首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid‐state milling is an effective physical modification method applied to improve functional properties of starch. In this work the effect of solid‐state milling on the viscoelastic characteristics of maize starch gelatinized dispersions (gels) was investigated by using oscillatory squeeze film rheometry. The relaxation spectrum of the samples under study was calculated from the data obtained. It was found that solid‐state milling resulted in a decrease of the storage (G′) and loss (G″) moduli; meanwhile, loss tangent (tan δ) increased. At a starch milling time more than 10 h, G″ > G′ and the gelatinized starch dispersions behaved as liquid‐like systems. The relaxation maxima shifted to shorter relaxation times, and the heights of the maxima decreased with increasing milling time. The relationship between the complex viscosity η* and steady‐shear viscosity η gradually altered from η* > η to η* < η as the milling time increased. The results can be used to determine the processing conditions of milled starch.  相似文献   

2.
The importance of cereal starch production worldwide cannot be overrated. However, the qualities and resulting values of existing raw and processed starch do not fully meet future demands for environmentally friendly production of renewable, advanced biomaterials, functional foods, and biomedical additives. New approaches for starch bioengineering are needed. In this review, we discuss cereal starch from a combined universal bioresource point of view. The combination of new biotechniques and clean technology methods can be implemented to replace, for example, chemical modification. The recently released cereal genomes and the exploding advancement in whole genome sequencing now pave the road for identifying new genes to be exploited to generate a multitude of completely new starch functionalities directly in the cereal grain, converting cereal crops to production plants. Newly released genome data from cereal ancestors can potentially allow for the reintroduction of cereal traits including, for example, health‐promoting carbohydrates that may have been lost during domestication. Raw materials produced in this manner can be processed by clean enzyme‐assisted techniques or thermal treatment in combination to further functionalize or stabilize the starch polymers. Importantly, such products can be multifunctional in the sense of combined food/material or food/pharma purposes, for example, edible plastics, shape memory materials, and cycloamylose carriers and stabilizers for diverse bioactives.  相似文献   

3.
Four rice starches were isolated from waxy and nonwaxy rice cultivars collected from different places in China. Individual rice starches were examined, along with their corresponding mixtures in different ratios, in terms of pasting and hydration properties. Analysis by micro‐viscoamylography (MVAG) showed that waxy rice starch and its blends had higher peak viscosity (PV), breakdown (BD), and setback (SB) than the remaining starches and mixtures. Apparent amylose content (AC) was 16.95–29.85% in nonwaxy individual rice starches and 13.69–25.07% in rice starch blends. Incorporating waxy rice starch (25%) significantly decreased the AC. AC correlated negatively with swelling power (SP) (r = ‐0.925, P < 0.01). SP exhibited nonlinear relationship (r2 = 0.8204) with water solubility (WS) and both increased with temperature. The correlation showed that WS is also an index of starch characteristics and the granules rigidity affected the granule swelling potential. The results show that turbidity of gelatinized starch suspensions stored at 4 ± 0.5°C generally increased during storage up to five days.  相似文献   

4.
《Cereal Chemistry》2017,94(3):532-538
This research is the first analytical method to isolate and determine cholecalciferol (vitamin D3) in cereal samples. Ultrasonic‐assisted extraction followed by dispersive liquid‐liquid microextraction as a fast, reliable, and highly sensitive method was employed for the preconcentration step. High‐performance liquid chromatography allowed an efficient and considerably faster analysis. Alcoholic KOH solution was employed for accomplishing the fast and easy release of vitamin D3 from the wheat flour and bread matrix. Effective factors in the microextraction process were investigated and optimized with response surface methodology based on a central composite design. Under the best conditions, the calibration curves showed high levels of linearity (R 2 > 0.999) for vitamin D3 in the range of 2–500 ng/g. The relative standard deviation for the seven analyses was 6.2%. The relative recoveries of vitamin D3 in spiked wheat flour and bread samples were 87–98%. The limit of detection and limit of quantitation were 0.7 and 2.1 ng/g, respectively. The method compared favorably with other methods for vitamin D3 analysis of various foods.  相似文献   

