首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
为探索有利于提高番茄生长和产量的温室滴灌施肥有效模式,试验设置了3个灌水下限[W1(65%θF)、W2(75%θF)和W3(85%θF)]和3个施肥水平[F1(低肥)、F2(中肥)和F3(高肥)],在设施栽培条件下研究了滴灌施肥不同灌水下限和施肥量对番茄植株生长、生理特性和产量的影响.结果表明:滴灌施肥条件下不同的灌水下限和施肥量对温室番茄生长、产量和生理特性都有一定的影响.在同一灌水下限条件下,增加施肥量可以显著提高番茄株高、叶面积、光合和蒸腾速率、干物质量和产量,但过高的施肥量反而不利于其生长、干物质累积和产量的提高;在同一施肥水平下,适当上调灌水下限可以显著增加番茄株高、叶面积和干物质量,过高的灌水下限不利于番茄的生长、光合速率和产量的提高.在试验的砂壤土中,W2F2处理最有利于番茄的生长、干物质的形成、产量和水分利用效率的提高.研究还表明,不同水肥处理条件下,番茄的产量与干物质量和叶片的净光合速率均呈显著的线性相关,番茄叶片的水分利用效率与净光合速率的变化关系均呈二次抛物线相关.  相似文献   

2.
通过大田小区试验,设置4个氮肥水平和6个不同生育期灌水处理,研究了不同生育期灌水和施氮对河西地区春小麦的生长及产量的影响。结果表明:与春小麦各个生育期都灌水(CK)相比,苗期、拔节期、抽穗期以及苗期+灌浆期不灌水对春小麦的株高、叶面积指数(LAI)和干物质的累积都有显著的影响,其中苗期、苗期+灌浆期不灌水对株高、叶面积指数(LAI)和干物质的累积量影响最大。在平均氮肥水平下,苗期、拔节期、抽穗期、灌浆期以及苗期+灌浆期不灌水春小麦的产量与对照相比分别降低25.63%、11.88%、13.67%、10.38%及34.06%。因此,苗期不灌水和苗期+灌浆期不灌水对春小麦的产量影响最大,其次为抽穗期不灌水、拔节期不灌水和灌浆期不灌水。施氮对不同生育期灌水的春小麦的株高、叶面积指数(LAI)、干物质的累积量、收获指数(HI)、穗粒数、有效小穗数和产量都有显著的促进作用。  相似文献   

3.
施氮量对滴灌高产春大豆根系生长及产量的影响   总被引:1,自引:0,他引:1  
为揭示施氮量对滴灌高产春大豆根系生长及产量的影响规律,在田间滴灌条件下采用挖掘取样法研究了0 kg·hm~(-2)(N_0)、75 kg·hm~(-2)(N_(75))、150 kg·hm~(-2)(N_(150))、225 kg·hm~(-2)(N_(225))4种施氮量对新大豆27号0~80 cm土层根系干物质量、侧根长度、表面积、根系活性、伤流量、根瘤数、根瘤质量及产量的影响。结果表明:随着施氮量的增加,0~80 cm土层根系总干物质量、侧根总长度、侧根总表面积呈现先增后降的变化趋势,均以N_(150)处理最高,在R_5(始粒期)期分别较N_0增加27.3%、49.46%、38.14%,其中,0~20 cm土层分别较N_0增加27.0%、29.02%、34.24%;R_5期N_(150)单株伤流量较N_0增加176.0%,R_2(盛花期)期0~20、20~40 cm土层根系活力N_(150)分别较N_0增加44.3%、25.1%;R_5期N_(150)单位面积根瘤数及质量分别较N_0减少8.74%、34.6%;施氮可增加产量,以N_(150)产量最高,为4 889.62kg·hm~(-2),氮肥农学利用效率3.58 kg·kg~(-1)。施氮增加产量主要是促进0~20 cm土层根系生长,提高0~40 cm根系活力的结果。  相似文献   

