首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endosperm cell walls of barley are composed largely of a (1→3)(1→4)‐β‐d ‐glucan commonly known simply as β‐d ‐glucan (Wood 2001). There has been much research into the characteristics of barley β‐glucan because of the influence of this polysaccharide on performance of barley in malting and subsequent brewing of beer, and in feed value, especially for young chicks (MacGregor and Fincher 1993). The potential for β‐glucan to develop high viscosity is a problem in these uses, but from the perspective of human nutrition, this characteristic may be an advantage. The glycemic response to oat β‐glucan is inversely related to (log)viscosity (Wood et al 1994a) and there is evidence to suggest that the lowering of serum cholesterol levels associated with oat and barley products (Lupton et al 1994; Wood and Beer 1998) is at least in part due to the β‐glucan (Braaten et al 1994) and probably also its capacity to develop viscosity in the gastrointestinal tract (Haskell et al 1992).  相似文献   

2.
The current enzymatic assay approach (AACC International Approved Method 32‐23) for the measurement of mixed‐linkage β‐glucan in small grains was modified to a cost‐efficient and high‐throughput format without compromising the accuracy of the results. Ten barley (Hordeum vulgare L.) genotypes used in the study represented a wide range of β‐glucan content levels. A reduced reaction volume is used in the new protocol to adapt to a 96‐well plate format. The volume of key components lichenase and β‐glucosidase were reduced to 25% of the volume required in the original protocol and the cost per sample was reduced to 22% of that in the original protocol. Labor cost was also decreased to 25% of the original protocol as a result of format changes. The accuracy of the measurement from the modified protocol was comparable to the current standard enzymatic procedure. β‐Glucan measurement accuracy of the modified and original protocols were also compared using 21 oat (Avena sativa L.) samples. The results indicated that the new protocol consistently produced accurate measurements in both barley and oat.  相似文献   

3.
Effects of hydrothermal treatments (steaming, roasting) of oat grain on β-glucan extractability and rheological properties were tested on oat cultivars with low (Robert) and high (Marion) β-glucan content. Steaming of grain reduced the amount of β-glucan that could be extracted, compared with raw or roasted grain, but the extracts from steamed grain had much greater viscosity. Increased extraction temperatures increased the amount and the average relative molecular mass (M r) value of β-glucan extracted. In boiling water extractions, the average M r values among raw, roasted and steamed oat samples were equivalent, but extracts from steamed oat grain had significantly higher intrinsic viscosity than the extracts from roasted or raw oat grains. β-glucan solutions purified from steamed grain extracts were very viscous and highly pseudoplastic, as described by the power law equation. Oat β-glucan from steamed samples were more viscoelastic than β-glucan from roasted or raw oat samples. Because viscous properties of β-glucan from boiling water extracts are influencedhydrothermal treatments without affecting polymer molecular weight, polymer interaction with the solvent must be affected. Steaming may disrupt intramolecular cross-linkings in native β-glucan, allowing a linear chain configuration to generate greater viscosity.  相似文献   

4.
Water-soluble nonstarch polysaccharides were extracted from commercial hard red winter wheat flour and separated into three fractions by graded ethanol precipitation. The three fractions, F15, F40, and F60, varied in polysaccharide composition. Fraction F15 was rich in watersoluble (1→3)(1→4)-β-d -glucans, and fractions F40 and F60 were rich in arabinoxylans. Addition of individual fractions to a bread formula did not affect bread loaf volume. Addition of fraction F15 to the formula improved bread crumb grain. Treatment of (1→3)(1→4)-β-D -glucan-rich fraction F15 with lichenase before its addition to the bread formula resulted in bread with poor crumb grain. Treatment of the F15 fraction with β-xylanase before its addition to the bread formula resulted in bread with slightly improved crumb grain. Presumably, the (1→3)(1→4)-β-D -glucans in fraction F15 improved crumb grain by stabilizing air cells in the bread dough and preventing coalescence of the cells. Addition of pentosan-rich fractions F40 and F60 to the bread formula did not improve crumb grain and interfered with the improving effect of (1→3)(1→4)-β-D -glucan-rich fraction F15. Hydrolysis of the arabinoxylans in flour by adding β-xylanase to the bread formula resulted in improved crumb grain.  相似文献   

