首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A full understanding of the cellular events that occur during in vitro luteinization of bovine granulosa cells, stimulated by LH and by leptin, is a complex goal that has not been completely achieved. The aim of this work was to study the effects of leptin, LH and leptin + LH on progesterone accumulation (P4) and on the expression of LH receptors (LHR) in bovine granulosa cells in culture. The results confirm that this in vitro model is representative of functional and morphological luteinization/differentiation. The pattern of expression of LHR with time of incubation was an important marker of in vitro luteinization, with 50–90% of cells expressing LHR by 96 h in culture. Cytoplasmic lipidic droplets were highly abundant in granulosa cells, suggesting a sufficient source of precursors for steroid hormone synthesis: P4 accumulation ranged between 40 and 550 ng/ml. In addition, a positive correlation ( r  = 0.58, p < 0.05) between the expression of LHR and accumulation of P4 throughout the time of incubation was observed. The expression of LHR was inhibited by LH and leptin + LH treatment. In conclusion, we found an inverse modulation between the expression of LHR and the concentration of LH, and the expression of LHR could be regulated by P4 produced by the luteinized granulosa cells. These findings are contributing to elucidate further the panoply of interactions during the differentiation of granulosa cells into luteal cells in vitro .  相似文献   

2.
In cattle, sub-luteal circulating progesterone induces an increase in the frequency of LH pulses, prolonged growth of the dominant follicle, increased peripheral estradiol and reduced fertility. The objective of this study was to examine the earliest stages of development of prolonged dominant follicles, to gain insight into the etiology of this aberrant condition. Heifers were treated with an intravaginal progesterone-releasing device (CIDR) from Day 4-8 post-estrus and PGF2alpha was injected on Day 6 and again 12h later (early prolonged dominant group). Follicular phase (CIDR: Day 4-6, with PGF2alpha) and luteal phase (CIDR: Day 4-8, without PGF2alpha) groups served as controls. As expected, peripheral progesterone in heifers of the early prolonged dominant group was intermediate between luteal and follicular phase groups after luteal regression (P<0.05). On Day 7, the frequency of LH pulses was higher in heifers of the follicular phase and early prolonged dominant groups than the luteal phase group (P<0.05). Dominant follicles (n = 4 per group) were collected by ovariectomy on Day 8 and were similar in size among groups (P>0.05). Estradiol and androstenedione concentrations in the follicular fluid at ovariectomy were higher in the follicular phase and early prolonged dominant groups versus the luteal phase group (P<0.01), whereas progesterone did not differ among groups (P>0.05). Granulosa cells and theca interna isolated from dominant follicles were incubated for 3h with or without gonadotropins or frozen for later analysis of mRNA for steroidogenic enzymes. Luteinizing doses (128 ng/ml) of LH and FSH increased secretion of progesterone (P<0.05) but did not affect secretion of estradiol by granulosa cells in all groups. Low (2 or 4 ng/ml) and luteinizing doses of LH increased secretion of androstenedione by theca interna to a similar extent among groups. Expression of mRNA for P450 side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), P450 aromatase (aromatase) and Steroidogenic Acute Regulatory (StAR) protein by granulosa cells did not differ among groups (P>0.05). Levels of mRNA for P450scc, 3beta-HSD, 17alpha-hydroxylase (17alpha-OH) and StAR protein in theca interna were similar in the follicular phase and early prolonged dominant groups (P>0.05), but lower in the luteal phase group (P<0.05-0.1). In summary, the premature follicular luteinization observed in previous studies after prolonged periods of sub-luteal progesterone was absent in early prolonged dominant follicles, exposed to sub-luteal progesterone for 36 h, and their characteristics resembled those of control follicles during the follicular phase.  相似文献   