4.
不同水氮水平对马铃薯产量和水氮利用效率的影响   总被引:3,自引:0,他引:3  
为了给马铃薯生产提供科学合理的水氮管理依据,以品种"大西洋"脱毒组培苗为材料,通过3个水分水平(90%,70%和50%的土壤田间持水量)和3个氮肥水平(不施氮,施N 0.2 g·kg~(-1),施N 0.4 g·kg~(-1))完全组合的盆栽试验研究了不同水氮水平对马铃薯产量和水氮利用效率的影响。结果显示:在同一水分水平下,中氮处理的块茎产量、整株生物量和水氮利用效率明显高于低氮和高氮处理;在同一施氮量下,随着土壤含水量的增加,马铃薯的块茎产量、整株生物量和氮肥利用率明显提高。在9种水氮组合方式下,正常水分和中氮处理下的块茎产量、整株生物量、氮肥农学利用率和氮肥偏生产力最高,分别为273 g·株~(-1)、359 g·株~(-1)、52.5 g·g~(-1)和143.9 g·g~(-1)。这说明90%的田间持水量和0.2 g·kg~(-1)土有利于马铃薯植株获得较高的产量和水氮利用效率。此外,中氮下较高的整株生物量和较低的收获指数说明:适量施用氮肥增加产量主要是因为其增加了整个植株同化物的积累,而非增加了同化物向块茎的分配。  相似文献   

5.
为明确胶东地区适宜小麦滴灌铺管间距,在大田试验设置了4种滴灌处理:一管三行(T3,间距54cm)、一管四行(T4,间距72 cm)、一管五行(T5,间距90 cm)、一管六行(T6,间距108 cm),以无灌水处理(CK)为对照,研究了不同滴灌铺管间距对冬小麦耗水及水分利用效率的影响。结果表明,滴灌对0~60 cm土层土壤含水量影响显著,可显著降低土壤水的消耗。不同滴灌处理冬小麦总耗水量和土壤水消耗量表现为T6T3T5T4,两年T6处理总耗水分别为407.5 mm和451.2 mm,显著高于T4处理。在枯水年,各处理WUE表现为T5T4T6T3CK;平水年,各处理WUE为T5T4CKT6T3,两年度T5和T4处理的WUE均显著高于其它处理,其中T5的WUE分别为24.3 kg·hm~(-2)·mm-1和19.4 kg·hm~(-2)·mm-1。适宜的滴灌管配置方式能显著提高冬小麦有效穗数和子粒千粒重,T5处理两年产量最高,综合考虑T5经济效益最大,两年的经济效益分别达到10 976.35元·hm~(-2)和9 802.56元·hm~(-2)。一管五行间距90 cm是胶东地区最佳滴灌铺管间距配置。  相似文献   

6.
深层灌水对冬小麦耗水特性及水分利用效率的影响   总被引:1,自引:0,他引:1  
以高产中晚熟冬小麦品种良星99为材料,在运城市盐湖区山西水利职业技术学院实训基地进行田间试验,研究了深层灌水对冬小麦耗水特性和水分利用效率的影响。结果表明:整个生育期,深层灌水处理根区20~160 cm土层土壤水分动态变化比地表灌处理明显;T1(地表灌水)处理总耗水量最大,显著高于T2(湿润层深度为根系60%)、T3(湿润层深度为根系75%)和T4(湿润层深度为根系90%),深层灌水增加了降雨和灌溉水的消耗,降低了土壤贮水的消耗;T2和T3处理间无显著差异,T3在抽穗至灌浆期末、灌浆至成熟期的耗水量和耗水模系数均较大;不同湿润层深度条件下,T1处理水分利用效率和产量最低,随湿润层深度增加,其他处理水分利用效率呈先增加后降低的趋势。湿润层深度为150 mm和188 mm的T2和T3产量、水分利用效率和灌溉水利用效率表现最好,T1处理最低。T3为本试验条件下高产节水的最佳处理。  相似文献   

7.
以新陆中54号为试材,采用裂区试验设计,主区为总灌溉量为2 800 m3·hm~(-2)(非充分滴灌)和3 800m3·hm~(-2)(常规滴灌),副区为4个施氮(纯N)水平,N0(0 kg·hm~(-2))、N1(150 kg·hm~(-2))、N2(300 kg·hm~(-2))、N3(450 kg·hm~(-2)),研究棉花在非充分滴灌条件下最佳的施氮量。结果表明:同一滴灌量下,生育进程随着施氮量的增加而明显延迟,株高、真叶数和果枝数随着施氮量的增加而增加,倒四叶宽和有效果枝数随着施氮量的增加呈先增后减的趋势;同一氮肥处理下,株高随着滴灌量的增加而增大,真叶数、倒四叶宽、茎粗随着滴灌量的增加略有降低;现蕾数、成铃数、干物质积累量、持续时间和最大积累速率随着施氮量的增加呈先升后降的趋势,以N2处理较高,生长特征值较为协调;两灌溉量间单铃重、皮棉产量及水氮利用效率差异不显著,但随着施氮量的增加其呈先增后降的趋势,以N2处理最高,分别比N0、N1、N3平均增产39.9%、20.1%、4.3%,水分利用效率分别提高了40.97%、19.02%、4.88%,氮肥利用率较N1、N3分别提高了53.91%、21.36%。因此,在南疆阿克苏地区,棉花滴灌量在2 800 m3·hm~(-2)条件下,施氮量以300 kg·hm~(-2)适宜。  相似文献   

