首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Maize (Zea mays L.) morphological traits influence light attenuation within the canopy, and, ultimately, yield. The objectives of this 3-year field study were to: (i) examine the morphological characteristics of specific genotypes using varieties of maize that were widely used in Chinese agriculture from the 1950s to the 2000s; (ii) assess the canopies and yields of maize populations in relation to changes in their morphological characteristics. There were significant decrease on the ear ratio, center of gravity height and leaf angle with improved genotypes regardless of plant density. However, the ear leaves and adjacent leaves appeared to be longer in improved maize varieties. The mean leaf orientation value (LOV) and individual LOVs increased considerably during the time series of the genotypes, but more obvious changes in LOV occurred in the uppermost leaves. The average leaf area (LA) per plant and LA on the ears increased significantly from the 1950s to the 2000s. At the optimum density, current hybrid's canopy architecture was more compact, having short plant height and more upright leaf. The SDLA above or under ear significantly increased with improving genotypes, mainly due to new hybrids allowing the use of more individuals per area and thus increasing leaf area index (LAI). At the highest plant density, new hybrids had the rates of light transmittance (0.04–0.05), low attenuation coefficient (K = 0.47) and gained the highest yield. Leaf angle and LOV were highly correlated with TPAR/IPAR on ear, K, grain yield. Consequently, yield improvement in maize was probably a result of increased plant density tolerance through dependence on changes in leaf orientation characteristics.  相似文献   

2.
Summary Maize (Zea mays L.) breeders are interested in the effects of recurrent selection for grain yield on other traits. Changes in plant traits could alter agronomic acceptability of the populations under selection, and observed improvements in grain yield could be explained by changes in ear traits. We evaluated changes in combining ability for plant and ear traits of BS10(FR), BS11(FR), BSSS(R), BSCB1(R), and Lancaster Surecrop associated with recurrent selection for grain yield.Recurrent selection procedures generally did not change plant and ear heights or date of silking of testcrosses of populations or of the population crosses, BS10(FR)×BSS11(FR) and BSSS(R)×BSCB1(R). Grain yield improvements, however, were associated with increases in ear-sink size.Journal Paper No. J 9517 of the Iowa Agriculture and Home Economics Exp. Stn., Ames, Iowa. Project 2152.  相似文献   

3.
Agroforestry systems are reported as climate‐resilient productive systems, but it is yet unclear how tree shade affects crops performance. The aim of this work was to assess how the phenology, plant traits and grain yield of wheat and barley were affected by shade. In an open greenhouse experiment, we cultivated in pots nine cultivars differing in precocity for each species and imposed three artificial shading levels (S0 ~ 0%, S1 ~ 25%, S2 ~ 50%) at the start of cereal booting. Our results showed that shade speeded up first growth stages in both species, until the starting of milk development. Barley showed consistent phenological responses to the three irradiance levels among cultivars, but not wheat that showed larger phenological differences among cultivars at moderate shade. Deep shade prolonged the time needed for wheat grain ripening. Both species increased grain yield by 15%–20% with shade, driven by shade‐acclimations of plant traits that differed among species. For wheat, grain yield was determined by the assemblage of traits that contribute to yield, such as grain weight, precocity and non‐photochemical quenching, while, for barley, SPAD value, precocity to reach phenological stages, grains per spike and plant height had the strongest influence. These traits varied widely among cultivars and seem of interest to identify best suited cultivars for shading conditions of Mediterranean agroforestry systems.  相似文献   

4.
Plant breeders have been trying to predict the performance of hybrids based on their parental performance. One application of molecular markers is its use in selection. The objectives were to map quantitative trait loci (QTL) and verify its congruence in maize lines and in their testcrosses and verify the possibility to select testcrosses from the predicted means of the lines by using information from markers. Two-hundred and fifty six lines and the testcrosses of these lines with two testers were evaluated in six environments, considering grain yield, plant lodging, days to anthesis and silking, anthesis-silking interval, plant and ear height and ear placement. QTL were mapped in the lines and in testcrosses and the predicted means of the lines were computed based on QTL effects and in all markers of the genome. The congruence of QTL detected in the lines and testcrosses were small for all traits. The correlations between the predicted means of the lines and the phenotypic means of the testcrosses ranged from low for grain yield to moderate for cycle and stature traits. The highest coincidences of the lines and selected testcrosses were observed for cycle and stature traits and the lowest for grain yield. Even by using molecular markers information, it is only possible to predict the testcrosses performance from the lines information to less complex traits and with reduced dominance effect. For complex traits and with pronounced dominance effect, information of markers must be obtained directly in the testcrosses, so they can be used for selection.  相似文献   

