共查询到20条相似文献,搜索用时 31 毫秒
1.
Stephanie Moriartey Feral Temelli Thava Vasanthan Michael Gnzle 《Cereal Chemistry》2011,88(4):421-428
Fortifying bread with β‐glucan has been shown to reduce bread quality and the associated health benefits of barley β‐glucan. Fortification of bread using β‐glucan concentrates that are less soluble during bread preparation steps has not been investigated. The effects of β‐glucan concentration and gluten addition on the physicochemical properties of bread and β‐glucan solubility and viscosity were investigated using a less soluble β‐glucan concentrate, as were the effects of baking temperature and prior β‐glucan solubilization. Fortification of bread with β‐glucan decreased loaf volume and height (P ≤ 0.05) and increased firmness (P ≤ 0.05). Gluten addition to bread at the highest β‐glucan level increased height and volume (P ≤ 0.05) to values exceeding those for the control and decreased firmness (P ≤ 0.05). β‐Glucan addition increased (P ≤ 0.05) extract viscosity, as did gluten addition to the bread with the highest β‐glucan level. Baking at low temperature decreased (P ≤ 0.05) β‐glucan viscosity and solubility, as did solubilizing it prior to dough formulation. Utilization of β‐glucan that is less soluble during bread preparation may hold the key to effectively fortifying bread with β‐glucan without compromising its health benefits, although more research is required. 相似文献
2.
Oats, different oat fractions as well as experimental and commercial oat‐based foods, were extracted with hot water containing thermostable α‐amylase. Average molecular weight and molecular weight distributions of β‐glucan in extracts were analyzed with a calibrated high‐performance size‐exclusion chromatography system with Calcofluor detection, specific for the β‐glucan. Oats, rolled oats, oat bran, and oat bran concentrates all had high Calcofluor average molecular weights (206 × 104 to 230 × 104 g/mol) and essentially monomodal distributions. Of the oat‐containing experimental foods, extruded flakes, macaroni, and muffins all had high average molecular weights. Pasteurized apple juice, fresh pasta, and teacake, on the other hand, contained degraded β‐glucan. Calcofluor average molecular weights varied from 24 × 104 to 167 × 104 g/mol in different types of oat bran‐based breads baked with almost the same ingredients. Large particle size of the bran and short fermentation time limited the β‐glucan degradation during baking. The polymodal distributions of β‐glucan in these breads indicated that this degradation was enzymatic in nature. Commercial oat foods also showed large variation in Calcofluor average molecular weight (from 19 × 104 g/mol for pancake batter to 201 × 104 g/mol for porridge). Boiling porridge or frying pancakes did not result in any β‐glucan degradation. These large differences in molecular weight distribution for β‐glucan in different oat products are very likely to be of nutritional importance. 相似文献
3.
Nine hull‐less barley (HB) containing waxy (0–7% amylose), normal (≈25% amylose), or high amylose (≈42% amylose) starch with normal or fractured granule make‐up and 4–9% (1→3)(1→4)‐β‐d ‐glucans (β‐glucan) were pearled to remove 70% of the original grain weight in 10% intervals. The pearled fractions were analyzed for β‐glucan distribution within HB grain. Protein content of the pearled fractions indicated that the three outermost fractions contained pericarp and testa, aleurone, and subaleurone tissues, respectively. For all HB, β‐glucan and acid‐extract viscosity were very low in the outermost 20% of the kernel. For low β‐glucan HB, β‐glucan content was the greatest in the subaleurone region and declined slightly toward inner layers. For high β‐glucan HB, however, more than 80% of grain β‐glucan was distributed more evenly throughout the endosperm. Acid extract viscosity was significantly (P < 0.01) correlated with total (r = 0.75) and soluble (r = 0.87) β‐glucan content throughout the kernel of all HB. Growing conditions, location and year, had significant effects on the concentration of protein, starch and β‐glucan. However, protein, starch, and β‐glucan distribution patterns were not affected by growing conditions. The difference in β‐glucan distribution between low and high β‐glucan HB may explain the difference in milling performance of HB with low or high β‐glucan. 相似文献
4.
