首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Harding AK 《Science (New York, N.Y.)》1991,251(4997):1033-1038
Electromagnetic phenomena occurring in the strong magnetic fields of neutron stars are currently of great interest in high-energy astrophysics. Observations of rotation rate changes and cyclotron lines in pulsars and gamma-ray bursts indicate that surface magnetic fields of neutron stars often exceed 10(12) gauss. In fields this strong, where electrons behave much as if they were in bound atomic states, familiar processes undergo profound changes, and exotic processes become important. Strong magnetic fields affect the physics in several fundamental ways: Energies perpendicular to the field are quantized, transverse momentum is not conserved, and electron-positron spin is important. Neutron stars therefore provide a unique laboratory for the study of physics in extremely high fields that cannot be generated on Earth.  相似文献   

2.
Pulsars are remarkable clocklike celestial sources that are believed to be rotating neutron stars formed in supernova explosions. They are valuable tools for investigations into topics such as neutron star interiors, globular cluster dynamics, the structure of the interstellar medium, and gravitational physics. Searches at radio and x-ray wavelengths over the past 5 years have resulted in a large increase in the number of known pulsars and the discovery of new populations of pulsars, posing challenges to theories of binary and stellar evolution. Recent images at radio, optical, and x-ray wavelengths have revealed structures resulting from the interaction of pulsar winds with the surrounding interstellar medium, giving new insights into the physics of pulsars.  相似文献   

3.
Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.  相似文献   

4.
Millisecond pulsars are old neutron stars that have been spun up to high rotational frequencies via accretion of mass from a binary companion star. An important issue for understanding the physics of the early spin evolution of millisecond pulsars is the impact of the expanding magnetosphere during the terminal stages of the mass-transfer process. Here, I report binary stellar evolution calculations that show that the braking torque acting on a neutron star, when the companion star decouples from its Roche lobe, is able to dissipate >50% of the rotational energy of the pulsar. This effect may explain the apparent difference in observed spin distributions between x-ray and radio millisecond pulsars and help account for the noticeable age discrepancy with their young white dwarf companions.  相似文献   

5.
It is proposed that high-velocity pulsars are produced in extended galactic halos, and possibly in extragalactic space, from primordial (population III) stars. Such a population of neutron stars could provide an explanation for the gamma-ray bursters and would then accommodate the possibility that most bursters are not in the visible parts of galaxies.  相似文献   

6.
Olive KA 《Science (New York, N.Y.)》1991,251(4998):1194-1199
A transition from normal hadronic matter (such as protons and neutrons) to quark-gluon matter is expected at both high temperatures and densities. In physical situations, this transition may occur in heavy ion collisions, the early universe, and in the cores of neutron stars. Astrophysics and cosmology can be greatly affected by such a phase transition. With regard to the early universe, big bang nucleosynthesis, the theory describing the primordial origin of the light elements, can be affected by inhomogeneities produced during the transition. A transition to quark matter in the interior by neutron stars further enhances our uncertainties regarding the equation of state of dense nuclear matter and neutron star properties such as the maximum mass and rotation frequencies.  相似文献   

7.
Pines D 《Science (New York, N.Y.)》1980,207(4431):597-606
During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.  相似文献   

8.
Silk J 《Science (New York, N.Y.)》1991,251(4993):537-541
Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10(6) to 10(8) solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by non-degenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable x-ray signal associated with dark matter aggregations in galaxy halos and galaxy cluster cores.  相似文献   

9.
Soft gamma repeaters (SGRs) and anomalous x-ray pulsars form a rapidly increasing group of x-ray sources exhibiting sporadic emission of short bursts. They are believed to be magnetars, that is, neutron stars powered by extreme magnetic fields, B ~ 10(14) to 10(15) gauss. We report on a soft gamma repeater with low magnetic field, SGR 0418+5729, recently detected after it emitted bursts similar to those of magnetars. X-ray observations show that its dipolar magnetic field cannot be greater than 7.5 × 10(12) gauss, well in the range of ordinary radio pulsars, implying that a high surface dipolar magnetic field is not necessarily required for magnetar-like activity. The magnetar population may thus include objects with a wider range of B-field strengths, ages, and evolutionary stages than observed so far.  相似文献   

10.
Millisecond pulsars are thought to be neutron stars that have been spun-up by accretion of matter from a binary companion. Although most are in binary systems, some 30% are solitary, and their origin is therefore mysterious. PSR J1719-1438, a 5.7-millisecond pulsar, was detected in a recent survey with the Parkes 64-meter radio telescope. We show that this pulsar is in a binary system with an orbital period of 2.2 hours. The mass of its companion is near that of Jupiter, but its minimum density of 23 grams per cubic centimeter suggests that it may be an ultralow-mass carbon white dwarf. This system may thus have once been an ultracompact low-mass x-ray binary, where the companion narrowly avoided complete destruction.  相似文献   

11.
The vast majority of known nonaccreting neutron stars (NSs) are rotation-powered radio and/or γ-ray pulsars. So far, their multiwavelength spectra have all been described satisfactorily by thermal and nonthermal continuum models, with no spectral lines. Spectral features have, however, been found in a handful of exotic NSs and were thought to be a manifestation of their unique traits. Here, we report the detection of absorption features in the x-ray spectrum of an ordinary rotation-powered radio pulsar, J1740+1000. Our findings bridge the gap between the spectra of pulsars and other, more exotic, NSs, suggesting that the features are more common in the NS spectra than they have been thought so far.  相似文献   

