首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Tortilla stiffening should occur between ‐23 to 57°C, showing a maximum rate near the midpoint of this range (17°C). Starch recrystallization below the glass transition temperature (Tg = ‐23°C) in corn tortillas is minimal due to lack of molecular mobility. The objective of this study was to determine the effect of storage temperature (‐20 to 21°C) on the stiffening rate of corn tortillas with or without additives (carboxy‐methylcellulose [CMC] and maltogenic amylase). Tortilla pliability, stiffness, and energy dissipated obtained by stress relaxation, and amylopectin recrystallization determined by differential scanning calorimetry (DSC) showed a second‐order polynomial relationship with temperature. Tortillas became stiff faster during refrigerated storage (3–10°C). Adding 0.25% CMC and 1,650 AU of amylase maintained tortilla softness and flexibility, both at room temperature and under refrigeration for at least three weeks.  相似文献   

2.
Effects of α‐amylase modification on dough and tortilla properties were determined to establish the role of starch in tortilla staling and elucidate the antistaling mechanism of this enzyme. Control and amylase‐treated tortillas were prepared using a standard bake test procedure, stored at 22°C, and evaluated over four weeks. Amylase improved shelf‐stability of tortillas. The enzyme also produced a significant amount of dextrins and sugars, decreased loss of amylose solubility, and weakened starch granules. Amylopectin crystallinity increased with time, but was similar for the control and treated tortillas. Staling of tortillas appears to mainly involve the starch in the amorphous phase. As such, amylase activity does not significantly interfere with amylopectin crystallization. It is proposed that amylase partially hydrolyzed the dispersed starch (i.e., mostly amylose), starch bridging the crystalline region, and protruding amylopectin branches. Starch hydrolysis decreases the rigid structure and plasticized polymers during storage. The flexibility of tortillas results from the combined functionalities of the amylose gel and amylopectin solidifying the starch granules during storage. Protein functionality may also be involved in tortilla staling, but this needs further research.  相似文献   

3.
Wheat starches were isolated from three wheat flours. Two vital wheat glutens, one from a commercial source and another one isolated from straight-grade flour, were combined with wheat starches to form reconstituted flours with a protein level of 10%. Several characteristics of tortillas made with the hot-press method were measured. No significant difference (P < 0.05) occurred in texture of tortillas made with hard wheat gluten and soft wheat gluten. Wheat starches did not have any significant (P < 0.05) effect on tortilla stretchability or foldability. Analysis of variance confirmed that wheat starch and gluten had limited effects on tortilla texture. The possible reasons were that the solubles of wheat flour were not included, and the shortening in the tortilla formula interfered with the interaction of gluten and starch.  相似文献   

4.
The potential of triticale as a partial or total substitute for wheat in flour tortilla production was evaluated. Different mixtures of triticale and wheat flours were tested in a typical hot‐press formulation. Both grains yielded similar amounts of flour. Wheat flour contained 1.5% more crude protein, 1.6× more gluten, and produced stronger dough than triticale. Triticale flour significantly reduced optimum water absorption and mix time of blends. Flour tortillas with 100% triticale absorbed 8% less water and required 25% of the mix time of the control wheat flour tortilla. The yield of triticale tortillas was lower than the rest of the tortillas due to lower moisture content and water absorption. Triticale dough balls required less proofing and ruptured during hot pressing, thus producing defective tortillas. The 50:50 flour mixture produced doughs with acceptable rheological properties and good quality tortillas. Addition of 1% vital gluten to the 75:25 triticale‐wheat flour mix or 2% to the 100% triticale flour significantly increased water absorption and mix time and improved dough properties and tortilla yields. Textural studies indicated that increasing levels of triticale flour reduced the force required to rupture tortillas. For all tortilla systems, rupture force gradually increased, and extensibility decreased during seven days of storage at room temperature; the highest rate of change occurred during the first day. Sensory evaluation tests indicated that triticale could substitute for 50% of wheat flour without affecting texture, color, flavor, and overall acceptability of tortillas. For production of 100% triticale flour tortillas, at least 2% vital gluten had to be added to the formulation.  相似文献   