Fortifying bread with β‐glucan reduces bread sensorial properties, though fortification using β‐glucan concentrates of low solubility under the conditions of dough preparation has not been investigated. This study investigated the consumer acceptability and purchase intent of bread fortified with a less soluble β‐glucan concentrate at levels corresponding to 0, 0.75, and 1.5 g β‐glucan/serving bread in relation to the provision of health information, gender, and whole wheat bread consumption. The effect of β‐glucan concentration on the physical properties of the bread produced under pilot plant settings was also investigated. β‐Glucan addition decreased (P < 0.05) loaf volume, increased firmness, and produced a darker, redder bread (P < 0.05), though fortification at 1.5 g β‐glucan/serving bread decreased height as well (P < 0.05). Consumer evaluation (n = 122) revealed that health information increased liking of appearance, flavor, and overall acceptability of the 1.5 g/serving bread to levels similar to or exceeding that of the control. Liking of the 1.5 g β‐glucan/serving bread appearance increased more in women than in men and for consumers who regularly consumed whole wheat bread for perceived health benefits when β‐glucan health information was provided. The provision of β‐glucan health information may be the key to increasing consumer acceptability of bread fortified with β‐glucan. 相似文献
5.
The influence of an antistaling α‐amylase on bread crumb and on wheat starch gels was investigated taking into account different levels of structural hierarchy. Bread was prepared by a conventional baking procedure. Starch gels were produced by heating a concentrated starch dispersion in closed molds. Bread and starch gels were characterized by compression tests, light microscopy (LM), differential scanning calorimetry, and X‐ray measurements. The α‐amylase enhanced the initial firmness of starch gels and reduced the firming rate of bread and starch gels on aging. LM revealed that amylose and amylopectin phase‐separated within the starch granules and that freshly baked control bread and starch gels showed weak birefringence which became more intense during aging. Amylase‐containing bread and starch gels exhibited strong birefringence in the amylose rich region of the granules directly after baking which did not significantly increase during aging. The enzyme hindered the retrogradation of amylopectin as detected by differential scanning calorimetry, whereas X‐ray diffraction indicated that the enzyme induced low levels of starch crystallinity which did not change during aging. It is hypothesized that the antistaling effect of the amylase is based on the capacity to partially degrade amylopectin and, by this, to hinder its recrystallization. On the other hand, the enzyme slightly degrades amylose by an endo‐mechanism which, in turn, promotes the rapid formation of a partly crystalline amylose network in fresh bread and hinders amylose rearrangements during aging. 相似文献
6.
β-Glucanase activity interferes with molecular characterization of mixed-linkage (1→3)(1→4)-β-d -glucans (β-glucans). Reductions in β-glucanase activity were determined after barley cvs. Azhul, Waxbar, and Baronesse were treated with autoclaving (120°C, 45 min), calcium chloride (0.05M, 1 hr), 70% ethanol (80°C, 4 hr), hydrochloric acid (0.1N, 1 hr), oven heating (120 and 140°C, 40 min), sodium hydroxide (0.0025M, 1 hr), and 5% trichloroacetic acid (TCA) (40°C, 1 hr). High-performance size-exclusion chromatography (HPSEC) of α-amylase-treated aqueous extracts was used to demonstrate the effects of treatments on the molecular weights of β-glucans. The HPSEC system included multiple-angle, laser light scattering, refractive index, and fluorescence detectors. β-Glucanase activities, ranging from 52 to 65 U/kg of barley, were reduced by autoclaving (50–75%), hot alcohol (67–76%), oven heating (40–96%), CaCl2 (75–95%), NaOH (76–89%), and TCA (92–96%). Some malt β-glucanase activity remained after most treatments. HCl and TCA treatments reduced extraction and molecular weights of β-glucans. Weight-average molecular weights (Mw) for β-glucans extracted with water at 23°C were low (most <8 × 105). Base treatment (pH 9) and extraction at 100°C for 2.5 hr resulted in the greatest extraction of β-glucans and highest Mw. As a result, the conditions seem appropriate for measurement of physical characteristics of β-glucans in cereal products. 相似文献
7.