5.
The content and molecular weight (MW) of β-glucan in extracts from a selection of oat and barley cultivars were compared using flow-injection analysis and high-performance size-exclusion chromatography. From 60 to 75% of the β-glucan was extracted from oat and waxy barley by hot water (90°C) containing heat-stable α-amylase, whereas just 50–55% was extracted from nonwaxy barley. Consecutive extractions with hot water and dimethylsulfoxide (DMSO) extracted 65% (nonwaxy barley) or 75–80% (oat and waxy barley) of the total β-glucan. An extraction with sodium hydroxide and sodium borohydride (NaOH/NaBH4) increased the percentage of β-glucan extracted to 86–100% but decreased the MW. The MW of β-glucan in the oat cultivars selected was significantly higher than those in the barley cultivars. The β-glucan extracted from the nonwaxy barley cultivars showed significantly higher peak MW than that from the waxy barley cultivars.  相似文献   

6.
One way to study the state in which stabilized extracellular enzymes persist and are active in the soil is by extraction from the soil, with subsequent fractionation of enzyme–organomineral complexes and characterization of such complexes. In order to investigate the location and characteristics of soil β‐glucosidase, three soil fractions were obtained both from real (undisturbed) soil aggregates and from structural (dispersed in water and physically disrupted) aggregates using two different granulometric procedures. The β‐glucosidase activity of the fraction was then assayed. When the aggregates were dispersed, more than 73% of activity was in the soil microaggregates with diameters of less than 50 μm (SF50). These aggregates were associated with strongly humified organic matter. Solutions of diluted pyrophosphate at neutral pH liberated active β‐glucosidase from all fractions, although the efficacy of extraction varied according to the type of fraction. The SF50 fraction and aggregates of 2000–100 μm obtained by sieving (SF2000) showed the greatest β‐glucosidase activity (34.5 and 36.0%, respectively). Micro‐ and ultrafiltration of SF50 extracts increased the total β‐glucosidase activity, whereas these procedures, applied to the RF2000 fraction, decreased it. Humus–β‐glucosidase complexes in the SF50 fraction, between 0.45 μm and 105 nominal molecular weight limit ( nmwl ) (SF50II) and < 105nmwl (SF50III) showed an optimum pH at 5.4, and in the SF50I fraction (> 0.45 μm) the optimum was 4.0. The stability of β‐glucosidase in the aggregates of the smallest size SF50II and SF50III decreased at acid pHs. The presence of two enzymes (or two forms of the same enzyme) catalysing the same reaction with different values of Michaelis constant and maximum velocity was observed in all but one of the β‐glucosidase complexes extracted and partially purified from the SF50 aggregates.  相似文献   

7.
The extractability and molecular weight of β-glucan in oat bran, oat bran muffins, and oat porridge and the changes taking place during processing and storage were studied. The β-glucan was extracted using hot water and a thermostable α-amylase and by an in vitro system that simulated human digestion. Molecular weight (MW) of the extracted β-glucan was determined using high-performance size-exclusion chromatography. Hot-water treatment extracted 50–70% of total β-glucan in oat bran samples and rolled oats. The chromatographic peak MW of extracted β-glucan was in the 1.4–1.8 × 106 range. Using the in vitro digestion system, 12–33% of total β-glucan in bran and rolled oats was solubilized, and peak MW was in the same range as β-glucan extracted by hot-water treatment. In muffins, 30–85% of total β-glucan was solubilized by in vitro digestion, with a major difference in extractability among muffins from different recipes. Peak MW of extracted β-glucan was lower in all muffins when compared to original bran. During frozen storage, extractable β-glucan decreased by >50% in all muffins, but no change in peak MW of extracted β-glucan was detected.  相似文献   