3.
Luteinizing hormone (LH)-stimulated steroidogenesis in luteal cells is known to be mediated through the activation of cyclic AMP (cAMP)-dependent protein kinase, and to be also modulated by calcium-dependent mechanisms. In the present study, we tested the hypothesis that LH stimulates progesterone (P4) production in bovine luteal cells through activation of phospholipase (PL) C by using a cell culture system. Bovine mid-luteal cells (Days 8-12 of the estrous cycle) were cultured for 24 h and then exposed to a PLC inhibitor (U-73122; 10 microM) with or without LH (10 ng/ml) for 4 h. U-73122 blocked LH-stimulated P4 production without affecting cAMP accumulation. Moreover, exposure of luteal cells to PLC increased P4 production in a dose-dependent manner. These results support the hypothesis that the luteotropic action of LH in bovine luteal cells is mediated not only by activation of adenylate cyclase but also by activation of PLC.  相似文献   

4.
Cystic follicle is anovulatory follicular structure that is caused by an endocrine imbalance. The activity of cytochrome P450‐side chain cleavage (P450scc) is essential for the initiation of steroidogenesis in the follicle. The present study was designed to compare the frequency of cells containing P450scc between healthy and atretic small antral follicles, and among several types (I, II and III, classified based on the presence of granulosa layer) of cystic follicles. Paraffin sections of healthy (2–5 mm in diameter), atretic (2–5 mm) and cystic follicles (>25 mm) were immunohistochemically stained with rabbit polyclonal antibody to bovine P450scc. The P450scc‐positive cells were counted in four different regions of the follicles from the apical to the basal side. In small antral follicles and cystic follicles, P450scc‐positive cells were localized in the theca interna layers but not granulosa layers. The P450scc‐positive cell populations decreased in the late atretic follicles compared with the early and advanced atretic follicles at all the regions of follicle. Type III cystic follicles showed significantly lower frequencies of P450scc‐positive cells than those in the types I and II cystic follicles. These results suggest that in both small and cystic follicles in cows, total loss of granulosa cells may be associated with the reduction of frequency of P450scc‐positive cells in theca interna layer.  相似文献   

5.
Expression of mRNAs encoding cytochrome P450 side-chain cleavage (P450scc), cytochrome P450 17 -hydroxylase (P450c17), and cytochrome P450 aromatase (P450arom) were characterized by the RT-PCR technique and concentrations of progesterone (P4), testosterone (T0) and estradiol (E2) were measured by radioimmunoassay during follicular development of prepubertal goats. Synthesis of mRNAs encoding P450scc and P450c17 began in preantral follicles, but mRNA encoding P450arom was not detectable until early antral formation. While mRNA for P450scc was expressed in both theca and granulosa cells, mRNA for P450c17 was expressed only in theca cells while P450arom mRNA only in granulosa cells. In nonatretic follicles from prepubertal ovaries, the relative quantity of mRNA expression of all the three enzymes increased with follicle size; however, while the concentration of P4 and E2 increased, that of T0 decreased with follicle size. While expression of mRNA encoding P450scc was unaffected, that of P450c17 mRNA decreased to the lowest level and mRNA for P450arom became undetectable following atresia; accordingly, while the concentration of P4 increased in the atretic medium follicles, that of T0 and E2 decreased to the lowest level after atresia. While the adult follicular stage follicles showed a similar cytochrome expression as the nonatretic follicles of prepubertal goats, the former contained higher levels of E2 and P4 than the latter. The presence of corpus luteum in an ovary decreased expression of P450scc, significantly in large follicles while it increased concentration of P4. These findings indicated that (1) similar to other species, changes in follicular steroid production in goats were explained in large measure by changes in steroidogenic enzyme expression; (2) while mRNA expression was similar, activities of some of the steroidogenic enzymes may differ between sexually mature and immature goats.  相似文献   