Zhen Li Ying Dong Xinghua Zhou Xiang Xiao Yansheng Zhao Laiting Yu 《Cereal Chemistry》2014,91(6):631-638
Barley is rich in nutritionally positive compounds, but the quality of bread made of wheat–barley composite flours is impaired when a high percentage of barley is used in the mixture. A number of enzymes have been reported to be useful additives in breadmaking. However, the effect of β‐glucanase on breadmaking has scarcely been investigated. In this paper, the influence of different levels (0.02, 0.04, 0.06, and 0.08%, based on composite flour) of β‐glucanase (100,000 U/g) on the properties of dough and bread from 70% wheat, 30% barley composite flour were studied. Although dough development time, dough stability, and protein weakening value decreased after β‐glucanase addition, dough properties such as softness and elasticity as well as bread microstructure were improved compared with the control dough. β‐Glucanase also significantly improved the volume, texture, and shelf life of wheat–barley composite breads. The use of an optimal enzyme concentration (0.04%) increased specific volume (57.5%) and springiness (21%), and it reduced crumb firmness (74%) and staling rate. Bread with added β‐glucanase had a better taste, softness, and overall acceptability of sensory characteristics compared with the control bread. Moreover, the quality of wheat–barley composite bread after addition of 0.04% β‐glucanase was nearly equal to the quality of pure wheat bread. These results indicate that dough rheological characteristics and bread quality of wheat–barley composite flour can be improved by adding a distinct level of β‐glucanase. 相似文献
8.
9.
Tomoko Maeda Tetsu Hashimoto Masashi Minoda Shin‐ichiro Tamagawa Naofumi Morita 《Cereal Chemistry》2003,80(6):722-727
Thermostable mutant α‐amylases (21B, M111, and M77) with various degrees of thermostability were purified from Bacillus amyloliquefaciens F and used as improvers for breadmaking. Test baking with the mutant enzymes was conducted using the long fermentation sponge‐dough method. Addition of an appropriate amount of mutant α‐amylases to the ingredients distinctly increased the specific volume of the bread and improved the softness of breadcrumb as compared with the addition of Novamyl (NM), an exo‐type α‐amylase. M77 was the most effective in retarding the staleness of breadcrumb. The softness of breadcrumb during storage, however, was not correlated with the thermostability. All mutant α‐amylases weakened the mixing property of the dough, whereas they strengthened the property of fermented dough. Especially, M77 and NM had different effects on the dough properties, but their bread qualities were similar to each other. The strong tolerance of M77 dough to the long baking process might be due to the production of hydrolyzed starches, oligosaccharides in the range of maltopentaose to maltohexaose, as compared with NM. Therefore, in the light of present findings, these mutant α‐amylases are possible substitutes for NM as bread improvers. 相似文献
10.
Zeins, which comprise the majority of proteins in corn, are located in spherical organelles called protein bodies. Changes in protein body shape and release of encapsulated α-zeins as a result of cornflake processing (conventional pressed or extrusion flaking) were investigated. Size-exclusion chromatography, SDS-PAGE, and protein solubility tests showed that, upon cooking, zein proteins form large, disulfide-bound polymers, many of which were insoluble in nonreducing solvents. Transmission electron microscopy with immunogold staining revealed that cooking had no effect on protein body structure in corn, but after processing to cornflakes, protein body structure was altered. In conventional pressed cornflakes, the protein bodies were flattened, partially fused together, and α-zeins were to some degree released, whereas in the extruded flakes, protein bodies were completely disrupted and α-zeins dispersed. These results suggest that zeins in cornflakes, particularly extruded ones, are not confined to rigid protein bodies but can interact with each other and other components in the system. The disruption of protein bodies, zein release, and the chemical changes that proteins undergo during processing are speculated to be determinants of texture in ready-to-eat corn-based breakfast cereals. 相似文献
11.
