of the BtuD subunits resembles the ATP-bound form of the Rad50 DNA repair enzyme. A prominent cytoplasmic loop of BtuC forms the contact region with the ATP-binding cassette and appears to represent a conserved motif among the ABC transporters.  相似文献   

3.
We used site-directed spin-labeling and electron paramagnetic resonance spectroscopy to characterize the conformational motion that couples energy expenditure to substrate translocation in the multidrug transporter MsbA. In liposomes, ligand-free MsbA samples conformations that depart from the crystal structures, including looser packing and water penetration along the periplasmic side. Adenosine triphosphate (ATP) binding closes the substrate chamber to the cytoplasm while increasing hydration at the periplasmic side, consistent with an alternating access model. Accentuated by ATP hydrolysis, the changes in the chamber dielectric environment and its geometry provide the likely driving force for flipping amphipathic substrates and a potential exit pathway. These results establish the structural dynamic basis of the power stroke in multidrug-resistant ATP-binding cassette (MDR ABC) transporters.  相似文献   

4.
植物ABC转运蛋白与次生代谢产物的跨膜转运   总被引:1,自引:0,他引:1  
ABC(ATP-Binding Cassette)转运蛋白是目前已知最大、功能最广泛的蛋白家族,参与生物体内多种物质的转运,因其在生物体内与肿瘤细胞耐药性等一些重要的生理过程密切相关而引起了人们的广泛关注。研究发现,在已完成全基因组测序的生物中,ABC转运蛋白在拟南芥和水稻中数量最多,推测与植物次生代谢产物的跨膜转运相关。植物产生生物碱、萜类化合物、酚类等大量次生代谢产物,保护植物体免受环境中生物和非生物胁迫的损伤。这些化合物的累积和排泌被高度调节,ABC转运蛋白在其中起着重要的作用。本综述介绍了植物ABC转运蛋白及其在植物次生代谢产物累积和跨膜转运中的研究进展。  相似文献   

5.
腺苷三磷酸结合盒转运蛋白(ATP-binding cassette transporter,ABC转运蛋白)是一类大量存在于原核生物及真核生物的跨膜转运蛋白,其种类繁多、家族庞大且功能多样,主要功能是利用ATP水解产生的能量将底物进行逆浓度梯度跨膜运输,同时还参与抗原传递、信号传导和细胞解毒等很多重要的生物生理过程。综述了ABC转运蛋白的结构特点、跨膜吸收机制及影响因素,为研究ABC转运蛋白跨膜吸收转运养分离子及其抵抗非生物逆境胁迫提供理论支撑和研究思路。  相似文献   

6.
Tricyclic antidepressants exert their pharmacological effect-inhibiting the reuptake of serotonin, norepinephrine, and dopamine-by directly blocking neurotransmitter transporters (SERT, NET, and DAT, respectively) in the presynaptic membrane. The drug-binding site and the mechanism of this inhibition are poorly understood. We determined the crystal structure at 2.9 angstroms of the bacterial leucine transporter (LeuT), a homolog of SERT, NET, and DAT, in complex with leucine and the antidepressant desipramine. Desipramine binds at the inner end of the extracellular cavity of the transporter and is held in place by a hairpin loop and by a salt bridge. This binding site is separated from the leucine-binding site by the extracellular gate of the transporter. By directly locking the gate, desipramine prevents conformational changes and blocks substrate transport. Mutagenesis experiments on human SERT and DAT indicate that both the desipramine-binding site and its inhibition mechanism are probably conserved in the human neurotransmitter transporters.  相似文献   

7.
The development of simultaneous resistance to multiple structurally unrelated drugs is a major impediment to cancer chemotherapy. Multidrug resistance in human KB carcinoma cells selected in colchicine, vinblastine, or Adriamycin is associated with amplification of specific DNA sequences (the multidrug resistance locus, mdr1). During colchicine selection resistance is initially accompanied by elevated expression of a 4.5-kilobase mdr1 messenger RNA (mRNA) without amplification of the corresponding genomic sequences. During selection for increased levels of resistance, expression of this mRNA is increased simultaneously with amplification of mdr1 DNA. Increased expression and amplification of mdr1 sequences were also found in multidrug-resistant sublines of human leukemia and ovarian carcinoma cells. These results suggest that increased expression of mdr1 mRNA is a common mechanism for multidrug resistance in human cells. Activation of the mdr1 gene by mutations or epigenetic changes may precede its amplification during the development of resistance.  相似文献   

