首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
End‐use quality in soft wheat (Triticum aestivum L.) can be assessed by a wide array of measurements, generally categorized into grain, milling, and baking characteristics. Samples were obtained from four U.S. regional nurseries. Selected parameters included test weight, kernel hardness, kernel size, kernel diameter, wheat protein, polyphenol oxidase activity, flour yield, break flour yield, flour ash content, milling score, flour protein content, flour SDS sedimentation volume, flour swelling volume, Rapid Visco Analyzer peak paste viscosity, solvent retention capacity (SRC) parameters, total and water‐extractable arabinoxylan (TAX and WEAX, respectively), and cookie diameter. The objectives were to model cookie diameter and lactic acid SRC as well as to compare exceptionally performing varieties for each quality parameter. Cookie diameter and lactic acid SRC were modeled by using multiple regression analyses and all of the aforementioned quality parameters. Cookie diameter was positively associated with peak paste viscosity and was negatively associated with or modeled by kernel hardness, flour protein content, sodium carbonate SRC, lactic acid SRC, and water SRC. Lactic acid SRC was positively modeled by break flour yield, milling score, flour SDS sedimentation volume, and sucrose SRC and was negatively modeled by flour protein content. Exceptionally high‐ and low‐performing varieties were selected on the basis of their responses to the aforementioned characteristics in each nursery. High‐ and low‐performing varieties exhibited notably wide variation in kernel hardness, break flour yield, milling score, sodium carbonate SRC, sucrose SRC, water SRC, TAX content, and cookie diameter. This high level of variation in variety performance can facilitate selection for improved quality based on exceptional performance in one or more of these traits. The models described allow a more focused approach toward predicting soft wheat quality.  相似文献   

2.
Ninety‐two wheat genotypes including 50 cultivars released in India and 42 germplasm lines were subjected to solvent retention capacity (SRC) tests using 1 g of flour and 1 g of whole meal to see the relationship with cookie‐making quality and the utility in breeding programs. Very high negative correlations (P < 0.001) were observed between cookie diameter and spread factor and alkaline water retention capacity (AWRC), and solvent retention capacities of both flour and whole meal samples. Multiple regression analysis showed that AWRC explained 43.8%, sodium carbonate SRC 27.3%, lactic acid SRC 15.1%, and protein content 13.8% of the total variability (multiple r = 0.87) in cookie diameter. Total variability (multiple r = 0.85) in spread factor was explained 40.3% by AWRC, 27.4% by SODSRC, 14.5% by LASRC, and 17.8% by protein content. When the technique was further used to reduce the number of parameters contributing to cookie diameter, AWRC explained 67.2% of the total variability (multiple r = 0.85) and the rest by lactic acid SRC and protein content. Surprisingly, multiple regression analysis of whole meal samples exhibited that lactic acid SRC and sodium carbonate SRC explained 88 and 12%, respectively, of the total variability (multiple r = 0.76) in cookie diameter and 78 and 22%, respectively, of the total variability (multiple r = 0.71) in spread factor. Among the soft wheat flour samples selected based on W > 7.70 cm, pentosan content as revealed by sucrose SRC explained 87.7% of the total variability (multiple r = 0.54) of cookie diameter and 83.8% of total variability (multiple r = 0.52) in spread factor. Clustering of genotypes based on SRC profiles using both flour and whole meal produced clusters with similar average cookie diameter and spread factor. The data clearly demonstrate that whole meal tests can be used in screening the recombinant lines as well as in selecting desirable genotypes for making crosses to enhance cookie‐making quality.  相似文献   