6.
Previous anatomical and histochemical studies suggested that interstitial cells were the only steroidogenic cells in the theca layer of small follicles of the chicken ovary. However, the precise cellular site of steroid production in the small follicles is not certain. Therefore, our goal was to identify steroidogenic cells in small follicles (< 10 mm in diameter) of the chicken ovary which have not entered the follicular hierarchy by localizing steroidogenic enzymes with immunocytochemistry. Polyclonal antisera used were anti-cholesterol side-chain-cleavage cytochrome P450 (P450scc), anti-17-hydroxylase cytochrome P450 (P450c17), and anti-aromatase cytochrome P450 (P450arom) for pregnenolone-, androgen-, and estrogen-producing cells, respectively. Ovaries were collected 2 hr after oviposition and embedded in Paraplast after fixation with 4% paraformaldehyde, 10% formaldehyde, or Bouin's solution. Tissues were sectioned (4–6 μm) and sections were mounted on poly-L-lysine coated slides. Sections were incubated overnight at room temperature with each specific antiserum raised in rabbits against cytochrome P450 steroidogenic enzymes or normal rabbit serum as a control and were immunostained with an avidin-biotin-peroxidase complex. Immunoreactivity for the P450 enzymes was absent in the granulosa layer but was present in the theca layer of the small follicles (< 10 mm in diameter). Interstitial cells in the single theca layer of cortical follicles embedded in the ovarian cortex (less than 1 mm in diameter) contained P450scc and P450c17. Cells which contained P450arom, identified as aromatase cells, surrounded the interstitial cells in the theca layer. In small white follicles (approximately 1 mm in diameter), large white follicles (approximately 2–4 mm in diameter), and small yellow follicles (approximately 5–10 mm in diameter) which protruded from the surface of the ovary, the theca layer is divided into the theca interna and the theca externa. P450scc and P450c17 were localized in interstitial cells in the theca interna and externa whereas P450arom was localized in aromatase cells of the theca externa. With follicular development, more interstitial cells staining for P450scc and P450c17 appeared in the theca interna than in the theca externa whereas aromatase cells staining for P450arom were localized only in the theca externa. The distance between interstitial cells and aromatase cells within the theca layer increased as the follicles matured, resulting in a change in the anatomical relationship of steroidogenic cells. Our results of immunolocalization of cytochrome P450 steroidogenic enzymes in developing small follicles suggest that: 1) granulosa cells in small follicles are steroidogenically inactive; 2) steroids are produced in two distinct cell populations in the theca layer of small follicles, namely interstitial cells and aromatase cells; and 3) the anatomical relationship and location of interstitial cells and aromatase cells in the theca layer change with follicular maturation (a two-cell model for steroidogenesis in small follicles during follicular development).  相似文献   

7.
Luteinizing hormone receptor (LHR) is a specific membrane receptor on the granulosa and theca cells that bind to luteinizing hormone (LH), resulting in androgen and progesterone production. Hence, the regulation of LHR expression is necessary for follicle maturation, ovulation and corpus luteum formation. We examined the immunolocalization of LHR in cyclic gilt ovaries. The ovaries were obtained from 21 gilts aged 326.0 ± 38.7 days and weighing 154.6 ± 15.7 kg. The ovarian tissues were incubated with rabbit anti‐LHR polyclonal antibody. The follicles were categorized as primordial, primary, preantral and antral follicles. Ovarian phase was categorized as either follicular or luteal phases. The immunolocalization of LHR was clearly expressed in primary, preantral and antral follicles. LHR immunostaining was detected in the cytoplasm of granulosa, theca interna and luteal cells. LHR immunostaining was evaluated using imaging software. LHR immunostaining in the theca interna cells in antral follicles was almost twice as intense as that in preantral follicles (65.4% versus 38.3%, < 0.01). LHR immunostaining was higher in the follicular phase than in the luteal phase (58.6% versus 45.2%, < 0.05). In conclusion, the expression of LHR in the theca interna cells of antral follicles in the follicular phase was higher than in the luteal phase. The expression of LHR in all types of the follicles indicates that LHR may impact follicular development from the primary follicle stage onwards.  相似文献   