8.
为了探讨不同灌水处理对小桐子生长及蒸散耗水特性的影响,文中开展了小桐子5个灌水处理(W1:(0-20%)θf,W2:(20-40%)θf,W3:(40-60%)θf,W4:(60-80%)θf,W5:(80-100%)θf)的盆栽试验。结果表明:与高水处理W5相比,水分处理为W1、W2、W3和W4时小桐子的株高、叶干重、叶面积、根系干重和总干重均有不同程度的降低,蒸腾量和蒸散量也相应降低。各种处理下小桐子蒸散量的日变化与环境中气象因子关系密切。W1处理下小桐子水分胁迫严重,不利于其生长;W3处理较W5节约灌溉用水达40%,小桐子生长并没有受到明显影响,而蒸腾量和蒸散量却显著下降,水分利用效率最高,节水效果明显,抗旱性显著提高。  相似文献   

9.
南疆地区不同施氮量棉花叶片光合特性及产量表现   总被引:1,自引:0,他引:1  
在南疆生态条件下通过不同氮素水平(0、207、258.75、310.5、362.25 kg/hm2)的大田试验,研究了氮素对棉花叶片光合特性和产量的影响.结果表明,追施氮肥可以提高棉株叶片叶绿素含量,改善叶片光合性能、增加叶面积,提高中下部叶片光合速率,提高光合产物的生产能力,廷缓叶片衰老.施氮过多,棉株后期营养生长过...  相似文献   

10.
不同氮水平下化学调控对旱地冬小麦生长及产量的影响   总被引:4,自引:0,他引:4  
通过田间试验研究了不同氮水平下分阶段采用多效唑及其与6-BA配合对小偃6号和小偃22两小麦品种生长及产量的影响.结果表明,多效唑浸种显著增加了小麦的单株分蘖,拔节初期喷施多效唑明显降低了两品种的株高.不同生长阶段使用生长调节物质均增加了两品种的叶面积和叶片叶绿素SPAD值,尤其以灌浆初期喷施6-BA后对成熟期叶片SPAD值的增加幅度最为突出,表明其具有延缓叶片衰老,延长叶片功能期的效果.采用多效唑及其与6-BA配合进行分阶段化学调控具有明显增产作用,其中多效唑与6-BA相结合处理较清水处理小麦产量提高了601.2 kg/hm2,增产幅度达显著水平;小麦穗粒数和千粒重的增加是其籽粒增产的主要原因.由此可见,在小麦生长的不同阶段采取不同的化控措施,可以有效地调节小麦生长发育,达到提高作物产量的目的.  相似文献   

11.
为研究微喷灌模式下不同灌水量对冬小麦生长、产量及水分利用效率的影响,于2015年10月开展了大田试验。以"小偃22号"为供试品种,研究高水W3(拔节期和开花期各灌水60 mm)、中水W2(拔节期和开花期各灌水40 mm)、低水W1(拔节期和开花期各灌水20 mm)和全生育期不灌水W0 4个处理下冬小麦的生长、产量及水分利用效率。结果表明:随着灌水量的增加,各处理的生长指标呈上升趋势,处理W1、W2、W3的籽粒产量分别较处理W0增产17.75%、35.78%和36.72%,但W2和W3处理间无显著差异;处理W2的水分利用效率和收获指数最高,较处理W3提高了0.22 kg·m~(-3)和0.01。综合对比冬小麦生长、产量和水分利用效率,得出拔节期和开花期各灌水40 mm为冬小麦最优灌水量。  相似文献   