3.
Solvent retention capacity (SRC) was investigated in assessing the end use quality of hard winter wheat (HWW). The four SRC values of 116 HWW flours were determined using 5% lactic acid, 50% sucrose, 5% sodium carbonate, and distilled water. The SRC values were greatly affected by wheat and flour protein contents, and showed significant linear correlations with 1,000‐kernel weight and single kernel weight, size, and hardness. The 5% lactic acid SRC value showed the highest correlation (r = 0.83, P < 0.0001) with straight‐dough bread volume, followed by 50% sucrose, and least by distilled water. We found that the 5% lactic acid SRC value differentiated the quality of protein relating to loaf volume. When we selected a set of flours that had a narrow range of protein content of 12–13% (n = 37) from the 116 flours, flour protein content was not significantly correlated with loaf volume. The 5% lactic acid SRC value, however, showed a significant correlation (r = 0.84, P < 0.0001) with loaf volume. The 5% lactic acid SRC value was significantly correlated with SDS‐sedimentation volume (r = 0.83, P < 0.0001). The SDS‐sedimentation test showed a similar capability to 5% lactic acid SRC, correlating significantly with loaf volume for flours with similar protein content (r = 0.72, P < 0.0001). Prediction models for loaf volume were derived from a series of wheat and flour quality parameters. The inclusion of 5% lactic acid SRC values in the prediction model improved R2 = 0.778 and root mean square error (RMSE) of 57.2 from R2 = 0.609 and RMSE = 75.6, respectively, from the prediction model developed with the single kernel characterization system (SKCS) and near‐infrared reflectance (NIR) spectroscopy data. The prediction models were tested with three validation sets with different protein ranges and confirmed that the 5% lactic acid SRC test is valuable in predicting the loaf volume of bread from a HWW flour, especially for flours with similar protein contents.  相似文献   

4.
The effects of no‐till versus conventional farming practices were evaluated on soft wheat functional and nutritional characteristics, including kernel physical properties, whole wheat composition, antioxidant activity, and end‐product quality. Soft white winter wheat cultivar ORCF 102 was evaluated over a two‐year period from three long‐term replicated no‐till versus conventional tillage studies in Oregon. Wheat from the no‐till cropping systems generally had greater test weight, kernel diameter, and kernel weight and had softer kernels compared with wheat from the conventional tillage systems. Compared with the conventional systems, no‐till whole wheat flour had lower protein and SDS sedimentation volume. Ash content as well as most minerals measured (calcium, copper, iron, magnesium, and zinc), except for manganese and phosphorus, were generally slightly lower in no‐till than in conventional wheat. Whole wheat flour from the no‐till cropping systems generally had slightly lower total phenolic content and total antioxidant capacity. Milling properties, including flour yield, break flour yield, and mill score, were not affected by tillage systems. Refined flour from no‐till systems had lower protein, SDS sedimentation volume, and lactic acid and sucrose solvent retention capacities compared with flour from conventional tillage. No‐till wheat generally had greater sugar‐snap cookie diameter than conventionally tilled wheat. In conclusion, no‐till soft white winter wheat generally had slightly reduced nutritional properties (protein, ash, most minerals, and total antioxidant content) compared with wheat from conventionally tilled systems, and it had equivalent or sometimes superior functional properties for baking cookie‐type products.  相似文献   

5.
《Cereal Chemistry》2017,94(2):215-222
Durum wheat (Triticum turgidum subsp. durum ) production worldwide is substantially less than that of common wheat (T. aestivum ). Durum kernels are extremely hard; thus, most durum wheat is milled into semolina, which has limited utilization. Soft kernel durum wheat was created by introgression of the puroindoline genes via homoeologous recombination. The objective of this study was to determine the effects of the puroindoline genes and soft kernel texture on flour, water absorption, rheology, and baking quality of durum wheat. Soft Svevo and Soft Alzada, back‐cross derivatives of the durum varieties Svevo and Alzada, were compared with Svevo, a hard durum wheat, Xerpha, a soft white winter wheat, and Expresso, a hard red spring wheat. Soft Svevo and Soft Alzada exhibited soft kernel texture; low water, sodium carbonate, and sucrose solvent retention capacities (SRCs); and reduced dough water absorptions similar to soft wheat. These results indicate a pronounced effect of the puroindolines. Conversely, SDS flour sedimentation volume and lactic acid SRC of the soft durum samples were more similar to the Svevo hard durum and Expresso samples, indicating much less effect of kernel softness on protein strength measurements. Alveograph results were influenced by the inherent differences in water absorption properties of the different flours and their genetic background (e.g., W and P were markedly reduced in the Soft Svevo samples compared with Svevo, whereas the puroindolines appeared to have little effect on L ). However, Soft Svevo and Soft Alzada differed markedly for W and L . Soft durum samples produced bread loaf volumes between the soft and hard common wheat samples but larger sugar‐snap cookie diameters than all comparison samples. The soft durum varieties exhibited new and unique flour and baking attributes as well as retaining the color and protein characteristics of their durum parents.  相似文献   