5.
Native starch granules of 11 selected cultivars (potato, waxy potato, sweet potato, normal maize, high‐amylose maize, waxy maize, wheat, normal barley, high‐amylose barley, waxy barley, and rice) were treated with a calcium chloride solution (4M) for surface gelatinization. The surface‐gelatinized starch granules were investigated using light microscopy and scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). In general, those starches with larger granule sizes required longer treatment time to complete the gelatinization. The salt solution treatment of starch was monitored by light microscopy and stopped when the outer layer of the granule was gelatinized. The surface gelatinized starch granules were studied using scanning electron microscopy. On the basis of the gelatinization pattern from calcium chloride treatments, the starches could be divided into three groups: 1) starches with evenly gelatinized granule surface, such as normal potato, waxy potato, sweet potato, maize, and high‐amylose maize; 2) starches with salt gelatinization concentrated on specific sites of the granule (i.e., equatorial groove), such as wheat, barley, and high‐amylose barley; and 3) starches that, after surface gelatinization, can no longer be separated to individual granules for SEM studies, such as waxy barley, waxy maize, and normal rice. The morphology of the surface gelatinized starch resembled that of enzyme‐hydrolyzed starch granules.  相似文献   

6.
Dry‐grind ethanol plants incur economic losses because of seasonal variations in ethanol yields. One possible cause associated with ethanol yield variability is incoming grain quality. There is little published information on factors causing variation in dry‐grind ethanol concentrations. The objective of this study was to determine relationships between rapidly measurable corn quality attributes (physical parameters and chemical composition) and dry‐grind ethanol concentrations. Corn samples obtained from a Midwestern ethanol plant were analyzed for physical quality parameters (test weight, kernel weight, true density, percent stress cracks, and moisture content) and composition (starch, protein, oil, and soluble sugars contents) and then processed with a laboratory‐scale dry‐grind procedure. There were significant (P < 0.05) variations in corn quality parameters and ethanol concentrations. Correlation coefficients were significant (P < 0.05) but low (–0.50 < r < 0.50) between starch content and final ethanol concentrations (72 h) and total soluble sugar content and ethanol concentrations at 72 and 48 h. Ethanol concentrations (at 24, 48, and 72 h) were predicted as a function of a combination of grain quality factors using multiple regression methods; however, the R2 values obtained were low. Variations in ethanol concentrations were not related to physical and chemical composition quality factors. Other factors, such as structural and physiologic attributes of corn grain, need to be evaluated.  相似文献   

7.
Although pulsed NMR (PNMR) has been used for qualitative study of starch retrogradation in selected systems, validation is necessary for its application to new systems. PNMR was used to analyze the retrogradation of rice starches in purified form, in rice flour, and in cooked rice grains. The standard curves between the relative solid content (S′, %) by PNMR and the percentage of gelatinized starch (GS, %) were determined for common rice flour, common rice starch, and waxy rice starch at different moisture contents. The coefficients of linear regression for these curves (R2) were all >0.997. Starches with different amylose contents were tested for S′ values at the stages of freshly gelatinized, retrograded (4°C, 18 days), and reheated (90°C, 20 min). The S′ of reheated starch (S′reheat) was similar to the S′ of freshly gelatinized starch (S′0), so we concluded that the increase in S′ during storage corresponded to amylopectin retrogradation. The effect of moisture content on retrogradation of rice starch, rice flour, and cooked rice grains was studied by PNMR, and the data were interpreted using the Avami equation. Decreasing the moisture content increased the rate of retrogradation and led to a higher parameter k and a lower parameter n. For moisture content in the range studied, PNMR can be used to follow amylopectin retrogradation of different rice starch systems.  相似文献   