12.
于2019—2022年在陇中高寒旱区以裸地条播为对照(CK),设置全膜覆土穴播(FM)和膜侧沟播(FS)两种覆盖方式,研究不同覆盖种植方式对冬小麦耗水特性、生长发育及产量的影响。结果表明:与CK相比,FM和FS处理播种期~拔节期0~20 cm土层土壤温度分别平均提高3.1℃和2.1℃,灌浆期分别降低0.6℃和1.0℃。覆盖能不同程度提高冬小麦各生育期0~200 cm土层土壤含水量,其中出苗期、返青期、拔节期和灌浆期提高幅度均高于20%。与CK相比,FM处理返青后冬小麦耗水量平均显著提高29.2%,返青前显著降低42.4%;FS处理返青期~灌浆期耗水量提高12.6%,返青前降低25.7%。各处理冬小麦基本苗、分蘖数、公顷穗数、穗粒数、千粒重和产量均表现为FM>FS>CK,处理间差异显著,其中FM和FS处理产量分别较CK平均提高74.7%和45.4%;处理间耗水量差异不显著;FM处理水分利用效率最大,较CK平均提高67.3%,FS次之,较CK平均提高46.1%。综上,地膜覆盖可调节土壤水分状况,改善冬小麦生长发育和成穗情况,显著提高产量和水分利用效率,其中全膜覆土穴播调节效应优于膜侧沟播,是适宜在高寒旱区地膜小麦生产中推广应用的种植方式。  相似文献   

13.
通过盆栽试验,研究了低水(W_1)、中水(W_2)、高水(W_3)三种土壤水分和不施氮(N1)、低氮(N_2)和高氮(N_3)三种施氮量对苹果、梨、桃树幼苗的生长、蒸腾耗水量和水分利用效率的影响.结果表明:三种果树苗耗水量有着明显的差异,在W_2N_1条件下单株耗水量桃树苗最大,在晴天,苹果、梨、桃树日蒸腾量占日总耗水量依次为:22.4%,18%,35.7%,较阴天依次提高了0.5%,8%,22.6%,三种果树苗在晴天夜间的蒸散量依次为:苹果3.26±0.37 g,梨树4.0±1.41 g,桃树4.63±1.8 g左右;在相同的处理下比较三种果树苗蒸腾速率,桃树苗的蒸腾速率相对较大.增施氮肥可以增加果树苗的累积耗水量,提高果树苗水分利用效率.株高、茎粗等生长量的累积幅度上桃树苗最为明显;水分、氮肥对果树干物质的量的影响也都达到了显著水平,干物质量随着土壤含水量、施氮量的增加而增加.在土壤含水量为田间持水量的60%~70%时,既可以保证果树苗正常的生理生长又可以提高水分利用效率.  相似文献   

14.
生物炭对不同水氮条件下小麦产量的影响   总被引:2,自引:0,他引:2  
研究生物炭与氮肥互作在不同水分条件下对小麦关键生育期旗叶光合参数、产量与主要农艺性状的影响,探讨生物炭改良不同水肥条件土壤并提高其作物产量的效果与内在机理,可为农田有机物资源合理利用提供理论支撑。本研究采用盆栽试验,生物炭用量设置五个水平(0,1%,2%,4%和6%),氮肥设置N0,N1和N2(0,0.2 g·kg~(-1)和0.4 g·kg~(-1))三个水平,小麦拔节期控制土壤田间持水量的80%和50%模拟正常水分和干旱胁迫两种水分环境。于小麦拔节期和抽穗期测定旗叶光合参数和SPAD值,成熟后对小麦籽粒产量及主要农艺性状进行统计。结果显示:(1)与不施生物炭处理相比,1%和2%生物炭用量平均增产6.62%和11.01%,4%和6%生物炭用量平均减产6.88%和10.1%,同时会导致千粒重、穗粒数和株高的降低;(2)正常水分条件下,1%和2%生物炭用量与N1和N2之间存在协同增产作用,而4%和6%生物炭用量表现出负面效应;(3)干旱胁迫条件下,仅1%和2%生物炭用量与N1存在协同增产作用,生物炭处理削弱N2增产潜力;(4)N0水平下,生物炭处理均表现出促进小麦旗叶光合速率,增加产量的作用;(5)N1条件下,生物炭促进小麦旗叶光合速率且在干旱胁迫条件下效果更明显。总体上生物炭对小麦旗叶光合参数和产量的影响受生物炭用量、氮素水平和水分条件共同制约且存在复杂的交互作用,干旱会限制生物炭与氮肥的协同增产作用;在低肥力土壤上应用生物炭的增产效果较好,而在质地较细且肥力中等的土壤应用时推荐48 t·hm~(-2)(2%)生物炭用量。  相似文献   