6.
Reduced amylose wheat (Triticum æstivum L.) produces better quality noodles and bread less prone to going stale, while little is known about the relationships between amylose content and the quality of soft wheat baking products such as sugar snap cookies (SSC) and Japanese sponge cakes (JSC). Near‐isogenic lines developed from wheat cultivar Norin 61, differing in their level of granule‐bound starch synthase (Wx protein) activity, were used to produce wheat grains and ultimately flours of different amylose contents. These were tested with regard to their effect on soft wheat baking quality and solvent retention capacities (SRC). Amylose content was strongly correlated to cookie diameter (r = 0.969, P < 0.001) and cake volume (r = 0.976, P < 0.001), indicating that the soft wheat baking quality associated with SSC diameter and JSC volume were improved by an incremental increases in amylose content. Among the four kinds of SRC tests (water, sodium carbonate, sucrose and lactic acid), the water SRC test showed the highest correlation with amylose content, SSC diameter, and JSC volume. When the regression analysis was conducted between the nonwaxy and partial waxy isogenic lines that are available in commercial markets, only water SRC was significantly correlated to amylose content (r = –0.982, P < 0.001) among of four SRC tests. This suggests that, unlike udon noodle quality, high‐amylose content is indispensable in improving soft wheat baking quality, a process requiring less water retention capacity.  相似文献   

7.
Wheat (Triticum aestivum L.) quality is dependent upon both genetic and environmental factors, which work in concert to produce specific grain, milling, flour, and baking characteristics. This study surveyed all of the 132 soft wheat varieties (cultivars and advanced breeding lines) grown in the U.S. regional nursery system, which encompassed the three main soft wheat producing regions of the United States (eastern and southern soft red winter and western soft white). The quality parameters included test weight, kernel hardness, weight, and diameter, wheat and flour protein, polyphenol oxidase, break flour yield, flour yield, flour ash, milling score, flour swelling volume, flour SDS sedimentation volume, solvent retention capacity (SRC) for water, sodium carbonate, sucrose, and lactic acid, Rapid Visco Analyzer peak pasting viscosity, and cookie diameter. High levels of variation were observed among varieties, regions, and specific environments, with environment being in general a much greater source of variation than varieties. Variety was observed to have a relatively stronger influence on wheat quality in the western nurseries, compared with the eastern and southern regions, where location effects had a stronger impact on overall wheat quality. The greater influence of variety was particularly notable for kernel hardness in the western nurseries. Kernel hardness also varied considerably as a result of environment. For the two soft red winter wheat nurseries, the western U.S. environment produced substantially harder kernels (37–40) compared with the same varieties grown in eastern U.S. locations (15–20). Intertrait quality relationships were observed to be unique to the specific nursery and germplasm in which they were studied, and these relationships were not consistent across nurseries. Nevertheless, on average, soft wheat quality was fairly similar across the United States, indicating that breeding and testing models have been successful in achieving a relatively uniform target for quality. However, many traits showed high levels of variability among varieties, suggesting that a greater level of selection for end‐use quality would benefit end users by increasing consistency and reducing variability. The often large role of environment (location) in quality indicates that end users must be assiduous in their origination and grain procurement. Clearly, “nursery mean” quality does not reflect the potential that can be obtained, as reflected by a few exceptional soft wheat varieties.  相似文献   