8.
Pearling by‐products and the pearled products of two commercial stocks of hulled barley, pearled according to an industrial process consisting of five consecutive pearling steps, were analyzed for β‐glucans, dietary fiber (total, soluble, and insoluble), protein, lipid, ash, and digestible carbohydrate. The data showed that the pearling flour fractions, abraded in the fourth and fifth hullers, contained interesting amounts of β‐glucans (3.9–5.1% db) from a nutritional point of view. These fractions were subsequently enriched in β‐glucans using a milling‐sieving process to double β‐glucan content (9.1–10.5% db). Functional pastas, enriched with β‐glucans and dietary fiber, were produced by substituting 50% of standard durum wheat semolina with β‐glucan‐enriched barley flour fractions. Although darker than durum wheat pasta, these pastas had good cooking qualities with regard to stickiness, bulkiness, firmness, and total organic matter released in rinsing water. The dietary fiber (13.1–16.1% wb) and β‐glucan (4.3–5.0% wb) contents in the barley pastas were much higher than in the control (4.0 and 0.3% wb, respectively). These values amply meet the FDA requirements of 5 g of dietary fiber and 0.75 g of β‐glucans per serving (56 g in the United States and 80 g in Italy). At present, the FDA has authorized the health claim “may reduce the risk of heart disease” for food containing β‐glucans from oat and psyllium only.  相似文献   

9.
Water‐soluble β‐glucan from native and extrusion‐cooked barley flours of two barley cultivars, Candle (a waxy starch barley) and Phoenix (a regular starch barley), was isolated and purified. The purity of β‐glucan samples was 85–93% (w/w, dry weight basis) for Candle and 77–86% (w/w, dry weight basis) for Phoenix. The water solubility of β‐glucan (at room temperature, 25°C) in the native and extruded flours (primary solubility) was different from that of the purified β‐glucan samples (secondary solubility). The solubility of β‐glucan in the native and extruded Candle flour was substantially higher than that of β‐glucan in Phoenix. For both cultivars, β‐glucan in the extruded flours had solubility (primary solubility) values higher than in their native counterparts. The solubility of β‐glucan in the purified β‐glucan samples differed depending on the barley cultivar and the extrusion conditions employed. The glycosidic linkage profiles of purified soluble β‐glucan from native and extruded barley flours were determined in order to understand the changes in the primary structure of β‐glucan and the effect of extrusion on the β‐glucan structure‐solubility relationship.  相似文献   

10.
This review provides current state of the art of compound‐specific stable‐isotope‐ratio mass spectrometry (δ13C) and gives an overview on innovative applications in soil science. After a short introduction on the background of stable C isotopes and their ecological significance, different techniques for compound‐specific stable‐isotope analysis are compared. Analogous to the δ13C analysis in bulk samples, by means of elemental analyzer–isotope‐ratio mass spectrometry, physical fractions such as particle‐size fractions, soil microbial biomass, and water‐soluble organic C can be analyzed. The main focus of this review is, however, to discuss the isotope composition of chemical fractions (so‐called molecular markers) indicating plant‐ (pentoses, long‐chain n‐alkanes, lignin phenols) and microbial‐derived residues (phospholipid fatty acids, hexoses, amino sugars, and short‐chain n‐alkanes) as well as other interesting soil constituents such as “black carbon” and polycyclic aromatic hydrocarbons. For this purpose, innovative techniques such as pyrolysis–gas chromatography–combustion–isotope‐ratio mass spectrometry, gas chromatography–combustion–isotope‐ratio mass spectrometry, or liquid chromatography–combustion–isotope‐ratio mass spectrometry were compared. These techniques can be used in general for two purposes, (1) to quantify sequestration and turnover of specific organic compounds in the environment and (2) to trace the origin of organic substances. Turnover times of physical (sand < silt < clay) and chemical fractions (lignin < phospholipid fatty acids < amino sugars ≈ sugars) are generally shorter compared to bulk soil and increase in the order given in brackets. Tracing the origin of organic compounds such as polycyclic aromatic hydrocarbons is difficult when more than two sources are involved and isotope difference of different sources is small. Therefore, this application is preferentially used when natural (e.g., C3‐to‐C4 plant conversion) or artificial (positive or negative) 13C labeling is used.  相似文献   