8.
Twelve hard winter wheat flours with protein contents of 11.8–13.6% (14% mb) were selected to investigate starch properties associated with the crumb grain score of experimentally baked pup‐loaf bread. The 12 flours were classified in four groups depending on the crumb grain scores, which ranged from 1 (questionable‐unsatisfactory) to 4 (satisfactory). Flours in groups 1, 2, 3, and 4 produced breads with pup‐loaf volumes of 910–1,035, 1,000–1,005, 950–1,025, and 955–1,010 cm3, respectively. Starches were isolated by a dough handwashing method and purified by washing to give 75–79% combined yield (dry flour basis) of prime (62–71%) and tailing (7–16%) starches. The prime starch was fractionated further into large A‐granules and small B‐granules by repeated sedimentation in aqueous slurry. All starches were assayed for weight percentage of B‐granules, swelling power (92.5°C), amylose content, and granular size distribution by quantitative digital image analysis. A positive linear correlation was found between the crumb grain scores and the A‐granule sizes (r = 0.65, P < 0.05), and a polynomial relationship (R2 = 0.45, P < 0.05) occurred between the score and the weight percentage of B‐granule starch. The best crumb grain score was obtained when a flour had a weight percentage of B‐granules of 19.8–22.5%, shown by varietal effects.  相似文献   

9.
Abstract

Comparison of methods is necessary to develop a quick and reliable test that can be used to determine soil‐available nitrogen (N) in an attempt to increase the efficiency of N fertilizers and reduce losses. The objectives of this research were to compare the fractions extracted by the calcium chloride (CaCl2) and the electro‐ultrafiltration (EUF) methods and to correlate them to the mineralization rate (k) obtained from a 112‐d incubation of 61 soil samples. Thirty‐five soil samples were collected from cornfields and 26 from winter cereal fields. Subsamples were either aerobically incubated to calculate k or extracted by the EUF and CaCl2 methods to identify three fractions: nitrate (NO3 ?)‐N, ammonium (NH4 +)‐N, and Norg‐N. The Norg‐N extracted by both methods was larger in soils from cornfields than in soils from winter cereal fields. In samples from cornfields, the Norg‐N fraction obtained by the EUF method was correlated to the Norg‐N measured by the CaCl2 method (r=0.46). Soil N content was related to k in samples from cornfields (r=0.40) but not in samples from winter cereal fields. Also, k was correlated to inorganic N content extracted by both chemical methods. The CaCl2 method was a reliable alternative for laboratories to determine soil‐available N for corn but not for winter cereal.  相似文献   

10.
It has long been recognized that limitations exist in the analytical methodology for amylose determination. This study was conducted to evaluate various amylose determination methods. Purified amylose and amylopectin fractions were obtained from corn, rice, wheat, and potato and then mixed in proportion to make 10, 20, 30, 50, and 80% amylose content starch samples for each source. These samples, considered amylose standards, were analyzed using differential scanning calorimetry (DSC), high-performance size-exclusion chromatography (HPSEC), and iodine binding procedures to generate standard curves for each of the methods. A single DSC standard equation for cereal starches was developed. The standard curve of potato starch was significantly different. Amylose standard curves prepared using the iodine binding method were also similar for the cereal starches, but different for potato starch. An iodine binding procedure using wavelengths at 620 nm and 510 nm increased the precision of the method. When HPSEC was used to determine % amylose, calculations based on dividing the injected starch mass by amylose peak mass, rather than calculations based on the apparent amylose/amylopectin ratio, decreased the inaccuracies associated with sample dispersion and made the generation of a cereal amylose standard curve possible. Amylose contents of pure starch, starch mixtures from different sources with different amylose ranges, and tortillas were measured using DSC, HPSEC, iodine binding, and the Megazyme amylose/amylopectin kit. All the methods were reproducible (±3.0%). Amylose contents measured by these methods were significantly different (P < 0.05). Amylose measurements using iodine binding, DSC, and Megazyme procedures were highly correlated (correlation coefficient >0.95). DSC and traditional iodine binding procedures likely overestimated true amylose contents as residual butanol in the amylose standards caused interference. The modified two-wavelength iodine binding procedure seemed to be the most precise and generally applicable method. Each amylose determination method has its benefits and limitations.  相似文献   