15.
不同灌溉方式对冬小麦光合速率及产量的影响   总被引:1,自引:0,他引:1  
研究微喷灌和漫灌不同灌水条件下冬小麦光合速率和产量的变化规律,试图探明华北冬小麦光合速率和产量对不同灌水处理的响应,为冬小麦合理浇水管理、提高产量和水分利用效率(WUE)提供依据。设置微喷灌和漫灌两种灌溉方式,微喷和漫灌分别设置4个灌水量和灌水时期组合处理,微喷处理灌水量分别为90、120、150 mm和180 mm,漫灌处理灌水量分别为83、130、201 mm和205 mm,对冬小麦产量、光合速率、蒸腾速率、LAI等进行了分析。试验结果表明,在灌水量相近条件下小麦生育期灌水量≤120 mm时,微喷方式较漫灌方式能显著提高小麦子粒产量和WUE,产量增加的主要原因是千粒重增大;灌水量≥180 mm时,微喷方式产量和WUE均低于漫灌方式。不同时期小麦叶片光合速率微喷处理均高于漫灌处理,蒸腾速率除拔节期微喷灌水量120 mm、灌溉4次处理(SI2)外,微喷处理亦均高于漫灌处理;微喷、漫灌两种方式小麦叶片光合速率和蒸腾速率的变化趋势基本相同,均是先增大后减小。微喷和漫灌方式均表现为随灌水量的增加小麦LAI逐渐增大,主茎绿叶片数逐渐减少;在灌水量相近条件下,微喷处理小麦LAI大于漫灌处理,而主茎绿叶片数小于漫灌处理。2012—2013年度冬小麦生育期灌水量较小情况下微喷方式增产增效显著,而灌水次数多、灌水量较大时,微喷方式由于小麦LAI过高,群体郁闭,通风透光差,反而不利于产量和WUE的提高。微喷方式最优灌水处理为SI2,漫灌方式最优灌水处理为灌水量205 mm、灌溉4次(FI4)。  相似文献   

16.
渭北旱塬不同覆盖措施对小麦产量和水分利用效率的影响   总被引:1,自引:0,他引:1  
为了揭示渭北旱塬覆盖对小麦产量和和水分利用效率的影响,通过田间试验研究了夏闲期和全年时期结合地膜全覆盖和地膜麦草双元覆盖下小麦产量、养分吸收和水分利用效率的差异。结果表明:全年覆盖和夏闲期覆盖均可提高小麦产量,其中全年地膜全覆盖处理小麦产量最高,达5 383 kg·hm~(-2),较传统耕作不覆盖增产15.4%;全年地膜全覆盖对小麦的农艺性状有显著改善作用,穗粒数和成穗数较传统耕作不覆盖增加16.3%和33.0%;全年地膜全覆盖小麦籽粒N、P、K养分吸收总量较不覆盖分别增加12.3%、21%、21.8%,茎叶N、P、K养分吸收总量较不覆盖分别增加55.1%、36.7%、29.3%;覆盖能显著提高小麦水分利用效率,以全年地膜覆盖处理水分利用效率为最高,较传统不覆盖提高了11.3%。总之,全年地膜全覆盖能够显著提高小麦产量和水分利用效率,改善小麦农艺性状,增加小麦籽粒和茎叶N、P、K养分吸收量。  相似文献   

17.
以南疆地区春小麦新春6号为供试材料,采用土柱栽培法,通过滴灌开展水、氮两因素控制性试验,滴施纯氮量设N0(不施氮肥)、N1(69 kg·hm-2)、N2(172.5 kg·hm-2)和N3(276 kg·hm-2)4个水平,滴灌水量设W1(2 250 m3·hm-2)、W2(3 000 m3·hm-2)、W3(3 750 m3·hm-2)和W4(4 500 m3·hm-2)4个水平,共16个水氮组合处理。结果表明:扬花期是滴灌春小麦根系生长的高峰期,有64.52%~76.90%的根系干质量和76.39%~82.47%的根长分布在0~40 cm土层中。适当增施水氮能有效促进根系...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号