8.
Ovarian follicular growth and dominance are controlled by a series of hormonal and intraovarian events including a decrease in intrafollicular IGF-binding proteins −2, −4 and −5 levels. Proteolytic enzymes such as pregnancy-associated plasma protein-A (PAPP-A) degrade IGFBPs and increase bioavailability of IGF-I and -II during follicular development. The objective of this study was to determine the effect of IGF-I, IGF-II, insulin (INS), LH, FSH, estradiol (E2), leptin or cortisol on ovarian PAPP-A mRNA levels. Granulosa (GC) from small (SM) (1–5 mm) and large (LG) (8–22 mm) follicles as well as theca cells (TC) from LG follicles were collected from bovine ovaries and cultured for 48 h in medium containing 10% FCS and then treated with various hormones in serum-free medium for an additional 24 h. Cells were treated with various concentrations (3–500 ng/ml) and combinations of IGF-I, IGF-II, FSH, LH, E2, INS, leptin and (or) cortisol for 24 h (Experiments 1–10). PAPP-A mRNA levels were measured using quantitative real-time RT-PCR. In SM-GC and LG-GC, none of the treatments significantly affected (P > 0.10) PAPP-A mRNA abundance. In LG-TC, IGF-I, LH or cortisol did not affect (P > 0.10) PAPP-A mRNA levels, whereas INS with or without LH decreased (P < 0.05) PAPP-A mRNA. E2 alone decreased PAPP-A mRNA levels in LG-TC, and E2 amplified the insulin-induced inhibition of PAPP-A mRNA abundance in LG-TC. We conclude that control of PAPP-A mRNA abundance in granulosa and theca cells differs, and that E2 may be part of an intraovarian negative feedback system which may reduce the bioavailable IGFs in the theca layer during growth and selection of follicles.  相似文献   

9.
To study the luteal and placental function of pinnipeds, we analyzed the localization of steroidogenic enzymes (P450scc, 3 beta HSD and P450arom) in the corpus luteum and the placenta of ribbon seals (Phoca fasciata) and Steller sea lions (Eumetopias jubatus) immunohistochemically. P450scc and 3 beta HSD were present in all luteal cells of both species. Almost all of the luteal cells were immunostained for P450arom, while P450scc and 3 beta HSD were negatively immunostained in placentae and P450arom was present in the syncytiotrophoblast of placentae. These findings suggest that 1) corpora lutea of both species synthesize pregnenolone, progesterone and estrogen during the entire pregnancy period, and 2) like other terrestrial carnivores in the suborder Caniformia, placentae of both species do not have the capability for synthesizing progesterone in the latter half of active pregnancy period.  相似文献   

10.
We investigated the distribution of 3 types of steroidogenic enzymes, P450scc, 3betaHSD, and P450c17, in wild raccoon dog ovaries by immunohistochemistry. Six pairs of ovaries were obtained from wild raccoon dogs between 2001 and 2003, with 3 of the 6 pairs of ovaries containing corpora lutea. P450scc, 3betaHSD, and P450c17 were localized in the granulosa and theca cells of these raccoon dogs. Furthermore, lutein cells were stained positively for P450scc and 3betaHSD in the pregnant and non-pregnant raccoon dogs. These results suggest that granulosa and theca cells may synthesize progesterone and androgens, which may play an important role in follicular development, and that lutein cells are a major source of progesterone in wild raccoon dogs.  相似文献   