8.
The crystal structure of a putative metal-chelate-type adenosine triphosphate (ATP)-binding cassette (ABC) transporter encoded by genes HI1470 and HI1471 of Haemophilus influenzae has been solved at 2.4 angstrom resolution. The permeation pathway exhibits an inward-facing conformation, in contrast to the outward-facing state previously observed for the homologous vitamin B12 importer BtuCD. Although the structures of both HI1470/1 and BtuCD have been solved in nucleotide-free states, the pairs of ABC subunits in these two structures differ by a translational shift in the plane of the membrane that coincides with a repositioning of the membrane-spanning subunits. The differences observed between these ABC transporters involve relatively modest rearrangements and may serve as structural models for inward- and outward-facing conformations relevant to the alternating access mechanism of substrate translocation.  相似文献   

9.
细菌耐药基因cfr的研究进展   总被引:1,自引:0,他引:1  
随着抗菌药物在兽医临床的广泛使用,耐药菌株数量逐年上升,使耐药机制成为研究热点。耐药基因cfr(chloramphenicol-florfenicol resistance)可编码合成细菌的23S rRNA甲基化酶,该酶可影响抗菌药物与转肽酶结合,使细菌产生耐药性。而携带cfr基因的菌株可对氯霉素类、林可酰胺类、截短侧耳素、链阳菌素A和恶唑烷酮类五大类常用抗菌药物耐药,使细菌产生多药耐药。因此耐药基因cfr的作用机理和传播机制的研究是细菌耐药性研究的关键。对多重耐药基因cfr的发现、危害、耐药机制及其在不同类型菌体中的传播机制和流行情况进行综述,讨论了目前研究中存在的问题,并对未来的发展提出建议,可为进一步建立cfr基因检测网、新药研制和阻断cfr基因的传播提供参考和依据。  相似文献   

10.
Argonaute proteins and small interfering RNAs (siRNAs) are the known signature components of the RNA interference effector complex RNA-induced silencing complex (RISC). However, the identity of "Slicer," the enzyme that cleaves the messenger RNA (mRNA) as directed by the siRNA, has not been resolved. Here, we report the crystal structure of the Argonaute protein from Pyrococcus furiosus at 2.25 angstrom resolution. The structure reveals a crescent-shaped base made up of the amino-terminal, middle, and PIWI domains. The Piwi Argonaute Zwille (PAZ) domain is held above the base by a "stalk"-like region. The PIWI domain (named for the protein piwi) is similar to ribonuclease H, with a conserved active site aspartate-aspartate-glutamate motif, strongly implicating Argonaute as "Slicer." The architecture of the molecule and the placement of the PAZ and PIWI domains define a groove for substrate binding and suggest a mechanism for siRNA-guided mRNA cleavage.  相似文献   

11.
EmrE is a prototype of the Small Multidrug Resistance family of efflux transporters and actively expels positively charged hydrophobic drugs across the inner membrane of Escherichia coli. Here, we report the x-ray crystal structure, at 3.7 angstrom resolution, of one conformational state of the EmrE transporter in complex with a translocation substrate, tetraphenylphosphonium. Two EmrE polypeptides form a homodimeric transporter that binds substrate at the dimerization interface. The two subunits have opposite orientations in the membrane and adopt slightly different folds, forming an asymmetric antiparallel dimer. This unusual architecture likely confers unidirectionality to transport by creating an asymmetric substrate translocation pathway. On the basis of available structural data, we propose a model for the proton-dependent drug efflux mechanism of EmrE.  相似文献   

12.
Membrane transport proteins that transduce free energy stored in electrochemical ion gradients into a concentration gradient are a major class of membrane proteins. We report the crystal structure at 3.5 angstroms of the Escherichia coli lactose permease, an intensively studied member of the major facilitator superfamily of transporters. The molecule is composed of N- and C-terminal domains, each with six transmembrane helices, symmetrically positioned within the permease. A large internal hydrophilic cavity open to the cytoplasmic side represents the inward-facing conformation of the transporter. The structure with a bound lactose homolog, beta-D-galactopyranosyl-1-thio-beta-D-galactopyranoside, reveals the sugar-binding site in the cavity, and residues that play major roles in substrate recognition and proton translocation are identified. We propose a possible mechanism for lactose/proton symport (co-transport) consistent with both the structure and a large body of experimental data.  相似文献   

13.
Feng L  Yan H  Wu Z  Yan N  Wang Z  Jeffrey PD  Shi Y 《Science (New York, N.Y.)》2007,318(5856):1608-1612
Regulated intramembrane proteolysis by members of the site-2 protease (S2P) family is an important signaling mechanism conserved from bacteria to humans. Here we report the crystal structure of the transmembrane core domain of an S2P metalloprotease from Methanocaldococcus jannaschii. The protease consists of six transmembrane segments, with the catalytic zinc atom coordinated by two histidine residues and one aspartate residue approximately 14 angstroms into the lipid membrane surface. The protease exhibits two distinct conformations in the crystals. In the closed conformation, the active site is surrounded by transmembrane helices and is impermeable to substrate peptide; water molecules gain access to zinc through a polar, central channel that opens to the cytosolic side. In the open conformation, transmembrane helices alpha1 and alpha6 separate from each other by 10 to 12 angstroms, exposing the active site to substrate entry. The structure reveals how zinc embedded in an integral membrane protein can catalyze peptide cleavage.  相似文献   