The soluble fiber, β‐glucan, in oat products is an active hypolipidemic component that is responsible for lowering plasma lipids. Quantitative analysis of β‐glucan in oat hydrocolloids such as Oatrim, Nutrim, and C‐Trim was performed to measure the total β‐glucan content and molecular weight distribution. For the measurement of total β‐glucan content, both modified flow‐injection analysis (FIA) method and the standard AACC enzymatic method were employed. FIA method uses the enhanced fluorescence produced when β‐glucan forms complexes with Calcofluor. Experimental results of both the modified FIA method and the standard AACC enzymatic method revealed very good coincidence with each other. This result confirms the applicability of either technique for the quantitative evaluation of β‐glucan in hydrocolloids. Molecular weight (MW) distribution of β‐glucan was determined by size‐exclusion chromatography with postcolumn detection. Experimental results revealed that the molecular weight of β‐glucan in the Trim products was decreased during the manufacturing process. This result was ascribed to the rigorous processing condition of jet‐cooking. 相似文献
12.
13.
Barley β‐glucan concentrate shows great potential as a functional food ingredient, but few product applications exist. The objectives of this study were to formulate a functional beverage utilizing barley β‐glucan concentrate, and to make a sensory evaluation of beverage quality in comparison to pectin beverages and to assess shelf stability over 12 weeks. Three beverage treatments containing 0.3, 0.5, and 0.7% (w/w) barley β‐glucan were developed in triplicate. Trained panelists found peely‐ and fruity‐orange aroma and sweetness intensity to be similar (P > 0.05) for all beverages tested. Beverage sourness intensity differed among beverages (P ≤ 0.05). Panelists evaluated beverages containing 0.3% hydrocolloid as similar (P > 0.05), whereas beverages with 0.5 and 0.7% β‐glucan were more viscous (P ≤ 0.05) than those with pectin at these levels. Acceptability of beverages was similar according to the consumer panel. Shelf stability studies showed no microbial growth and stable pH for all beverages over 12 weeks. Colorimeter values for most beverages decreased (P ≤ 0.05) during the first week of storage, mostly stabilizing thereafter. With an increase in concentration, β‐glucan beverages became lighter in color (P ≤ 0.05) and cloudier, but these attributes for pectin beverages were not affected (P > 0.05). β‐Glucan beverages exhibited cloud loss during the first three weeks of storage. β‐Glucan can therefore be successfully utilized in the production of a functional beverage acceptable to consumers. 相似文献
14.
One way to study the state in which stabilized extracellular enzymes persist and are active in the soil is by extraction from the soil, with subsequent fractionation of enzyme–organomineral complexes and characterization of such complexes. In order to investigate the location and characteristics of soil β‐glucosidase, three soil fractions were obtained both from real (undisturbed) soil aggregates and from structural (dispersed in water and physically disrupted) aggregates using two different granulometric procedures. The β‐glucosidase activity of the fraction was then assayed. When the aggregates were dispersed, more than 73% of activity was in the soil microaggregates with diameters of less than 50 μm (SF50). These aggregates were associated with strongly humified organic matter. Solutions of diluted pyrophosphate at neutral pH liberated active β‐glucosidase from all fractions, although the efficacy of extraction varied according to the type of fraction. The SF50 fraction and aggregates of 2000–100 μm obtained by sieving (SF2000) showed the greatest β‐glucosidase activity (34.5 and 36.0%, respectively). Micro‐ and ultrafiltration of SF50 extracts increased the total β‐glucosidase activity, whereas these procedures, applied to the RF2000 fraction, decreased it. Humus–β‐glucosidase complexes in the SF50 fraction, between 0.45 μm and 105 nominal molecular weight limit ( nmwl ) (SF50II) and < 105nmwl (SF50III) showed an optimum pH at 5.4, and in the SF50I fraction (> 0.45 μm) the optimum was 4.0. The stability of β‐glucosidase in the aggregates of the smallest size SF50II and SF50III decreased at acid pHs. The presence of two enzymes (or two forms of the same enzyme) catalysing the same reaction with different values of Michaelis constant and maximum velocity was observed in all but one of the β‐glucosidase complexes extracted and partially purified from the SF50 aggregates. 相似文献
15.