5.
6.
Summary Experiments were conducted during the growing seasons of 1975 and 1976 to determine changes in morphological and physiological traits associated with recurrent selection for grain yield in maize (Zea mays L.). Four variety hybrids, BSSS(R)CO x BSCB1(R)CO, BSSS(R)C7 x BSCB1(R)C7 [from a reciprocal recurrent selection program involving Iowa Stiff Stalk Synthetic (BSSS) and Iowa Corn Borer Synthetic #1 (BSCB1)], BS12CO x B14A, and BS12C6 x B14A [from a half-sib selection program involving the open-pollinated variety Alph (BS12) and the inbred tester B14A] were grown at 59 300 and 98 800 plants/ha near Ames, Iowa We obtained data on CO2-exchange rate (an estimate of photosynthetic rate), grain yield, grain-yield components, flowering dates, maturity traits, light interception and use, shelling percentage, harvest index, and various other plant traits.CO2-exchange rate did not change appreciably with recurrent selection for yield. Grain yield per hectare and per plant were larger for the improved than unimproved hybrids. Grain-yield components did not change significantly with recurrent selection. Kernel weight of BSSS(R)C7 x BSCB1 (R)C7, however, was larger than that of BSSS(R)C0 x BSCB1(R)C0. Pollen-shed-to-silking interval was shorter for the improved than the unimproved hybrids, and grain-filling duration was longer in C7 x C7 than in C0 x C0 of the reciprocal recurrent selection program. Furthermore, improved hybrids were characterized by smaller tassels and more upright canopies. Usually, plant traits and leaf-area-related traits were similar for all hybiids.Although dry-matter productivity was similar for all hybrids, those that were improved by recurrent selection produced more grain per unit leaf area and per unit light interception. Also, BS12C6 x B14A was characterized by a higher harvest index than BS12CO x B14A.We concluded that the source (i.e., photosynthetic capacity) was not limiting grain yield in BSSS(R) x BSCB1(R) and BS12. Increased grain yields that resulted from recurrent selection were consequences of longer grain-filling duration for BSSS(R) x BSCB1(R) and increased translocation of photosynthate from source to sink for both BSSS(R) x BSCB1(R) and BS12.Journal Paper J-8953 of the Iowa Agriculture and Home Economics Exp. Stn., Ames, Iowa. Project No. 2152.  相似文献   

7.
To understand the genetic gains of grain yield in the Southern China Winter Wheat Region (SCWWR), two yield potential trials, i.e., YPT 1 including 11 leading cultivars from the Middle and Low Yangtze Valley (Zone III) and YPT 2 including 15 leading cultivars from the Southwestern China Region (Zone IV) from 1949 to 2000, were conduced during the 2001–2003 cropping seasons. A completely randomized block design of three replicates was employed with controlled field environments. Molecular markers were used to detect the presence of dwarfing genes and the 1B/1R translocation. Results showed that average annual genetic gain was 0.31% (P < 0.05) or 13.96 kg/ha/year and 0.74% (P < 0.01) or 40.80 kg/ha/year in Zones III and IV, respectively. In YPT 1, changes of all other traits were not significant, but plant height was significantly reduced. In YPT 2, the genetic improvement of grain yield was primarily attributed to the increased thousand kernel weight (TKW) (0.65%, P < 0.01) and kernel weight/spike (0.87%, P < 0.01), reduced plant height and increased harvest index (HI). The dwarfing gene Rht 8 was most frequently present (46.1%), Rht-B1b was observed in three genotypes in Zone III, and Rht-D1b was present in only one genotype in Zone IV. The 1B/1R translocation was present in four genotypes. Utilization of Italian germplasm and development of landmark cultivar Fan 7 were the key factors for grain yield improvement in SCWWR. The future challenge of wheat breeding in this region is to continue improving grain yield and disease resistance, and to develop cultivars suitable for the reduced tillage of wheat/rice double cropping. Utilization of Mexican germplasm could provide opportunities for future yield improvement.  相似文献   