5.
Refined wheat flours commercially produced by five different U.S. and Mexican wheat blends intended for tortilla production were tested for quality and then processed into tortillas through the hot‐press forming procedure. Tortilla‐making qualities of the flour samples were evaluated during dough handling, hot pressing, baking, and the first five days on the shelf at room temperature. The predominant variables that affected the flour tortilla performance were wet gluten content, alveograph W (220–303) and P/L (0.70–0.94) parameters, farinograph water absorption (57%) and stability (10.8–18.7 min), starch damage (5.43–6.71%), and size distribution curves (uniform particle distribution). Flours produced from a blend of Dark Northern Spring (80%) and Mexican Rayon (20%) wheat had the highest water absorption, and tortillas obtained from this blend showed the highest diameter and lowest thickness. The whitest and best textured tortillas were obtained from the flour milled from three hard types of Mexican wheat blend. A Mixolab profile was generated from the best tortilla flours, those produced by mills 3 and 4. The Mixolab profile showed that a good flour for hot‐press tortillas had a relatively lower absorption and short dough mix time compared with a bread flour and should have a significantly higher gluten compared with an all‐purpose flour. Compared with bread flour, the tortilla flour had higher retrogradation and viscosity values. The Mixolab profile proved to be a good preliminary test to evaluate flours for hot‐press tortillas.  相似文献   

6.
《Cereal Chemistry》2017,94(6):917-921
Neural tube defects occur at higher rates in Hispanic populations in the United States. Such populations would benefit from folic acid fortification of corn masa flour (CMF). This study evaluated folate stability in fortified CMFs and tortillas and tortilla chips made therefrom. There was no significant loss of folate during the six‐month shelf life of fortified tortilla CMF and tortilla chip CMF. There was a 13% loss (P < 0.05) of folate during tortilla baking and no loss during tortilla chip frying. Both tortillas and tortilla chips showed significant folate losses over the two‐month shelf life for these products, with a 17% loss in fortified tortillas and a 9% loss in tortilla chips. Folate in fortified CMFs, tortillas, and tortilla chips is relatively stable and comparable to the stability of folate in wheat flour and breads.  相似文献   

7.
Commercial wheat protein fractions (10) were evaluated during processing for quality of tortillas prepared using pastry, tortilla, and bread flours. Protein fractions that separately modify dough resistance and extensibility were evaluated in tortillas to determine whether the proteins could increase diameter, opacity, and shelf stability. Tortillas were prepared using laboratory‐scale, commercial equipment with fixed processing parameters. Dough and tortilla properties were evaluated using analytical methods, a texture analyzer, and subjective methods. Tortillas were stored in plastic bags at 22°C for up to 20 days. Adjustments in water absorption and level of reducing agent were made to normalize differences in functionality of 3% added proteins on dough properties. Tortilla weight, moisture, pH, opacity, and specific volume were not affected by added proteins, except for glutenin and vital wheat gluten treatments, which had decreased opacity in tortillas prepared from pastry flour. Increased insoluble polymeric protein content corresponded to decreased tortilla diameter and improved shelf stability. Treatments yielding tortillas with improved shelf stability and similar tortilla properties were produced when commercially processed vital wheat gluten products, FP600, FP6000, FP5000, or gliadin were added to pastry or tortilla flour. These wheat protein fractions improved processing and tortilla quality of wheat flours, especially pastry flour, by modifying protein content and quality.  相似文献   

8.
A high‐amylose, non‐floury corn, a floury corn, and a 1:1 blend were made into masa and then tortillas. The masa flour made with the high‐amylose corn had a greater amount of resistant starch (RS 28.8%) and a greater amount of total dietary fiber (TDF 42.1%) than that with the floury corn (RS 2.9%, TDF 9.6%), producing a high‐fiber tortilla. The masa was evaluated for pasting properties using a Rapid ViscoAnalyser (RVA). The high‐amylose masa slurry gelatinized little at 95°C. The floury masa had the greatest peak viscosity, whereas the 1:1 blend was intermediate in value. Sensory evaluations of the tortillas for the textural attributes showed the floury tortillas to be chewier, more rollable, and grittier than the high‐amylose tortillas, whereas the blend tortillas were intermediate for most attributes. The cutting force of the high‐amylose tortillas, measured on a texture analyzer, was very low; the blend and floury tortillas required more force. Chewiness was correlated to rollability (r = 0.99, P = 0.05). The %RS and %TDF were correlated to rollability (r = –0.99), and cutting force (r = 0.99). The floury and blend tortillas had firm textures expected of desirable tortillas, whereas the high‐amylose tortillas broke under little force, and would not roll. The high‐amylose tortillas had high amounts of RS and TDF but poor texture. The blend tortillas retained most floury tortilla textural properties, making them suitable products for consumer use.  相似文献   