14.
Mobilization of fatty acids from triglyceride stores in adipose tissue requires lipolytic enzymes. Dysfunctional lipolysis affects energy homeostasis and may contribute to the pathogenesis of obesity and insulin resistance. Until now, hormone-sensitive lipase (HSL) was the only enzyme known to hydrolyze triglycerides in mammalian adipose tissue. Here, we report that a second enzyme, adipose triglyceride lipase (ATGL), catalyzes the initial step in triglyceride hydrolysis. It is interesting that ATGL contains a "patatin domain" common to plant acyl-hydrolases. ATGL is highly expressed in adipose tissue of mice and humans. It exhibits high substrate specificity for triacylglycerol and is associated with lipid droplets. Inhibition of ATGL markedly decreases total adipose acyl-hydrolase activity. Thus, ATGL and HSL coordinately catabolize stored triglycerides in adipose tissue of mammals.  相似文献   

15.
中药复方制剂对大肠埃希菌多重耐药基因AcrA的影响   总被引:1,自引:0,他引:1  
试验分别用精提和粗提的中药复方制剂"连黄"作用多重耐药的大肠埃希菌,提取其基因组DNA,并以大肠埃希菌AcrA的编码序列设计引物,成功扩增出AcrA基因中1 005bp大小的片段,与中药作用前的多重耐药基因AcrA的碱基序列进行对比分析.从分子生物学水平上探讨中药复方制剂时大肠埃希菌多重耐药基因AcrA的影响.结果表明.精提和粗提的中药复方制剂均能改变AcrA基因的编码序列,但精提制剂较粗提制剂对AcrA基因的影响更大.  相似文献   

16.
苹果山梨醇转运子cDNA的克隆及其序列分析   总被引:1,自引:0,他引:1  
[目的]为进一步研究糖运输蛋白的功能、作用机理奠定基础。[方法]以嘎啦苹果叶片总RNA为模板,根据报道的山梨醇转运子的保守区设计引物,对山梨醇转运子cDNA片段的PCR扩增,PCR产物的克隆和测序和序列分析。[结果]经RT-PCR获得一条长度为581bp的片段,回收并进行测序,该片断编码181个氨基酸。应用B lastn和B lastx软件,通过与GenBank蛋白数据库比对分析发现其蛋白序列与MdSOT4、MdSOT6、MDSOT1 3种苹果(Malusx domestica)同源性分别为95%、92%、92%;酸樱桃(Prunus cerasus)78%;大豆(Glycinemax)77%;应用SMART软件分析,含有4个AgrB结构域,为一种跨膜蛋白结构。[结论]克隆得到的片段确定为苹果山梨醇转运子基因。  相似文献   

17.
EmrD is a multidrug transporter from the Major Facilitator Superfamily that expels amphipathic compounds across the inner membrane of Escherichia coli. Here, we report the x-ray structure of EmrD determined to a resolution of 3.5 angstroms. The structure reveals an interior that is composed mostly of hydrophobic residues, which is consistent with its role transporting amphipathic molecules. Two long loops extend into the inner leaflet side of the cell membrane. This region can serve to recognize and bind substrate directly from the lipid bilayer. We propose that multisubstrate specificity, binding, and transport are facilitated by these loop regions and the internal cavity.  相似文献   

18.
Interfacial catalysis: the mechanism of phospholipase A2   总被引:16,自引:0,他引:16  
  相似文献   

19.
Triosephosphate isomerase (TIM) is used as a model system for the study of how a localized conformational change in a protein structure is produced and related to enzyme reactivity. An 11-residue loop region moves more than 7 angstroms and closes over the active site when substrate binds. The loop acts like a "lid" in that it moves rigidly and is attached by two hinges to the remainder of the protein. The nature of the motion appears to be built into the loop by conserved residues; the hinge regions, in contrast, are not conserved. Results of molecular dynamics calculations confirm the structural analysis and suggest a possible ligand-induced mechanism for loop closure.  相似文献   

20.
Drug resistance represents a major obstacle to successful cancer chemotherapy. However, the specific biochemical mechanisms responsible for clinical drug resistance are unknown. In these studies resistance to the antitumor agent adriamycin was found to involve two mechanisms, one that decreased drug accumulation by the P170 mechanism and another that altered the glutathione redox cycle, an important pathway in the detoxification of reactive oxygen. This dual mechanism of drug resistance was demonstrated in cell lines that had acquired the multidrug-resistant phenotype and in human colorectal cancer cells with de novo resistance. These studies support a model of acquired and de novo multidrug resistance that includes alterations in both drug accumulation and the glutathione redox cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号