8.
T. P. Singh 《Euphytica》1970,19(3):394-397
Summary Thirty-five varieties of maize from different ecogeographical regions were planted to study the relationship between stalk characters and grain yield in maize. Grain yield was positively correlated with three stalk traits under investigation. Highly significant positive correlations existed among weight of a 5 cm stalk section, crushing strength and rind thickness. In general, genotypic correlation coefficients were higher than the phenotypic correlation coefficients. The present study indicates that it is possible to develop a high-yielding variety with superior stalk strength.  相似文献   

9.
Maize is the major staple food in southern Africa with human consumption averaging 91 kg capita?1 year?1, and normal maize is nutritionally deficient in two essential amino acids: tryptophan and lysine. Despite the development of quality protein maize (QPM) with high tryptophan and lysine, stunting and kwashiorkor remain high in sub-Saharan Africa due to lack of high yielding and adapted QPM varieties. This study aimed at evaluating a new generation of QPM varieties for yield and related agronomic traits. Before the QPM varieties were validated on-farm, they were simultaneously selected on-station under five different management conditions. In the 2014/2015 season, 10 elite QPM varieties were selected from on-station trials based on high grain yield and stability, and were compared with the best commercial check varieties on-farm. During the 2015/2016 season, some poorly performing QPM varieties were dropped while new ones were added, resulting in 12 elite QPM varieties being evaluated on-farm. Analysis of variance for the 2014/2015 season showed non-significant hybrid × management condition interaction. Mean grain yields across management conditions ranged from 1.5 to 4 t ha?1 and were higher under mild stress (2.3–5.5 t ha?1) compared to random stress conditions (1.1–2.9 t ha?1). Broad sense heritability estimates were low to moderate (11–69%), and thus could still permit effective selection of better genotypes. Yield advantage ranged from 12 to 25% across the 2 years, suggesting effective genetic gains in QPM breeding. QPM hybrids CZH132044Q, CZH142238Q and CZH142236Q were stable and high yielding. Promotion of such QPM hybrids may help reduce protein energy malnutrition.  相似文献   

10.
Grain yield and its component traits are essential targets in maize breeding. These traits are genetically complex and controlled by a large number of quantitative trait loci (QTL). The aim of this study was to compile reported QTL and major genes for grain yield and its component traits in a QTL atlas, as a valuable resource for the maize community. To this end, 1,177 QTL related to maize yield were collected from 56 studies published between 1992 and 2018. These QTL were projected to genetic map “IBM2 2008 Neighbors”, which led to the identification of 135 meta-QTL. Some genomic regions appear to be hotspots for yield-related meta-QTL, often affecting more than one of the investigated traits. Moreover, we catalogued 20 major maize loci associated with yield and identified 65 maize homologs of 21 rice yield-related genes. Interestingly, we found that a significant proportion of them are located in meta-QTL regions. Collectively, this study provides a reference for QTL fine-mapping and gene cloning, as well as for molecular marker-assisted breeding of yield-related traits in maize.  相似文献   