8.
The solvent retention capacity test (SRC) (AACC Approved Method 56‐11) of flour is used to evaluate multiple aspects of wheat (Triticum aestivum L.) quality including pentosan content, starch damage, gluten strength, and general water retention based on the ability of flour to retain a range of solvents. The objectives of this study were to evaluate the effects of grain production environment in general and crop irrigation and fertility management in particular on SRC of soft wheat flour, and to evaluate the ability of SRC to predict end‐use quality across diverse environments. Two soft white spring wheat cultivars ‘Pomerelle’ and ‘Centennial’ were produced in a range of irrigated and rain‐fed production environments. SRC profiles and milling and baking quality parameters were measured. In a two‐year study at Aberdeen, ID, with two late‐season irrigation management regimes and two crop nitrogen fertility treatments, only wheat genotype significantly affected flour SRC. In two‐year studies at Tetonia, ID, one conducted under rain‐fed conditions and the other under irrigation, additional fertilizer applied at anthesis did not affect SRC. Correlations among quality parameters were determined using the Aberdeen and Tetonia flour samples, as well as samples of the same genotypes grown in fertility trials under rain‐fed conditions at Havre and Bozeman, MT, and under irrigation at Bozeman. Patterns of correlations among SRC values were similar for both genotypes. Grain test weight was negatively correlated with sodium carbonate and sucrose SRC of both genotypes. Flour protein was strongly positively correlated with sucrose and lactic acid SRC of both genotypes. The optimal regression models for predicting sugar snap cookie diameter (AACC Approved Method 10‐52) as a function of protein, SRC, flour extraction, and kernel hardness were different for the two cultivars. SRC evaluations of flours from these trials were consistent with large genotype and environment effects, yet minimal genotype × environment interaction. This suggests that selection among genotypes within an environment will produce a gain‐from‐selection observable in multiple and diverse environments.  相似文献   

9.
Nowadays in Argentina, cookies, crackers, and cakes are made of flour obtained from bread wheat with additives or enzymes that decrease the gluten strength but increase production costs. The present research work aims to study the relationship between flour physicochemical composition (particle size average [PSA], protein, damaged starch [DS], water soluble pentosans [WSP], total pentosans [TP], and gluten), alkaline water retention capacities behavior, solvent retention capacities profile (SRC) and cookie‐making performance in a set of 51 adapted soft wheat lines with diverse origin to identify better flour parameters for predicting cookie quality. Cookie factor (CF) values were 5.06–7.56. High and significant negative correlations between sucrose SRC (–0.68), water SRC (–0.65), carbonate SRC (–0.59), and CF were found, followed by lactic SRC that presented a low negative but significant correlation (r = –0.35). The flour components DS (r = –0.67), WSP (r = –0.49), and TP (r = –0.4) were negatively associated to CF. PSA showed a negative correlation with CF (r = –0.43). Protein and gluten were the flour components that affected cookie hardness, but no significant correlation were found with pentosan or DS content. A prediction equation for CF was developed. Sucrose SRC, PSA, and DS could be used to predict 68% of the variation in cookie diameter. The cluster analysis was conducted to assess differences in flour quality parameters among genotypes based on CF. Clusters 1 and 4 were typified by lower CF (5.70 and 5.23, respectively), higher DS, pentosan content, and SRC values. Cluster 2 with a relative good CF (6.47) and Cluster 3 with the best cookie quality, high CF (7.32) and low firmness, and the lowest DS, TP, WSP content, and sucrose SRC values.  相似文献   

10.
Kernel texture in wheat (Triticum sp.) is central to end‐use quality and utilization. Here we report the discovery of a novel soft kernel trait in soft white winter wheat (T. aestivum L.). Two heritable kernel phenotypes were selected among F3‐derived sibs, hereafter designated “normal soft” (wild‐type) and “super soft.” Normal soft lines exhibited single kernel characterization system (SKCS) hardness index (HI) values typical of soft wheat (HI ≈ 20), whereas the super soft lines were unusually soft (HI ≈ 5). Under some environments, individual super soft lines exhibited HI values as low as HI = –4. The super soft trait was manifested in reduced SKCS kernel texture and higher break flour yields, with some increase in sodium carbonate SRC (solvent retention capacity) values and sponge cake volumes. Straight‐grade flour yield, flour ash, milling score, and cookie diameter were largely unaffected. With the possible exception of the sodium carbonate SRC values, we observed no indication that the super soft trait conferred any negative aspects to commercial soft wheat quality. As such, the super soft trait may provide wheat breeders with new opportunities to modify the end‐use quality of wheat.  相似文献   