11.
《Cereal Chemistry》2017,94(3):451-457
Biodiversity contributes to nutrient production and, together with processing, is a critical factor in product quality. Physicochemical and nutritional properties of toasted tortillas (totopos) were evaluated in 1) maize samples from Oaxaca communities and 2) maize races of different endosperm texture. Texture profiles show that totopos elaborated from Zapalote Chico maize race showed the best performance (low breaking force) and higher crunchability, similar to commercial totopos. Quality of Zapalote Chico totopos was explained by flotation index (FI) and starch viscosity as well as thermal properties. FI was negatively correlated with texture that may related to end use. Zapalote Chico maize gelatinizes at higher (P < 0.05) pasting temperature (72.8–73.3°C) and it had higher (P > 0.05) peak viscosity (3,093–4,723 cP), suggesting a more organized starch structure. In hybrid and Tuxpeño samples, most of the starch granules (90%) were gelatinized and increased the hardness in totopos. The totopo samples increased the peak at 4.45 Å, a characteristic of type‐V diffraction of amylose‐lipid complexes (resistant starch). A small increase in resistant starch (0.6%) was found in totopos, which has important nutritional benefits for consumers. Our results support the preference of Oaxaca people for the totopos made from Zapalote Chico maize.  相似文献   

12.
High‐intensity ultrasound (sonication) was investigated as a method to rapidly purify starch from sorghum and other cereal grains. To improve the process, buffers were optimized to solubilize sorghum proteins in combination with the sonication. Protein content and starch color were determined to evaluate the efficiency of the extraction process. Sonication times, SDS concentration, different types and concentrations of reducing agents (sodium metabisulfite, dithiothreitol, and β‐mercaptoethanol), and centrifugation speeds of the starch washing procedure were tested. Protein content of isolated sorghum starch was reduced to 0–0.14% (db) after 2 min of sonication (using any of the reducing agents tested). Sodium metabisulfite was chosen as the preferred reducing agent because of its lower toxicity and odor compared with other reducing agents tested. The optimum conditions for producing high‐purity sorghum starches (0.06% protein) were obtained using the following conditions: 2 min of sonication time with 12.5 mM sodium borate buffer, pH 10, containing 0.5% SDS (w/v) and 0.5% sodium metabisulfite (w/v) using 1,500 rpm centrifugation speed during starch washing. Starches separated by this method showed significantly less protein content and b values (yellowness) compared with starches separated by enzymatic methods or methods using NaCl solutions and protein extraction buffers with multiple washing steps, both of which take several hours to complete. Differential scanning calorimetry thermogram values for starches isolated by three different methods showed similar patterns, except that starches obtained with the enzymatic method had slightly higher values of To, Tp, and ΔH. Other cereal starches from whole wheat meal, wheat flour, corn, rice, and barley were also obtained rapidly using sonication.  相似文献   

13.
The classification of cereals using near‐infrared Fourier transform Raman (NIR‐FT/Raman) spectroscopy was accomplished. Cereal‐based food samples (n = 120) were utilized in the study. Ground samples were scanned in low‐iron NMR tubes with a 1064 nm (NIR) excitation laser using 500 mW of power. Raman scatter was collected using a Ge (LN2) detector over the Raman shift range of 202.45~3399.89 cm‐1. Samples were classified based on their primary nutritional components (total dietary fiber [TDF], fat, protein, and sugar) using principle component analysis (PCA) to extract the main information. Samples were classified according to high and low content of each component using the spectral variables. Both soft independent modeling of class analogy (SIMCA) and partial least squares (PLS) regression based classification were investigated to determine which technique was the most appropriate. PCA results suggested that the classification of a target component is subject to interference by other components in cereal. The Raman shifts that were most responsible for classification of each component were 1600~1630 cm‐1 for TDF, 1440 and 2853 cm‐1 for fat, 2910 and 1660 cm‐1 for protein, and 401 and 848 cm‐1 for sugar. The use of the selected spectral region (frequency region) for each component produced better results than the use of the entire region in both SIMCA and PLS‐based classifications. PLS‐based classification performed better than SIMCA for all four components, resulting in correct classification of samples 85~95% of the time. NIR‐FT/Raman spectroscopy represents a rapid and reliable method by which to classify cereal foods based on their nutritional components.  相似文献   