11.
Genetically diverse germplasm is needed to increase frequency of favorable alleles of economically important traits in maize improvement. The objectives of this study were to determine the genetic components involved in grain yield and grain quality traits, and provide preliminary assessment of useful heterotic groups and patterns from a large sample of maize populations adapted to the northern U.S. Corn Belt. Sixteen populations were used in the diallel mating design following Gardner–Eberhart Analysis II to estimate variety (v i ) and heterosis (h ij ) genetic effects for grain yield and grain quality traits. Specific heterosis (s ij ) and predicted means of population crosses for grain yield were used to evaluate the heterotic relationships among the populations. Data for grain yield and grain quality traits were generated in partially balanced single lattice experiments across North Dakota (ND) locations in 2010, 2011, and 2012. Analyses of variance showed significant differences among genotypes. Heterosis effects explained most of the differences among diallel entries for grain yield, while v i effects had greater influence on grain quality traits. NDL, EARLYGEM 21c, NDSCD(FS-CS)C2, NDSS, and NDSM(M-FS)C9 were identified as elite populations for grain quality improvement. NDSS × NDBS22(R-T1)C9 and NDBS1011 × EARLYGEM 21c showed high s ij effects for grain yield with good grain quality. NDSS and EARLYGEM 21c represent stiff stalk synthetic (SSS) group, and NDBS1011 fall under non-SSS group. Further studies need to validate the heterotic group of NDBS22(R-T1)C9. Recurrent and pedigree selection programs will be established for selected populations and population crosses to integrate pre-breeding with cultivar development.  相似文献   

12.
采用裂区设计,以4.5万株/hm~2和5.7万株/hm~2 2个密度为主处理,以平展型至半紧凑型和紧凑型2种类型7个玉米品种为副处理进行随机区组排列,研究不同密度对玉米品种产量和农艺性状的影响。结果表明:密度5.7万株/hm~2的产量较4.5万株/hm~2产量明显提高,其中冠玉568在5.7万株/hm~2密度下的产量较4.5万株/hm~2增产25.7%,差异极显著;冠玉1129在5.7万株/hm~2密度下的产量较4.5万株/hm~2高18.4%,差异极显著。冠玉568和冠玉1129这2个品种在西南地区既可以4.5万株/hm~2的密度栽培,也可以5.7万株/hm~2的密度栽培,冠玉164只适宜4.5万株/hm~2的密度栽培。  相似文献   

13.
14.
The purpose of this research was to evaluate the combining ability of six local Iranian and one imported cantaloupe cultivar. Heritability of traits was estimated using a half‐diallel mating design. Seven parents and their crosses were evaluated in 2013 and 2014. The greatest general combining ability (GCA) for yield and fruit number was for “Rish‐baba” (0.53 kg/plant and 0.3, respectively). The cultivar “Ananasi” had the highest GCA for fruit weight and soluble solids content (SSC) (0.088 kg and 1.4, respectively). “Ananasi” presented the highest GCA values for fruit firmness, chlorophyll a and b and carotenoid content, as well as the highest total chlorophyll content. The cross Garmak × Rish‐baba showed the highest specific combining ability (SCA) for yield with heterosis value of 99%. High heritability estimates for SSC (0.52), flesh thickness (0.61) and concentration of chlorophyll a (0.7) were obtained. Although there were significant SCAs for yield, the parents are suggested to be improved prior to hybrid development. The parent “Ananasi” appears to be a suitable donor in breeding programmes.  相似文献   

15.
Teosinte, an ancestor to modern maize, displays an excellent performance regarding resistance to stress, but its yield potential has rarely been reported. To evaluate the potential contribution of teosinte to maize improvement, two maize–teosinte backcrossed recombination inbred line (RIL) populations and their corresponding test-cross hybrids were planted for trait assessment. In RN and ZP RIL populations, the average coefficients of variation of 31 agronomic traits were 9.14% (Range, 0.38%‒25.21%) and 6.85% (Range, 0.55%‒27.73%), respectively. The correlation coefficients of 13 common shared traits between RIL populations and test-cross hybrid populations ranged from 0.10 to 0.60 and from 0.06 to 0.72, respectively. A total of 39 and 3 recombined inbred lines, and 29 and 47 test-cross hybrids exhibited higher yields than their checks (RP125, Zheng58, CD189 and ZD958) with the BLUP data, respectively. Furthermore, four test-cross hybrids including RN034/SCML1950, ZP068/Chang7-2, ZP079/Chang7-2 and ZP122/Chang7-2 showed a more stable yield performance, with yield gains of +7.07%, +3.64%, +5.83% and +3.82% over checks, respectively. In conclusion, teosinte could serve as an alien germplasm for maize breeding.  相似文献   