11.
The solvent retention capacity test (SRC) was used to evaluate flour functionality for end use applications and select wheat for production of flour with required functionality, but there is little information about SRC test application on triticale flour quality. The ability of flour to retain a set of four solvents produces a flour quality profile for predicting bakery performance. The objective of this study was to evaluate the capacity of SRC and its micro test to determine the potential quality of 25 triticale flours, as well as studying the relationship between the SRC parameters and flour chemical composition. The SRC parameters of triticale flours were correlated with the flour components that have been proposed by the method: sucrose SRC‐pentosan (r = 0.57), carbonate SRC‐damaged starch (r = 0.80), lactic SRC‐glutelin (r = 0.42), water SRC‐all hydrophilic constituents (damaged starch [r = 0.72], protein [r = 0.61], glutelin [r = 0.66], pentosan [r = 0.46]). Triticale flours have shown higher water and sodium carbonate SRC, similar sucrose SRC, and lower lactic SRC values than published results of typical flours used for cookie production. Summarizing, the high level of association found between SRC and micro SRC parameters with flour composition and quality flour tests evidence that either the SRC profile or the micro test SRC could be used to determine the potential quality of triticale flours.  相似文献   

12.
Five methods that employed very different testing principles and procedures for assessing gluten quality were compared for 33 North American soft red and white wheats. The three methods analyzed flour (alveograph work, lactic acid solvent retention capacity, and mixograph peak time) and two methods employed ground wheat meal (Glutomatic gluten index and SDS sedimentation volume). Compared against the normalized mean of all five assessments, the ability of the assessment methods to evaluate gluten quality decreased in the order: alveograph work, lactic acid solvent retention capacity, mixograph peak time, Glutomatic gluten index, and SDS sedimentation volume. The methods utilizing flour were substantially superior predictive methods; however, the two meal‐based methods could be sufficient for early generation screening when flour is not available.  相似文献   

13.
The solvent retention capacity (SRC) profile is useful for studying flour components contributing to end‐use functionality. The method tests four different solvents with 5 g of flour each. Because of the amount of grain (30–40 g) typically needed to produce 20 g of flour for the SRC test, the method is not well‐suited for assessing end‐use quality of early generation breeding material, where grain quantities are limited. The method was therefore modified to require only 0.2 g of ground wheat instead of 5 g of flour per SRC solvent. The small‐scale SRC results using whole meal had correlations of r = 0.86 for lactic acid, r = 0.85 for sodium carbonate, r = 0.78 for sucrose, r = 0.74 for sodium bicarbonate (the alkaline water retention capacity method) and r = 0.69 for water when compared with SRC values from full‐scale tests using 5 g of flour. Overall, cultivars with SRC values at the extremes of the distribution were in the same ranked order for the small‐ and large‐scale SRC test results. However, variation in ranked order of cultivars between test methods was detected among samples that were not at the extremes of the distribution. Traditionally, successful wheat breeding strategies involve eliminating or advancing lines from the extremes of the distribution to increase the proportion of desirable genotypes within breeding programs. Results indicated that advancing promising germplasm or eliminating germplasm with inferior end‐use quality potential is possible using the small‐scale SRC technique to evaluate early generation wheat breeding material, as a sort of breeding triage.  相似文献   

14.
Solvent retention capacity (SRC) technology, its history, principles, and applications are reviewed. Originally, SRC testing was created and developed for evaluating soft wheat flour functionality, but it has also been shown to be applicable to evaluating flour functionality for hard wheat products. SRC is a solvation test for flours that is based on the exaggerated swelling behavior of component polymer networks in selected individual diagnostic solvents. SRC provides a measure of solvent compatibility for the three functional polymeric components of flour—gluten, damaged starch, and pentosans—which in turn enables prediction of the functional contribution of each of these flour components to overall flour functionality and resulting finished‐product quality. The pattern of flour SRC values for the four diagnostic SRC solvents (water, dilute aqueous lactic acid, dilute aqueous sodium carbonate, and concentrated aqueous sucrose solutions), rather than any single individual SRC value, has been shown to be critical to various successful end‐use applications. Moreover, a new predictive SRC parameter, the gluten performance index (GPI), defined as GPI = lactic acid/(sodium carbonate + sucrose) SRC values, has been found to be an even better predictor of the overall performance of flour glutenin in the environment of other modulating networks of flour polymers. SRC technology is a unique diagnostic tool for predicting flour functionality, and its applications in soft wheat breeding, milling, and baking are increasing markedly as a consequence of many successful, recently published demonstrations of its extraordinary power and scope.  相似文献   