14.
Nixtamalized and extruded flours from quality protein maize (QPM, V‐537C) and tortillas made from them were evaluated for some technological and nutritional properties and compared with the commercial brand MASECA. Both QPM flours showed higher (P < 0.05) protein content, total color difference, pH, available lysine, and lower (P < 0.05) total starch content, Hunter L value, water absorption index, gelatinization enthalpy, resistant starch, and retrograded resistant starch than nixtamalized MASECA flour. Tortillas from nixtamalized and extruded QPM flours had higher contents of essential amino acids than tortillas from MASECA flour, except for leucine. Tortillas from processed QPM flours also showed higher (P < 0.05) values of the nutritional indicators calculated protein efficiency ratio (C‐PER 1.80–1.85 vs. 1.04), apparent and true in vivo protein digestibility (78.4‐79.1 vs. 75.6% and 76.4–77.4 vs. 74.2%, respectively), PER (2.30–2.43 vs. 1.31), net protein retention (NPR; 2.88–2.89 vs. 2.11), and protein digestibility corrected amino acid score (PDCAAS; 54–55 vs. 29% based on preschool children and 100 vs. 85% based on adults) than MASECA flour. The use of QPM for flour and tortilla preparation may have a positive effect on the nutritional status of people from countries where these products are widely consumed.  相似文献   

15.
Cooked buckwheat groats are suggested to contain a greater amount of resistant starch (RS) than cereal grains. High RS content, in addition to dietary fibers present in groats, contributes to the low‐calorie, high‐fiber food status of buckwheat. Six buckwheat genotypes exhibiting high, medium, and low RS content of cooked groats were selected, and starches were isolated to determine their functional properties to explore the possible cause of high RS content of cooked buckwheat groats. Apparent and actual amylose contents were 27.4 and 31.6–34.5% in high, 27.4–28.6 and 32.5–33.7% in medium, and 21.4–25.6 and 24.5–32.0% in low RS genotypes, respectively. Genotypes of high RS content exhibited greater amylose leaching based on total starch content during cooking than genotypes of low RS content, mainly because of higher amylose content in the former than latter. Genotypes of low RS content exhibited a relatively high content of amylose‐lipid complexes, as determined with a differential scanning calorimeter (DSC). Gelatinization enthalpy and degree of amylopectin retrogradation determined with a DSC were not related to RS content. An evident relationship was observed between RS content of cooked groats and amylose retrogradation determined by gel hardness (r = 0.91, P < 0.05), cohesiveness (r = 0.89, P < 0.05), and syneresis (r = 0.88, P < 0.05). Increases in starch amylose content, amylose leaching capacity, and amylose retrogradation, as well as a decrease in the amount of amylose‐lipid complexes all appear to be related to high RS content of cooked buckwheat groats.  相似文献   

16.
The formulation of gluten‐free (GF) bread of high quality presents a formidable challenge as it is the gluten fraction of flour that is responsible for an extensible dough with good gas‐holding properties and baked bread with good crumb structure. As the use of wheat starch in GF formulations remains a controversial issue, naturally GF ingredients were utilized in this study. Response surface methodology was used to optimize a GF bread formulation primarily based on rice flour, potato starch, and skim milk powder. Hydroxypropylmethylcellulose (HPMC) and water were the predictor variables. Analyses of the treatments from the design were made 24 hr after baking. Specific volume and loaf height increased as water addition increased (P < 0.01). Crumb firmness decreased as water levels increased (P < 0.01). Significant interactions (P < 0.01) between HPMC and water were found for the number of cells/cm2. The number of large cells (>4 mm2) decreased with increasing levels of HPMC and water. Optimal ingredient levels were determined from the data obtained. The optimized formulation contained 2.2% HPMC and 79% water flour/starch base (fsb) and measured responses compared favorably to predicted values. Shelf‐life analysis of the optimized formulation over seven days revealed that, as crumb firmness increased, crust firmness and crumb moisture decreased.  相似文献   