16.
Summary One of the primary avenues of improving the biological efficiency of crop plants is through the improvement of the leaf and canopy photosynthetic rates. However, the question whether the superiority of hybrids in respect of productivity potential could be traced, in retrospective fashion, to the photosynthetic parameters should be answered first. Once established and standardized, such indices could be streamlined in innovative breeding to predict the heterotic combinations for final yield formation. To answer this question, the photosynthetic rate and other components of photosynthetic efficiency were monitored among eight inbred stocks of maize (selected for variable photosynthetic rate from a previous study) and their all possible one-way crosses. The results demonstrated extensive heterosis in respect of photosynthetic rate and other photosynthetic indices which, in turn, was also realized in terms of higher biomass productivity and yield. Nonetheless, high leaf photosynthesis alone did not result in higher grain yield. On the contrary, component interaction among the photosynthetic indices like photosynthetic rate, leaf area/plant, number of leaves and chlorophyll content on one hand and the complementary gene action on the other, could be held responsible for higher yields in hybrids. Since the components of photosynthetic efficiency can predict heterosis for biomass and grain yield upto a reasonable extent, judicious incorporation of such indices in selection parameters for applied genetic protocols can add yet another dimension to the strategies for future yield improvements.  相似文献   

17.
玉米产量-密度关系年代演化趋势的Meta分析   总被引:9,自引:0,他引:9  
为明确中国玉米产量-密度试验结果的年代演化趋势,进一步探索提高玉米产量的突破方向和理论依据,汇集从1950s到2000s中国玉米产量-密度的文献结果,拟合产量-密度抛物线模型,剔除异常后进行直方图、相关、通径等Meta分析。结果表明,1950s和1960s玉米产量明显低于1970s和1980s,1990s以来产量持续增加,2000s最大,为10.5 t hm-2,1960s以来年均增益150 kg hm-2。最佳密度年代均值在4.5~6.8株 m-2之间,呈现1950s 和1960s<1970s 和1980s<1990s,但是, 2000s却小于1990s。单株产量年代均值在0.08~0.17 kg之间,呈现1950s>1960s和1970s<1980s,且1990s以来持续上升,2000s上升幅度更为明显。1990s以来密度偏离最佳值引起的减产幅度呈现上升趋势。在持续增加密度的同时,通过育种和栽培途径提高单株产量,是玉米更高产的努力方向。  相似文献   

18.
19.
Jose Vásquez  Eloy Mora 《Euphytica》2007,153(3):339-342
Three sowing date trials, each planted with one cultivar, were performed to measure the natural incidence of the Maize rayado fino virus (MRFV). The lowest incidences (1–6%) were obtained at the sowing dates normally practised in the tested regions. Earlier or later sowing dates had higher to much higher incidences (up to 18 and 32%). Two cultivar trials, one with four cultivars and one with eight cultivars, showed significant differences in incidence, ranging from 14.0% in ‘Iniap-160’ to 2.0% in ‘Cadet-2’. In one trial with plots of 1000 m2, the cultivar Iniap-122 was sown at three sowing dates. In each plot, plants that developed MRFV symptoms at the 8–10 leaf stage, at the 12–14 leaf stage and at the emergence of tassels were marked. Marked MRFV-affected plants were compared with non-MRFV-affected plants in their neighbourhood to estimate yield loss due to MRFV. The yield losses at the three sowing dates were 2.5, 1.6 and 4.8%, respectively. It was concluded that the yield loss due to MRFV is quite small provided sowing is restricted to the normal sowing period.  相似文献   

20.
Sequential path analysis of grain yield and its components in maize   总被引:2,自引:0,他引:2  
The efficiency of a breeding programme depends mainly on the direction and magnitude of the association between yield and its components and also the relative importance of each factor involved in contributing to grain yield. The purpose of this research is to describe the application of causal path analysis to grain yield in maize (Zea mays L.) to take into account the sequential development of yield components. Causal-admissible path analysis was performed assuming unidirectional causal relationships among yield components of eight maize populations. Sequential path analysis of the five yield components studied revealed that ears per plant had the highest direct effect on grain yield. However, the indirect effects of component traits via number of grains per ear was maximum. It was concluded that the number of kernels per ear, prolificacy, and grain size serve as potential characters in breeding for superior lines for grain yield in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号