Mirela Colleoni‐Sirghie Jean‐Luc Jannink Igor V. Kovalenko Jenni L. Briggs Pamela J. White 《Cereal Chemistry》2004,81(4):434-443
Rheological properties of raw oat flour slurries were determined in experimental high β‐glucan (≤7.8%) and traditional oat lines (4–5% β‐glucan) grown in two consecutive years. Three different media were used to disperse oat flours: deionized water, silver nitrate solution (to inactivate endogenous enzymes), and alkali solution (to solubilize both water‐soluble and water‐insoluble β‐glucans). Significant correlations (P < 0.05) between viscosity of slurries and β‐glucan concentration obtained in either deionized water (r = 0.833), silver nitrate (r = 0.940), or alkali (r = 0.896) solutions showed that β‐glucans were the main contributor to oat extract viscosity. The highest correlation was obtained in silver nitrate solution, suggesting that inactivating endogenous enzymes is important to obtain high correlations. Predictive models of oat β‐glucan concentration based on the viscosity profile were developed using partial least squares (PLS) regression. Prediction of β‐glucan concentration based on viscosity was most effective in the silver nitrate solution (r = 0.949, correlation coefficient of predicted vs. analyzed β‐glucans) and least effective in the alkali solution (r = 0.870). These findings demonstrate that the β‐glucan in oat could be predicted by measuring the viscosity of raw flours in silver nitrate solution, and this method could be used as a screening tool for selective breeding. 相似文献
16.
β‐Glucan shows great potential for incorporation into bread due to its cholesterol lowering and blood glucose regulating effects, which are related to its viscosity. The effects of β‐glucan concentration, gluten addition, premixing, yeast addition, fermentation time, and inactivation of the flour enzymes on the viscosity of extractable β‐glucan following incorporation into a white bread dough were studied under physiological conditions, as well as, β‐glucan solubility in fermented and unfermented dough. β‐Glucan was extracted using an in vitro protocol designed to approximate human digestion and hot water extraction. The viscosity of extractable β‐glucan was not affected by gluten addition, the presence of yeast, or premixing. Fermentation produced lower (P ≤ 0.05) extract viscosity for the doughs with added β‐glucan, while inactivating the flour enzymes and increasing β‐glucan concentration in the absence of fermentation increased (P ≤ 0.05) viscosity. The physiological solubility of the β‐glucan concentrate (18.1%) and the β‐glucan in the unfermented dough (20.5%) were similar (P > 0.05), while fermentation substantially decreased (P ≤ 0.05) solubility to 8.7%, indicating that the reduction in viscosity due to fermentation may be highly dependent on solubility in addition to β‐glucan degradation. The results emphasize the importance of analyzing β‐glucan fortified foods under physiological conditions to identify the conditions in the dough system that decrease β‐glucan viscosity so that products with maximum functionality can be developed. 相似文献
17.