11.
Gossypol, a polyphenolic aldehyde found in cottonseed, has been shown to perturb steroidogenesis in granulosa and luteal cells of rats, pigs and cattle. However, little is known about the direct effect of gossypol on theca cell functions in any species. The present study was conducted to investigate the effect of gossypol on the steroidogenesis and the expression of genes involved in it in cultured bovine theca cells. Theca cells were isolated from healthy preovulatory follicles and were cultured in the presence of luteinizing hormone (LH) for up to 7 days. During the culture period, main steroid products of the theca cells shifted from androstenedione (A4) at day 1 to progesterone (P4) from day 2 onward. At days 1 and 7, theca cells were treated with gossypol (0‐25 μg/mL) for 24 h. Gossypol inhibited LH‐stimulated theca cell A4 and P4 production in a dose‐dependent manner at both occasions. The viability of theca cells was not affected by gossypol at any doses used. Gossypol down‐regulated expressions of steroidogenic enzymes CYP11A1, HSD3B1 and CYP17A1, but not that of LHR. These results indicate that gossypol inhibits thecal steroidogenesis through down‐regulating gene expressions of steroidogenic enzymes but without affecting cell viability in cattle.  相似文献   

12.
In earlier in vitro experiments opioids affected steroidogenesis in porcine luteal and granulosa cells. The present studies were undertaken to examine the effects of FK 33-824 (opioid agonist) alone or in combination with LH, PRL or naloxone (NAL, opioid antagonist) on steroidogenesis in cultured porcine theca cells. Moreover, we have tested beta-endorphin-like immunoreactivity (beta-END-LI) concentrations in culture media under control conditions and following treatments of theca cells with LH, PRL, progesterone (P4), oestradiol (E2) or testosterone (T). FK 33-824 and NAL significantly increased P4 release by theca cells and inhibited stimulatory effect of LH on this steroid output. PRL-induced P4 secretion from the cells was blunted only by FK 33-824. Secretion of androstenedione (A4) and T was essentially elevated in the presence of FK 33-824 and this potentiation of both androgen release was completely abolished by PRL. NAL blocked stimulatory effect of the opioid agonist only in case of T. Secretion of oestradiol and oestrone was completely free from the influence of both the opioid agonist and antagonist. Pig theca cells were able to produce beta-END-LI but none of tested hormones (LH, PRL, P4, E2 and T alone or in combination) significantly affected this production. In conclusion, these data indicate that porcine theca cells may produce beta-END-LI and change their steroidogenesis in response to opioid peptides.  相似文献   

13.
To study luteal function in the late gestational period of Phocidae (seals), we analyzed the localization of steroidogenic enzymes (P450scc, 3betaHSD and P450arom) and prolactin receptors in the corpora lutea of pregnant spotted seals (Larga seal; Phoca largha) immunohistochemically. P450scc, 3betaHSD and prolactin receptors were present in all luteal cells of each corpus luteum, and most luteal cells were immunostained for P450arom. Although we analyzed only two specimens, P450scc, 3betaHSD and prolactin receptors were negatively immunostained in the placentae. P450arom was present in the syncytiotrophoblast of placentae. These findings suggest that 1) the corpus luteum of the spotted seal synthesizes pregnenolone, progesterone and estrogen during late gestational period, 2) the placenta of this species do not possess the capacity to synthesize progesterone, and 3) like other terrestrial carnivores, this species requires prolactin to maintain the corpus luteum during pregnancy. These characteristics support the recent classification of family Phocidae in the order Carnivora, and suggest a relationship between prolactin and reproductive failure during the post-implantation period in pinnipeds.  相似文献   

14.
In this study, we performed immunohistochemistry of cholesterol side-chain cleavage cytochrome P450 (P450scc), 3beta-hydroxysteroid dehydrogenase (3betaHSD), cytochrome 17alpha-hydroxylase P450 (P450c17), and cytochrome P450 aromatase (P450arom) in the corpus luteum and placenta of Shiba goats. The aim was to clarify the steroidogenic capability of the corpus luteum and placenta of Shiba goats. Ovaries containing corpora lutea were obtained from four adult Shiba goats during the luteal phase (day10; n=2) and pregnancy (90 and 120 days of gestation). Placenta was obtained from one Shiba goat on day 120 of gestation. The sections of the ovaries and placentae were immunostained using the avidin-biotin-peroxidase complex method (ABC) with polyclonal antibodies generated against steroidogenic enzymes of mammalian origin. All luteal cells expressed P450scc, 3betaHSD, P450c17 and P450arom. The distribution of P450scc, 3betaHSD, P450c17 and P450arom were not different during the luteal phase and pregnancy. P450arom showed a weak positive staining in late pregnancy (120 days). In addition, immunoreactions for P450c17 and P450arom were observed in syncytiotrophoblast of the placenta of one Shiba goat. These results indicate that, in Shiba goats, corpus luteum is not only an important source of progesterone but also has the ability to synthesize androgen and estrogen during the luteal phase and pregnancy. Also the placenta has the ability to synthesize androgen and estrogen in late pregnancy.  相似文献   