11.
More research is required to validate and refine natural abundance stable isotope ratio techniques as a tool for the investigation of the feeding ecology of soil animals and trophic relations in soil food webs. Isotope ratios of C (δ13C) and N (δ15N) were measured in herbivorous and detritivorous invertebrate groups, namely lumbricid earthworms (7 species), enchytraeid worms (3 species), slugs (3 taxa), and their potential food sources in an arable system. Intrapopulation δ15N variation in the slug Deroceras reticulatum (n=52) was large (range 4.2‰), possibly reflecting spatial variability in the food sources. Significant correlations between C:N ratios and isotope ratios in earthworms suggest that factors other than feeding may influence isotopic patterns. One enchytraeid species, Enchytraeus buchholzi, was enriched in 13C and strongly depleted in 15N compared to all other groups. Invertebrates formed a continuum when considered in relation to C and N separately, but fell into two distinct groups on the basis of combined C and N isotope ratios. The less enriched group represents herbivorous and litter-feeding species, while the more enriched group represents soil feeders. It is concluded that δ13C measurements could provide a means of assigning separate baseline δ15N values to primary and secondary decomposers, which in turn could improve the inference of higher trophic levels, omnivory and intraguild predation.  相似文献   

12.
Barley β‐glucan concentrate shows great potential as a functional food ingredient, but few product applications exist. The objectives of this study were to formulate a functional beverage utilizing barley β‐glucan concentrate, and to make a sensory evaluation of beverage quality in comparison to pectin beverages and to assess shelf stability over 12 weeks. Three beverage treatments containing 0.3, 0.5, and 0.7% (w/w) barley β‐glucan were developed in triplicate. Trained panelists found peely‐ and fruity‐orange aroma and sweetness intensity to be similar (P > 0.05) for all beverages tested. Beverage sourness intensity differed among beverages (P ≤ 0.05). Panelists evaluated beverages containing 0.3% hydrocolloid as similar (P > 0.05), whereas beverages with 0.5 and 0.7% β‐glucan were more viscous (P ≤ 0.05) than those with pectin at these levels. Acceptability of beverages was similar according to the consumer panel. Shelf stability studies showed no microbial growth and stable pH for all beverages over 12 weeks. Colorimeter values for most beverages decreased (P ≤ 0.05) during the first week of storage, mostly stabilizing thereafter. With an increase in concentration, β‐glucan beverages became lighter in color (P ≤ 0.05) and cloudier, but these attributes for pectin beverages were not affected (P > 0.05). β‐Glucan beverages exhibited cloud loss during the first three weeks of storage. β‐Glucan can therefore be successfully utilized in the production of a functional beverage acceptable to consumers.  相似文献   

13.
Determination of the labile soil carbon (C) and nitrogen (N) fractions and measurement of their isotopic signatures (δ13C and δ15N) has been used widely for characterizing soil C and N transformations. However, methodological questions and comparison of results of different authors have not been fully solved. We studied concentrations and δ13C and δ15N of salt‐extractable organic carbon (SEOC), inorganic (N–NH4+ and N–NO3?) and organic nitrogen (SEON) and salt‐extractable microbial C (SEMC) and N (SEMN) in 0.05 and 0.5 m K2SO4 extracts from a range of soils in Russia. Despite differences in acidity, organic matter and N content and C and N availability in the studied soils, we found consistent patterns of effects of K2SO4 concentration on C and N extractability. Organic C and N were extracted 1.6–5.5 times more effectively with 0.5 m K2SO4 than with 0.05 m K2SO4. Extra SEOC extractability with greater K2SO4 concentrations did not depend on soil properties within a wide range of pH and organic matter concentrations, but the effect was more pronounced in the most acidic and organic‐rich mountain Umbrisols. Extractable microbial C was not affected by K2SO4 concentrations, while SEMN was greater when extracted with 0.5 m K2SO4. We demonstrate that the δ13C and δ15N values of extractable non‐microbial and microbial C and N are not affected by K2SO4 concentrations, but use of a small concentration of extract (0.05 m K2SO4) gives more consistent isotopic results than a larger concentration (0.5 m ).  相似文献   