9.
Amylose content is closely related to wheat flour pasting or thermal properties, and thus affects final food qualities. Fourteen flour blends with amylose content ranges of <1 to 29% were used to study tortilla production and quality parameters. Reduced amylose contents decreased dough stickiness and pliability; low amylose doughs were also very smooth in appearance. Very low flour amylose content was associated with earlier tortilla puffing and poor machinability during baking, darker color, low opacity, larger diameters, and reduced flexibility after storage. Tortilla texture analysis indicated that lowering amylose content gave fresh tortillas higher extensibility; after three or more days storage, however, low amylose flours required more force to break the tortillas and the rupture distances became shorter. These results, as reflected in covariate analysis, were not significantly affected by the flour blend's protein content, swelling volume/power, SDS‐sedimentation volume, mixograph dough development time, or mixograph tolerance score. Based on our observation of an initial increase in extensibility with reduced‐amylose tortillas, adding 10–20% waxy flour into wild‐type flours should be ideal for restaurant (on‐site) tortilla production or circumstances where tortillas are consumed shortly (within a day) after production. The optimal flour amylose content for hot‐press wheat tortilla products is 24–26%.  相似文献   

10.
The present investigation aims at understanding the mechanism of bread firming during staling. Changes in the starch fraction due to the addition of amylases and their influence on the texture of bread crumb were studied during aging and after rebaking of stale bread. Pan bread was prepared by a conventional baking procedure. The influence of three different starch‐degrading enzymes, a conventional α‐amylase, a maltogenic α‐amylase, and a β‐amylase were investigated. The mechanical properties of bread were followed by uniaxial compression measurements. The microstructure was investigated by light microscopy, and starch transformations were assessed by differential scanning calorimetry (DSC) and wide‐angle X‐ray powder diffraction. Firming of bread crumb and crystallization of starch are not necessarily in agreement in systems with added amylases. Reorganization of both starch fractions, amylopectin and amylose, and the increase of starch network rigidity due to increase of polymer order are important during aging. Starch‐degrading enzymes act by decreasing the structural strength of the starch phase; for instance, by preventing the recrystallization of amylopectin or by reducing the connectivity between crystalline starch phases. On the other hand, starch‐degrading enzymes may also promote the formation of a partly crystalline amylose network and, by this, contribute to a kinetic stabilization of the starch network. Based on the results, a model for bread staling is proposed, taking into account the biphasic nature of starch and the changes in both the amylose and amylopectin fraction.  相似文献   

11.
Resistant starch (RS) ingredients are an attractive option to increase dietary fiber in baked products. This study determined the effect of two forms of cross‐linked and pregelatinized cross‐linked RS, Fibersym‐RW (Fsym) or FiberRite‐RW (FRite), respectively, from wheat on dough and tortilla quality and acceptability. Refined wheat tortillas with 0% (control) to 15% RS (flour basis) were made using a standard baking process. Tortillas with 100% whole white wheat were also made. Physical and rheological properties of dough and tortillas, and sensory profile of tortillas were evaluated. Dough with whole wheat and 15% FRite were significantly harder and less extensible than the control dough; this was related to high water absorption of these doughs. Tortillas with whole wheat and 10–15% FRite were less puffed and denser than the control; however these levels of FRite significantly increased tortilla weight (by up to 6.2%). Dough and tortillas with Fsym were comparable to the control. Dietary fiber (g/100 g, db) increased from 2.8 ± 0.3 in control to 14.3 ± 0.5 and 13.6 ± 0.5 in 15% Fsym and 15% FRite tortillas, respectively. Tortillas with whole wheat were less acceptable than the control in appearance, flavor, and texture, while tortillas with 15% Fsym had higher overall acceptability than the control. Incorporation of 15% cross‐linked wheat RS to increase tortilla dietary fiber is feasible without negatively affecting dough handling and tortilla quality.  相似文献   

12.
Five white corn hybrids were processed (nixtamalized) using 10 different processing conditions; tortillas were prepared to establish relationships between corn composition, physical characteristics, and nixtamalization process or product properties. Corn hybrids were characterized by proximate analysis and by measuring Stenvert hardness, Wisconsin breakage, percent floaters, TADD overs, thousand‐kernel weight, and test weight. Corn characteristics were correlated with process and product variables (effluent dry matter loss and pH; nixtamal moisture and color; masa moisture, color, and texture; and tortilla moisture, color, and rollability). Process and product variables such as corn solid loss, nixtamal moisture, masa texture, and tortilla color were influenced not only by processing parameters (cook temperature, cook time, and steep time) but also depended on corn characteristics. Significant regression equations were developed for nixtamalization dry matter loss (P < 0.05, r2 = 0.79), nixtamal moisture (P < 0.05, r2 = 0.78), masa gumminess (P < 0.05, r2 = 0.78), tortilla texture (P < 0.05, r2 = 0.77), tortilla moisture (P < 0.05, r2 = 0.80), tortilla calcium (P < 0.05, r2 = 0.93), and tortilla color a value (P < 0.05, r2 = 0.87).  相似文献   