15.
The period of spring transition, from the anovulatory to the ovulatory season, is characterized in many mares by cyclical growth and regression of large dominant follicles. These follicles produce only low concentrations of estradiol and it is thought that acquisition of steroidogenic competence by large follicles during spring transition is prerequisite in stimulating LH prior to first ovulation. In situ hybridization was used to localize and quantify expression of factors that play a key role in follicular steroidogenesis: StAR, P450scc (CYP11A1), P450c17 (CYP17), P450arom (CYP19), and LH receptor (LHr). One ovary was obtained from mares on the day after detection of an actively growing 30 mm transitional anovulatory follicle (defined as the transitional follicle), and the remaining ovary was removed at the third estrus of the breeding season on the day after the preovulatory follicle reached 30 mm in diameter (defined as the preovulatory follicle). Messenger RNAs encoding StAR, CYP11A1, and CYP17 were detected only in theca cells and CYP19 mRNA was confined to the granulosa layer. There was significantly lower expression of mRNAs for the steroidogenic enzymes, StAR (P<0.001) and LHr (P<0.05) in transitional follicles than in preovulatory follicles. In conclusion, large equine follicles during spring transition have low levels of mRNA encoding steroidogenic enzymes, StAR and LHr which will contribute to the steroidogenic incompetence of dominant follicles during spring transition and their subsequent regression.  相似文献   

16.
In the series of studies, changes of expression and regulation of luteinizing hormone (LH) receptor in the ovary of domestic ruminants were examined. Furthermore, mechanisms of formation of follicular cysts in domestic ruminants, caused by stress and so on, were endocrinologically elucidated. Results of the studies provide the following conclusions. (1) The quantity of LH receptor in the bovine antral follicles increases rapidly in the latter stage of its development. (2) The quantity of LH receptor and its mRNA in the bovine and caprine corpus luteum increase during their developments. The increase of the receptor in the caprine luteal development is regulated by LH through the receptor mRNA level. (3) At least, three splice variants of LH receptor mRNA exist in the bovine luteal tissue and the variant receptors are expressed at different cellular sites according to its structure. (4) Intracellular consecutive cysteine residues of LH receptor are palmitoylated and thereby inhibit internalization of the receptor. (5) As a mechanism of the bovine follicular cyst caused by stress, it is suggested that increased secretions of progesterone and cortisol from the adrenal gland exert inhibitory effects on the hypothalamus and follicle, respectively, and subsequently LH and FSH surges are blocked, then finally ovulation is suppressed and the follicle becomes cystic.  相似文献   