The beneficial role of soluble dietary fiber in human nutrition is well documented and has lead to a growing demand for the incorporation of β‐glucan, particularly from oats and barley, into foods. β‐Glucan with high solubility and high molecular weight distribution results in increased viscosity in the human intestine, which is desirable for increased physiological activity. Molecular weight, level, and solubility of β‐glucan are affected by genotype, environment, agronomic input, and the interactions of these factors and food processing methods. Available literature reveals that the level of β‐glucan in a finished product (e.g. bread, cake, muffins) depends upon several factors in the production chain, whereas food processing operations are major factors affecting molecular weight and solubility of β‐glucans. Therefore, to avail themselves of the natural bioactive compounds, food manufacturers must pay attention not only to ensure sufficient concentration of β‐glucan in the raw material but also to the processing methods and functional properties of β‐glucan, minimizing enzymatic or mechanical breakdown of the β‐glucans in end‐product and optimizing processing conditions. This review discusses the different sources of β‐glucan for use in human functional foods and factors affecting the levels and the molecular weight of β‐glucan at various pre‐ and postharvest operations. 相似文献
18.
The endosperm cell walls of barley are composed largely of a (1→3)(1→4)‐β‐d ‐glucan commonly known simply as β‐d ‐glucan (Wood 2001). There has been much research into the characteristics of barley β‐glucan because of the influence of this polysaccharide on performance of barley in malting and subsequent brewing of beer, and in feed value, especially for young chicks (MacGregor and Fincher 1993). The potential for β‐glucan to develop high viscosity is a problem in these uses, but from the perspective of human nutrition, this characteristic may be an advantage. The glycemic response to oat β‐glucan is inversely related to (log)viscosity (Wood et al 1994a) and there is evidence to suggest that the lowering of serum cholesterol levels associated with oat and barley products (Lupton et al 1994; Wood and Beer 1998) is at least in part due to the β‐glucan (Braaten et al 1994) and probably also its capacity to develop viscosity in the gastrointestinal tract (Haskell et al 1992). 相似文献
19.
The aim of the present study was to investigate the ability of mid‐infrared (MIR) spectroscopy to identify physicochemical changes in the French bread dough mixing process. An ATR FT‐MIR spectrometer at 4000–800 cm–1 was used. The MIR spectra collections recorded during mixing were analyzed after standard normal variate using principal component analysis (PCA) and after second‐derivative treatment. The results were interpreted in terms of chemical changes involved in dough development and more particularly in terms of secondary structural protein changes (amide III). The loading spectrum associated with principal component 1 (PC1) allows three MIR wave number regions of variations (3500–3000, 1700–1200, and 1200–800 cm–1) to be identified. The loading spectrum associated with PC1 describes an increase in the relative protein band intensities and a decrease in relative water and starch band intensities. The variation during bread dough mixing time of the different amide III bands identified after the second‐derivative show that α‐helical, β‐turn, and β‐sheet structures increase while random coil structure decreases, suggesting that the gluten structure is becoming a more ordered structure. The MIR mixing time identified as being the maximum scores value on the PC1 scores plots was associated with the time at which the dough apparent torque begin to collapse, suggesting that the MIR spectroscopy could monitor bread dough development. 相似文献
20.
P. L. Finney 《Cereal Chemistry》2001,78(4):485-487
Reports vary on the effects of falling number (FN) sample weight on test precision, reproducibility, and predictability of α‐amylase activity. Straight grade flours of 200 samples (25 cultivars × 2 locations × 2 N2 levels × 2 repetitions) were assayed for α‐amylase activity and FN. Location significantly affected α‐amylase activity and FN values. The coefficients of variation (CV) for the FN tests were 5.75, 2.12, 1.93, 1.72, 4.27, and 14.47%, when assayed with sample weights of 7, 6, 5.5, 5, 4.5, and 4 g, respectively. The FN test with the greatest reproducibility between sample replicates (lowest LSD and highest ratio of range/LSD) was also produced using the 5‐g sample weight. By reducing FN sample weight from 7 to 5 g, FN values that averaged 350 sec, considered essentially sound, averaged 215 sec, thus shortening the FN test time by an average of 2 min and 15 sec when assaying sound wheat flour. The results suggest a review of the 7‐g stipulation of AACC Approved Method 56‐81B for FN in favor of reduced sample weight. 相似文献