13.
Texture is a property of major importance in the evaluation of baked products. To determine a sample of commercial ranges for stretchability, rollability, firmness, and Kramer shear cell measurements for wheat flour tortillas using the TA‐XT2 texture analyzer, three separate sets of five tortilla brands purchased from stores in Manhattan, KS, were evaluated. Two brands had two formulations, regular and fat‐free. Significant differences (P < 0.05) in stretchability, firmness, and Kramer shear cell occurred between regular and fat‐free tortillas of one tortilla brand. Significant differences (P < 0.05) also were found among the sets of some tortilla brands. Kramer shear cell and stretchability measurements are recommended because Kramer shear cell measures the force combined with compression, shearing, and extrusion. Stretchability measurements were repeatable and are an important textural property of wheat flour tortillas. Ranges for textural properties for commercial wheat flour tortillas were determined, as well as the variability of the textural methods used.  相似文献   

14.
Wheat cultivars possessing quality attributes needed to produce optimum quality tortillas have not been identified. This study investigated the effect of variations in high‐molecular‐weight glutenin subunits encoded at the Glu‐1 loci (Glu‐A1, Glu‐B1, and Glu‐D1) on dough properties and tortilla quality. Flour protein profiles, dough texture, and tortilla physical quality attributes were evaluated. Deletion at Glu‐D1 resulted in reduced insoluble polymeric protein content of flour, reduced dough compression force, and large dough extensibility. These properties produced very large tortillas (181 mm diameter) compared with a control made with commercial tortilla wheat flour (161 mm). Presence of a 7 + 9 allelic pair at Glu‐B1 increased dough strength (largest compression force, reduced extensibility, and small‐diameter tortillas). Deletion at Glu‐A1 produced large tortillas (173 mm) but with unacceptable flexibility during storage (score <3.0 at day 16). In general, presence of 2* at Glu‐A1, in combination with 5 + 10 at Glu‐D1, produced small‐diameter tortillas that required large force to rupture (tough texture). Presence of 2 + 12 alleles instead of 5 + 10 at Glu‐D1 produced tortillas with a good compromise between diameter (>165 mm) and flexibility during storage (>3.0 at day 16). These allele combinations, along with deletion at Glu‐D1, show promise for tortilla wheat development.  相似文献   

15.
Wheat flour tortillas were made from flour streams of three wheat cultivars: Jagger hard red winter wheat, 4AT-9900 hard white winter wheat, and Ernie soft red winter wheat. Wheat samples were milled on a Miag experimental mill. Twelve flour streams and one straight-grade flour were obtained. Tortillas were made from each flour stream and the straightgrade flour by the hot-press method. Tortilla stretchability and foldability were evaluated by a texture analyzer and six panelists, respectively. Flour protein and water absorption affected tortilla texture. The foldability evaluated by panelists was positively correlated with flour protein content, farinograph water absorption, and damaged starch (P < 0.05). The 2BK and 3BK streams of hard wheat produced tortillas with strong stretchability and good foldability. Middling streams of hard wheat yielded tortillas with lighter color and less stretchability. Under the conditions tested in this study, soft wheat flours were not good for producing flour tortillas.  相似文献   

16.
Effects of protease and transglutaminase (TG) on dough and tortilla microstructures, shelf‐stability, and protein profile were determined to infer the role of gluten in tortilla staling. Control and enzyme‐treated tortillas were prepared using a standard bake test procedure and evaluated for three weeks. Confocal micrographs of control dough showed thin protein strands forming a continuous web‐like matrix. Protease‐treated dough had pieces of proteins in place of the continuous matrix, while TG‐treated dough had thicker protein strands that were heterogeneously distributed. Control tortillas had a well‐distributed continuous protein structure. Protease‐treated tortilla had a continuous structure despite being composed of hydrolyzed proteins in the dough, while the TG‐treated tortilla retained clumps of proteins. Both treatments resulted in shorter shelf‐stability of tortillas. An evenly distributed and moderately stronger gluten network is necessary for longer retention of tortilla flexibility. Solubility of protein fractions differed among treatments, but molecular weight distribution did not differentiate control and treated dough or tortillas. The proportion of each protein fraction appears to affect staling.  相似文献   