15.
During testing of wheats at the early generation developmental stage, often there is not enough seed to mill for bake testing products such as sugar‐snap cookie diameter. This study reports a prediction equation for sugar‐snap cookie diameter that uses sucrose solvent retention capacity (SRC), wheat milling softness, and flour protein content. A total of 507 wheats were milled using three laboratory milling systems (short, medium, and long mill flow). Prediction equations were similar for all three mills. Standard errors of prediction were <2% of the mean estimate of cookie diameter. Additional observations eliminated lactic acid SRC (an indication of glutenin strength), alkaline water retention capacity (a traditional predictor of pastry quality), and flour yield (the main milling quality characteristic) from the prediction model.  相似文献   

16.
The relationship of solvent retention capacity (SRC) values with four solvents, alveograph and farinograph properties, and cookie‐baking performance was evaluated with 20 Chinese soft wheat genotypes, including four cultivars and 16 advanced lines grown in the 2009–2010 season. Significant positive correlations were observed between water SRC (WSRC), sodium carbonate SRC (SOSRC), lactic acid SRC, and sucrose SRC (SUSRC) values. WSRC, SUSRC, and SOSRC showed significant positive correlations with farinograph water absorption (WA), alveograph P (tenacity), and P/L (ratio of tenacity to extensibility). Cookie diameter was significantly correlated with wet gluten (r = –0.491, P < 0.05), WSRC (r = –0.882, P < 0.001), SUSRC (r = –0.620, P < 0.01), SOSRC (r = –0.712, P < 0.001), P (r = –0.787, P < 0.001), L (r = 0.616, P < 0.01), P/L (r = –0.766, P < 0.001) and WA (r = –0.620, P < 0.01), respectively. SRC values were effective predictors of cookie quality in Chinese soft wheat. Alveograph parameters were more closely correlated to cookie quality than were farinograph parameters.  相似文献   

17.
We investigated the relationship between the protein content and quality of wheat flours and characteristics of noodle dough and instant noodles using 14 hard and soft wheat flours with various protein contents and three commercial flours for making noodles. Protein content of wheat flours exhibited negative relationships with the optimum water absorption of noodle dough and lightness (L*) of the instant noodle dough sheet. Protein quality, as determined by SDS sedimentation volume and proportion of alcohol‐ and salt‐soluble protein of flour, also influenced optimum water absorption and yellow‐blueness (b*) of the noodle dough sheet. Wheat flours with high protein content (>13.6%) produced instant noodles with lower fat absorption, higher L*, lower b*, and firmer and more elastic texture than wheat flours with low protein content (<12.2%). L* and free lipid content of instant noodles were >76.8 and <20.8% in hard wheat flours of high SDS sedimentation volume (>36 mL) and low proportion of salt‐soluble protein (<12.5%), and <75.7 and >21.5% in soft wheat flours with low SDS sedimentation volume (<35 mL) and a high proportion of salt‐soluble protein (>15.0%). L* of instant noodles positively correlated with SDS sedimentation volume and negatively correlated with proportion of alcohol‐ and salt‐soluble protein of flour. These protein quality parameters also exhibited a significant relationship with b* of instant noodles. SDS sedimentation volume and proportion of salt‐soluble protein of flours also exhibited a significant relationship with free lipid content of instant noodles (P < 0.01 and P < 0.001, respectively). Protein quality parameters of wheat flour, as well as protein content, showed significant relationship with texture properties of cooked instant noodles.  相似文献   