14.
Fortifying bread with β‐glucan has been shown to reduce bread quality and the associated health benefits of barley β‐glucan. Fortification of bread using β‐glucan concentrates that are less soluble during bread preparation steps has not been investigated. The effects of β‐glucan concentration and gluten addition on the physicochemical properties of bread and β‐glucan solubility and viscosity were investigated using a less soluble β‐glucan concentrate, as were the effects of baking temperature and prior β‐glucan solubilization. Fortification of bread with β‐glucan decreased loaf volume and height (P ≤ 0.05) and increased firmness (P ≤ 0.05). Gluten addition to bread at the highest β‐glucan level increased height and volume (P ≤ 0.05) to values exceeding those for the control and decreased firmness (P ≤ 0.05). β‐Glucan addition increased (P ≤ 0.05) extract viscosity, as did gluten addition to the bread with the highest β‐glucan level. Baking at low temperature decreased (P ≤ 0.05) β‐glucan viscosity and solubility, as did solubilizing it prior to dough formulation. Utilization of β‐glucan that is less soluble during bread preparation may hold the key to effectively fortifying bread with β‐glucan without compromising its health benefits, although more research is required.  相似文献   

15.
Adsorption, desorption, and precipitation reactions at environmental interfaces govern the bioavailability, mobility, and fate of organic phosphates in terrestrial and aquatic environments. Glycerophosphate (GP) is a common environmental organic phosphate, however, surface adsorption reactions of GP on soil minerals have not been well understood. The adsorption characteristics of GP on goethite were studied using batch adsorption experiments, zeta (ζ) potential measurements, and in situ attenuated total reflectance‐Fourier transform infrared spectroscopy (ATR‐FTIR). GP exhibited fast initial adsorption kinetics on goethite, followed by a slow adsorption. The maximum adsorption densities of GP on goethite were 2.00, 1.95, and 1.44 μmol m?2 at pH 3, 5, and 7, respectively. Batch experiments showed decreased adsorption of GP with increasing pH from 3 to 10. Zeta potential measurements showed a remarkable decrease in the goethite isoelectric point upon GP adsorption (from 9.2 to 5.5), suggesting the formation of inner‐sphere surface complexes. In addition, the ATR‐FTIR spectra of GP sorbed on goethite were different from those of free GP at various pH values. These results suggested that GP was bound to goethite through the phosphate group by forming inner‐sphere surface complexes.  相似文献   

16.
Rheological properties of raw oat flour slurries were determined in experimental high β‐glucan (≤7.8%) and traditional oat lines (4–5% β‐glucan) grown in two consecutive years. Three different media were used to disperse oat flours: deionized water, silver nitrate solution (to inactivate endogenous enzymes), and alkali solution (to solubilize both water‐soluble and water‐insoluble β‐glucans). Significant correlations (P < 0.05) between viscosity of slurries and β‐glucan concentration obtained in either deionized water (r = 0.833), silver nitrate (r = 0.940), or alkali (r = 0.896) solutions showed that β‐glucans were the main contributor to oat extract viscosity. The highest correlation was obtained in silver nitrate solution, suggesting that inactivating endogenous enzymes is important to obtain high correlations. Predictive models of oat β‐glucan concentration based on the viscosity profile were developed using partial least squares (PLS) regression. Prediction of β‐glucan concentration based on viscosity was most effective in the silver nitrate solution (r = 0.949, correlation coefficient of predicted vs. analyzed β‐glucans) and least effective in the alkali solution (r = 0.870). These findings demonstrate that the β‐glucan in oat could be predicted by measuring the viscosity of raw flours in silver nitrate solution, and this method could be used as a screening tool for selective breeding.  相似文献   

17.
Oats, different oat fractions as well as experimental and commercial oat‐based foods, were extracted with hot water containing thermostable α‐amylase. Average molecular weight and molecular weight distributions of β‐glucan in extracts were analyzed with a calibrated high‐performance size‐exclusion chromatography system with Calcofluor detection, specific for the β‐glucan. Oats, rolled oats, oat bran, and oat bran concentrates all had high Calcofluor average molecular weights (206 × 104 to 230 × 104 g/mol) and essentially monomodal distributions. Of the oat‐containing experimental foods, extruded flakes, macaroni, and muffins all had high average molecular weights. Pasteurized apple juice, fresh pasta, and teacake, on the other hand, contained degraded β‐glucan. Calcofluor average molecular weights varied from 24 × 104 to 167 × 104 g/mol in different types of oat bran‐based breads baked with almost the same ingredients. Large particle size of the bran and short fermentation time limited the β‐glucan degradation during baking. The polymodal distributions of β‐glucan in these breads indicated that this degradation was enzymatic in nature. Commercial oat foods also showed large variation in Calcofluor average molecular weight (from 19 × 104 g/mol for pancake batter to 201 × 104 g/mol for porridge). Boiling porridge or frying pancakes did not result in any β‐glucan degradation. These large differences in molecular weight distribution for β‐glucan in different oat products are very likely to be of nutritional importance.  相似文献   