17.
To determine whether hypoxia has an effect on luteinization, we examined the influence of hypoxia on a model of bovine luteinizing and non-luteinizing granulosa cell culture. The granulosa cells were obtained from small antral follicles (≤ 6 mm in diameter). To induce luteinization, the cells were treated for 24 h with insulin (2 µg/ml), forskolin (10 µM) or insulin in combination with forskolin at 20% O2. After 24 h, progesterone (P4) production was higher in the treated cells, which we defined as luteinizing granulosa cells, than in non-treated cells, which we defined as non-luteinizing granulosa cells. P4 production by non-luteinizing granulosa cells was not affected by hypoxia (24 h at 10% and 5% O2), while P4 production by granulosa cells treated with insulin in combination with forskolin was significantly increased under hypoxia (24 h at 10% and 5% O2). Because hypoxia affected P4 production by the luteinizing granulosa cells but not by the non-luteinizing granulosa cells, hypoxia seems to promote P4 production during, rather than before, luteinization. In the cells treated with insulin in combination with forskolin, mRNA and protein expression of steroidogenic acute regulatory protein (StAR) and protein expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) increased under 10% O2, while mRNA and protein expressions of key protein and enzymes in P4 biosynthesis did not increase under 5% O2. The overall results suggest that hypoxia plays a role in progressing and completing the luteinization by enhancing P4 production through StAR as well as 3β-HSD expressions in the early time of establishing the corpus luteum.  相似文献   

18.
A growing body of evidence indicates that intrafollicular progesterone receptor signaling pathways are obligatory for follicle rupture. However, the intrafollicular localization and regulation of progesterone receptor expression during the periovulatory period in cattle are not known. In this study, we determined the effect of the preovulatory gonadotropin surge on localization and expression of progesterone receptor mRNA in bovine periovulatory follicular and luteal tissue. Ovaries containing preovulatory follicles or new corpora lutea (CL) were collected at approximately 0, 6, 12, 18, 24 (preovulatory follicles) and 48 h (CL) after a GnRH-induced LH surge (n=5-8 per timepoint). Expression of progesterone receptor mRNA was detected in periovulatory follicular and luteal tissue at all timepoints examined. Relative levels of progesterone receptor mRNA were dramatically upregulated within 6h after the LH surge compared to all other time points (P<0.0001). In situ hybridization analysis revealed that the significant increase in progesterone receptor mRNA expression was localized to the granulosal layer of preovulatory follicles. Our results indicate that progesterone receptor mRNA expression is upregulated specifically in the granulosal layer of bovine preovulatory follicles following the LH surge. Progesterone receptor signaling pathways may help mediate the effects of the preovulatory LH surge on follicle rupture in cattle.  相似文献   

19.
Microdialysis System (MDS) is a novel technique used for investigation of molecule secretion between different cell populations. Local hormonal secretion at follicular wall has been still unclear. This MDS study was used to determine progesterone (P4), androstenedione (A4), estradiol-17beta (E2) and Prostaglandin F2alpha (PGF2alpha) release in mare pre-ovulatory follicles. Follicles larger than 30 mm were isolated from the ovary and follicular fluid aspirated for hormone assay. Follicular fluid collected from small, middle and large follicles were analyzed by EIA. The concentrations of P4 and PGF2alpha were similar among the different sizes of follicles. The release of A4 was observed in middle and large follicles. E2 concentration was observed in middle follicles and was higher in large follicles compared with middle follicles. Follicular wall was cut and incubated for MDS and when LH was infused, there was an increase in P4 and A4 release. PGF2alpha release was considerably high after LH infusion compared to the control group. Infusion of PGF2alpha increased P4 and A4 release but there was no change in E2 release. This results suggest that in pre-ovulatory follicles, LH stimulates theca interna cells and also PGF2alpha seemed to have a mediator role to induce steroid hormone production and luteinization of follicular cells. The nature of the mechanisms involved in selection of large follicles is still a perplexing research problem in reproduction.  相似文献   

20.
We analyzed the localization of steroidogenic enzymes (P450 scc, 3 beta HSD, P450 arom and P450 c17) in the corpora lutea of two Hokkaido sika deer (Cervus nippon yesoensis) during the early mating season. Two corpora lutea were found in each female and the timing of formation of the corpora lutea seemed different. P450 scc, and 3 beta HSD, positive luteal cells were found in both corpora lutea. The existence of two functional corpora lutea from the early mating season through pregnancy suggests that progesterone secreted by two or more corpora lutea is necessary for maintenance of pregnancy in sika deer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号