18.
李曼  张晓  刘大同  江伟  高德荣  张勇 《核农学报》2021,35(9):1979-1986
为了确定评价弱筋小麦品质的核心指标,建立弱筋小麦品质评价体系,本研究以长江中下游麦区推广的9个弱筋品种为试验材料,连续进行4年种植试验,测定其籽粒蛋白质含量、籽粒硬度,湿面筋含量、面筋指数、沉淀值和溶剂保持力(SRC)等面粉理化指标,粉质仪和吹泡仪等面团流变学特性参数并制作曲奇饼干测试饼干直径、厚度等品质参数。结果表明,弱筋小麦多数品质性状受基因型和环境共同影响,其中蛋白质含量、硬度、沉淀值、水SRC、碳酸钠SRC、乳酸SRC、吹泡仪参数、粉质仪弱化度以及曲奇饼干直径、厚度均表现为基因效应大于环境效应;弱筋小麦的籽粒蛋白质含量、湿面筋含量、粉质仪吸水率、粉质仪形成时间、粉质仪稳定时间、粉质仪粉质质量指数在各品种间无显著差异;弱筋小麦的硬度、面筋指数、水SRC、碳酸钠SRC、吹泡仪弹性(P值)、吹泡仪弹性/延伸性(P/L值)、粉质仪弱化度在各小麦品种间差异显著(P<0.05),上述指标与曲奇品质呈显著或极显著相关性,可作为评价弱筋小麦品质的重要指标。优质弱筋小麦品质评价标准推荐为:硬度≤25,面筋指数≥80%,水SRC≤60%,碳酸钠SRC≤75%,吹泡仪P值≤40 mm、延伸性(L值)≥95 mm、P/L值≤0.45,75≤弱化度≤95。对连续种植4年的不同弱筋小麦品质性状进行聚类分析,发现扬麦13、扬麦9号、扬麦19为优质弱筋小麦。本研究结果为弱筋小麦品种选育提供了支撑。  相似文献   

19.
This research aims to investigate the relationship between the solvent retention capacity (SRC) test and quality assessment of hard red spring (HRS) wheat flour samples obtained from 10 HRS cultivars grown at six locations in North Dakota. The SRC values were significantly (P < 0.05) correlated with flour chemical components (protein, gluten, starch, and damaged starch contents, except arabinoxylan); with farinograph parameters (stability [FST], water absorption, peak time [FPT], and quality number); and with breadmaking parameters (baking water absorption [BWA], bread loaf volume [BLV], and symmetry). Differences in locations and cultivars contributed significantly to variation in quality parameters and SRC values. Suitability of SRC parameters for discriminatory analysis of HRS wheat flour is greatly influenced by molecular weight distribution (MWD) of SDS‐unextractable proteins. SRC parameters, except for sucrose SRC, showed significant (P < 0.01) and positive correlations with high‐molecular‐weight (HMW) polymeric proteins in SDS‐unextractable fractions, whereas only lactic acid SRC exhibited significant (P < 0.01) correlations with low‐molecular‐weight polymeric proteins. HMW polymeric proteins also exhibited positive associations with FPT, FST, BWA, and BLV. The discrepant variation in association of SRC parameters with respect to MWD of SDS‐unextractable proteins could improve segregation of HRS wheat flour samples for quality.  相似文献   

20.
The effects of organic versus conventional farming practices on wheat functional and nutritional characteristics were compared. Soft white winter wheat and hard red spring wheat were obtained from multiyear replicated field plots near Pullman, Washington, and Bozeman, Montana. Test weight, kernel weight, and kernel diameter tended to be greater in both soft and hard organic wheat than in conventional wheat in the Pullman studies. Phenolic content and total antioxidant capacity tended to be lower in organic than in conventional wheat. Flour ash, P, and Mg contents in whole wheat flour varied in parallel among cropping systems, but levels were not consistently associated with either organic or conventional cropping systems. Protein contents of whole wheat and refined flours were similar in organic and conventional wheat from Pullman when fertility levels were similar. Higher fertility was associated with higher protein content in both organic and conventional cropping systems. Soft wheat flour from a low‐fertility organic cropping system had lower sodium carbonate, lactic acid, and sucrose solvent retention capacities, lower protein content, and greater cookie diameter and cake volume than soft wheat flour from the higher fertility organic and conventional cropping systems; the change in end‐product quality was significant in one out of two crop years. In the Bozeman hard wheat studies, higher fertility in both organic and conventional cropping systems tended to increase protein content and bread loaf volume. Results indicated that neither organic nor conventional cropping systems were associated with substantially improved mineral and antioxidant nutritional properties, and end‐use quality of wheat was more strongly associated with fertility level than with organic versus conventional cropping systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号