18.
Nine hull‐less barley (HB) containing waxy (0–7% amylose), normal (≈25% amylose), or high amylose (≈42% amylose) starch with normal or fractured granule make‐up and 4–9% (1→3)(1→4)‐β‐d ‐glucans (β‐glucan) were pearled to remove 70% of the original grain weight in 10% intervals. The pearled fractions were analyzed for β‐glucan distribution within HB grain. Protein content of the pearled fractions indicated that the three outermost fractions contained pericarp and testa, aleurone, and subaleurone tissues, respectively. For all HB, β‐glucan and acid‐extract viscosity were very low in the outermost 20% of the kernel. For low β‐glucan HB, β‐glucan content was the greatest in the subaleurone region and declined slightly toward inner layers. For high β‐glucan HB, however, more than 80% of grain β‐glucan was distributed more evenly throughout the endosperm. Acid extract viscosity was significantly (P < 0.01) correlated with total (r = 0.75) and soluble (r = 0.87) β‐glucan content throughout the kernel of all HB. Growing conditions, location and year, had significant effects on the concentration of protein, starch and β‐glucan. However, protein, starch, and β‐glucan distribution patterns were not affected by growing conditions. The difference in β‐glucan distribution between low and high β‐glucan HB may explain the difference in milling performance of HB with low or high β‐glucan.  相似文献   

19.
Oats (Avena sativa L.) have received significant attention for their positive and consistent health benefits when consumed as a whole grain food, attributed in part to mixed‐linkage (1‐3,1‐4)‐β‐d ‐glucan (referred to as β‐glucan). Unfortunately, the standard enzymatic method of measurement for oat β‐glucan is costly and does not provide the high‐throughput capability needed for plant breeding in which thousands of samples are measured over a short period of time. The objective of this research was to test a microenzymatic approach for high‐throughput phenotyping of oat β‐glucan. Fifty North American elite lines were chosen to span the range of possible values encountered in elite oats. Pearson and Spearman correlations (r) ranged from 0.81 to 0.86 between the two methods. Although the microenzymatic method did contain bias compared with the results for the standard streamlined method, this bias did not substantially decrease its ability to determine β‐glucan content. In addition to a substantial decrease in cost, the microenzymatic approach took as little as 6% of the time compared with the streamlined method. Therefore, the microenzymatic method for β‐glucan evaluation is an alternative method that can enhance high‐throughput phenotyping in oat breeding programs.  相似文献   

20.
《Cereal Chemistry》2017,94(3):625-632
Six Australian milling oat cultivars grown over two growing seasons were characterized for differences in (1,3)(1,4)‐β‐glucan (β‐glucan) viscosity, solubility, molecular weight (Mw), and the effect of processing. Oat cultivars grown in 2012 had significantly higher extracted β‐glucan viscosity from oat flour than the same oat cultivar grown in 2011 (P < 0.05, mean 137 and 165 cP, respectively). Noodle β‐glucan mean viscosity for 2012 (147 cP) was significantly higher than for 2011 (128 cP). β‐Glucan from ‘Williams’ and ‘Mitika’ oats had the highest viscosity (P < 0.05) in flour (5.92 and 5.25%, respectively) and noodles (1.64 and 1.47%, respectively) for both years, compared with the other oat cultivars. β‐Glucan (Mw) of Williams for 2012 and ‘Kojonup’ for both years were the least affected by processing, with an average drop of 33% compared with a maximum of 63% for other cultivars. Therefore, Williams showed superior β‐glucan properties to other oat cultivars studied, and can potentially provide improved health benefits. High and low β‐glucan Mw populations were found in the same elution peak after processing. Oat cultivars chosen for processing should be those with β‐glucans that are more resistant to processing, and that maintain their physiochemical properties and, therefore, bioactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号