17.
A series of cross‐linked (0, 0.014, 0.018, 0.024, and 0.028% POCl3, dry starch basis) hydroxypropylated (8%) corn starches were extruded using a Leistritz micro‐18 co‐rotating extruder. Process variables included moisture, barrel temperature, and screw design. Differential scanning calorimetry and X‐ray diffraction studies showed the level of starch crystallinity decreased with increasing severity of extrusion conditions. Pasting properties of the extruded starches were examined using a Rapid Visco Analyser. Pasting profiles of starches extruded at different conditions displayed different hot paste viscosity and final viscosity. Increasing starch moisture content during extrusion and level of cross‐linking increased starch viscosity (P < 0.0001), whereas increasing extrusion temperature and shear decreased starch viscosity (P < 0.0001). Interactions were found between level of cross‐linking and screw design and between extrusion temperature and starch moisture content (P < 0.0001).  相似文献   

18.
Preservation of starch structure/properties, including structures formed during partial or complete cooking, are important when the impact of processing conditions is being studied. Two preservation techniques used to study changes in starch during thermal‐mechanical processing are commonly cited in the literature: 1) rapid freezing followed by lyophilization, and 2) a dehydration procedure using alcohols. A comparative determination on how these methods affect various starch structures has not been widely reported. Corn starch samples were collected from the Rapid Visco‐Analyser (RVA) at 3 min (swollen granules, 30°C), at the top of the pasting peak (gelatinized granules, 95°C), at the bottom of the trough (dispersed polymers, 95°C), and a completed RVA sample stored for 120 hr at 4°C (retrograded starch). Samples of masa were obtained by nixtamalizing corn. Differential scanning calorimetry (DSC) endotherms of starch and masa, and X‐ray diffraction (XRD) patterns of masa were evaluated after being preserved by alcohol‐ or freeze‐drying. No significant differences (P > 0.05) between methods were found for onset, end, and peak temperatures (°C), enthalpy (J/g) and % relative crystallinity in any of the samples analyzed. Liquid nitrogen freeze‐drying and ethanol dehydration are both effective methods of preserving various starch systems for structural changes detectible by DSC and XRD; freeze‐drying is generally less expensive and time‐consuming.  相似文献   

19.
Native and processed high‐amylose maize starch (HAMS) is an important source of resistant starch (RS). The objectives of this work were to use an in vitro procedure to estimate the RS content of native granules from a series of ae‐containing HAMS genotypes, and to examine the nature of the α‐amylase resistant starch (ARS). By the method of Englyst et al (1992), RS for ae V, ae VII, ae su2, and ae du were estimated to be 66.0, 69.5, 69.5, and 40.6%, respectively. By transmission electron microscopy, most of the residual granules from ae V, ae VII, and ae su2 showed little evidence of digestion. Partially digested granules had a radial digestion pattern in the interior and an enzyme‐resistant layer near the surface. Size and chain‐length profile of constituents of ARS were similar to those of the native HAMS (unlike type 3 RS), consistent with complete hydrolysis in susceptible granule regions. Between crossed polarizers, many iodine‐stained native and residual HAMS granules had blue centers and pink exteriors, which may be due to a difference in orientation of the amylose‐iodine complexes in the exterior. Four granule color types were observed for ae du, differing in enzyme resistance. The high‐enzyme resistance of native HAMS granules may result from altered granule organization, which appears to vary among and within granules from ae‐containing genotypes.  相似文献   

20.
The link between rheological behavior and morphological‐structural characteristics of gelatinized starch granules has been studied in two starch dispersions (SDs): a cross‐linked waxy maize (CLWM), and tapioca starch, a tuber starch with 19.3 % amylose. Based on the power law relationship between the elastic modulus and volume fraction of the granules predicted by scaling theory, fractal dimension values were obtained for CLWM starch D = 2.81, and tapioca starch D = 2.79, suggesting that both starch granules have highly convoluted surfaces. However, the preexponential coefficient (G⊘=1) for CLWM SDs was an order of magnitude greater than that for tapioca SDs, in the same range of volume fractions. The G⊘=1 was mainly dependent on the granule rigidity, and the amylose content in the continuous phase played only a minor role in the rheological behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号