12.
We report the detection of magnetar-like x-ray bursts from the young pulsar PSR J1846-0258, at the center of the supernova remnant Kes 75. This pulsar, long thought to be exclusively rotation-powered, has an inferred surface dipolar magnetic field of 4.9 x 10(13) gauss, which is higher than those of the vast majority of rotation-powered pulsars, but lower than those of the approximately 12 previously identified magnetars. The bursts were accompanied by a sudden flux increase and an unprecedented change in timing behavior. These phenomena lower the magnetic and rotational thresholds associated with magnetar-like behavior and suggest that in neutron stars there exists a continuum of magnetic activity that increases with inferred magnetic field strength.  相似文献   

13.
在有效质量口袋模型(EMBM)下采用密度依赖口袋常数描述奇异夸克物质,研究了口袋常数的密度依赖性对奇异夸克物质的状态方程及奇异星性质的影响.结果表明,密度依赖口袋常数在低密度处较大,随着密度增大而明显变小,很好地体现了低密度处色禁闭、高密度处夸克退紧闭的量子色动力学(QCD)基本精神.与常数口袋常数的情形相比,密度依赖口袋常数下奇异夸克物质的状态方程变硬,奇异星的引力质量和对应的半径均有明显变大,且均在脉冲星的观测值范围内,表明该模型适合于描述质量和半径较大的奇异星内的夸克物质.  相似文献   

14.
We have obtained high-resolution (approximately 1") deep x-ray images of the globular cluster 47Tucanae (NGC 104) with the Chandra X-ray Observatory to study the population of compact binaries in the high stellar density core. A 70-kilosecond exposure of the cluster reveals a centrally concentrated population of faint (Lx approximately 10(30-33) ergs per second) x-ray sources, with at least 108 located within the central 2' x 2.5' and greater, similar half with Lx approximately 10(30.5) ergs per second. All 15 millisecond pulsars (MSPs) recently located precisely by radio observations are identified, though 2 are unresolved by Chandra. The x-ray spectral and temporal characteristics, as well as initial optical identifications with the Hubble Space Telescope, suggest that greater, similar50 percent are MSPs, about 30 percent are accreting white dwarfs, about 15 percent are main-sequence binaries in flare outbursts, and only two to three are quiescent low-mass x-ray binaries containing neutron stars, the conventional progenitors of MSPs. An upper limit of about 470 times the mass of the sun is derived for the mass of an accreting central black hole in the cluster. These observations provide the first x-ray "color-magnitude" diagram for a globular cluster and census of its compact object and binary population.  相似文献   

15.
The goal of the Laser Interferometer Gravitational-Wave Observatory (LIGO) Project is to detect and study astrophysical gravitational waves and use data from them for research in physics and astronomy. LIGO will support studies concerning the nature and nonlinear dynamics of gravity, the structures of black holes, and the equation of state of nuclear matter. It will also measure the masses, birth rates, collisions, and distributions of black holes and neutron stars in the universe and probe the cores of supernovae and the very early universe. The technology for LIGO has been developed during the past 20 years. Construction will begin in 1992, and under the present schedule, LIGO's gravitational-wave searches will begin in 1998.  相似文献   

16.
Degenerate bodies composed primarily of dense hydrogen and helium plasmas range from giant planets to the so far hypothetical brown dwarfs. More massive objects begin their lives as nondegenerate stars and may end as white dwarfs, composed primarily of carbon and oxygen, or as neutron stars, with solid crusts of iron or heavier elements and cores of neutron matter. The physical properties of dense plasmas that are necessary to construct theoretical models of such degenerate stars include the equation of state, transport properties, and nuclear reaction rates.  相似文献   

17.
Nuclear collisions can compress nuclear matter to densities achieved within neutron stars and within core-collapse supernovae. These dense states of matter exist momentarily before expanding. We analyzed the flow of matter to extract pressures in excess of 10(34) pascals, the highest recorded under laboratory-controlled conditions. Using these analyses, we rule out strongly repulsive nuclear equations of state from relativistic mean field theory and weakly repulsive equations of state with phase transitions at densities less than three times that of stable nuclei, but not equations of state softened at higher densities because of a transformation to quark matter.  相似文献   

18.
Energetic young pulsars and expanding blast waves [supernova remnants (SNRs)] are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 milliseconds and a period derivative of 3.614 x 10(-13) seconds per second. Its characteristic age of 10(4) years is comparable to that estimated for the SNR. We speculate that most unidentified Galactic gamma-ray sources associated with star-forming regions and SNRs are such young pulsars.  相似文献   

19.
We have identified 21 millisecond pulsars (MSPs) in globular cluster Terzan 5 by using the Green Bank Telescope, bringing the total of known MSPs in Terzan 5 to 24. These discoveries confirm fundamental predictions of globular cluster and binary system evolution. Thirteen of the new MSPs are in binaries, of which two show eclipses and two have highly eccentric orbits. The relativistic periastron advance for the two eccentric systems indicates that at least one of these pulsars has a mass 1.68 times greater than the mass of the Sun at 95% confidence. Such large neutron star masses constrain the equation of state of matter at or beyond the nuclear equilibrium density.  相似文献   

20.
Dai ZG  Wang XY  Wu XF  Zhang B 《Science (New York, N.Y.)》2006,311(5764):1127-1129
Recent observations support the suggestion that short-duration gamma-ray bursts are produced by compact star mergers. The x-ray flares discovered in two short gamma-ray bursts last much longer than the previously proposed postmerger energy-release time scales. Here, we show that they can be produced by differentially rotating, millisecond pulsars after the mergers of binary neutron stars. The differential rotation leads to windup of interior poloidal magnetic fields and the resulting toroidal fields are strong enough to float up and break through the stellar surface. Magnetic reconnection-driven explosive events then occur, leading to multiple x-ray flares minutes after the original gamma-ray burst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号