17.
An objective bending technique was developed to measure corn tortilla texture. During the test, tortilla strips were bent to a 40° angle. The bending technique detected differences in uniformity, thickness, and puffing. Thick tortillas required more force to bend and had greater moduli of deformation values than thin tortillas. The bending technique detected changes in tortilla texture during storage and textural differences among commercial corn tortillas purchased at supermarkets. Experimental error of the method was low for both commercial and laboratory-prepared tortillas. Parameters measured by the bending technique were significantly correlated with subjective rollability and flexibility test scores. The bending technique was sensitive to sample characteristics, fast, simple, repeatable, and provided information regarding the relationship between force (stress) and distance, which could be used to determine the linear region of viscoelastic materials.  相似文献   

18.
Wheat flours commercially produced at 74, 80, and 100% extraction rates made from hard white winter wheat (WWF) and hard red winter wheat (WRF) were used to produce tortillas at a commercial-scale level. Flour characteristics for moisture, dry gluten, protein, ash, sedimentation volume, falling number, starch damage, and particle-size distribution were obtained. Farinograms and alveograms were also obtained for flour-water dough. A typical northern Mexican formula was used in the laboratory to test the tortilla-making properties of the flours. Then commercial-scale tortilla-baking trials were run on each flour. The baked tortillas were stored at room and refrigeration temperatures for 0, 1, 2, and 3 days. Maximum stress and rollability were measured every day. Tortilla moisture, color, diameter, weight, and thickness were measured for each treatment. Finally, tortilla acceptability was tested by an untrained sensory panel. Analyses of variance (ANOVA) were performed on the data. WWF had higher protein content, dry gluten, sedimentation volume, and water absorption than the WRF. The WWF was the strongest flour based on farinograph development time and alveograph deformation work. It also produced the most extensible dough measured with the alveograph (P/L). Flour protein and ash contents, water absorption, and tenacity increased directly with the flour extraction rate. Both WWF and WRF performed well in commercial-scale baking trials of tortillas. Tortillas made with both types of flours at 74 and 80% extraction rates had the best firmness and rollability. However, tortillas made with WWF 80% had the best color (highest L value). Tortillas prepared with 100% extraction rate flour were also well accepted by the sensory panel, had good textural characteristics, and became only slightly firm and slightly less rollable after three days of storage at room temperature.  相似文献   

19.
Accurate determination of tortilla quality is imperative because of the growing market. This calls for quality tests that are replicable. However, current tortilla quality testing relies heavily on subjective tests with unknown reliability. This study aimed to determine the relationship between subjective tortilla quality testing and available objective methods, and assess whether the latter can potentially replace the former. Correlation and regression analyses were done using data on subjective opacity and rollability, and objective L* value and texture parameters based on 114 wheat samples. Opacity scores and L* values were significantly correlated, but this relationship was affected by evaluator experience; in a controlled setting, experienced evaluators scores were more reliable (SEM = ±0.25 – 3.8, r = 0.96) than less experienced evaluators (SEM = ±0.25 – 7.3, r = 0.92). Tortilla rollability, which approximates shelf stability, correlated most strongly with the rupture distance from two‐dimensional extensibility test (r = 0.77). Subjective rollability at day 16 of storage was predicted by rupture distance (day 0) and work (day 4) (R2 = 0.69). Adding rupture force to the model slightly improves the R2 to 0.72. Objective color and texture parameter measurements have a potential to replace the subjective tests as primary methods for tortilla quality.  相似文献   

20.
In wheat ( Triticum aestivum L), the synthesis of high molecular weight (HMW) glutenins (GS) is controlled by three heterologous genetic loci present on the long arms of group 1 wheat chromosomes. The loci Glu-A1, Glu-B1, and Glu-D1 and their allelic variants play important roles in the functional properties of wheat flour. This study focused on understanding the functionality of these protein subunits on tortilla quality. Near-isogenic wheat lines in which one or more of these loci were absent or deleted were used. Tortillas were prepared from each deletion line and the parent lines. The elimination of certain HMW-GS alleles alter distinct but critical aspects of tortilla quality such as diameter, shelf stability, and overall quality. Two deletion lines possessing HMW-GS 17 + 18 at Glu-B1 and deletions in Glu-A1 and Glu-D1 had significantly larger tortilla diameters, yet tortilla shelf life was compromised or unchanged from the parent lines used to develop the deletion lines or the commercial tortilla flour used as a control. Alternatively, a deletion line possessing Glu-A1 and Glu-D1 (HMW-GS 1, 5 + 10) and a deletion in Glu-B1 also significantly improved tortilla diameters. Whereas the increase in diameter was less than the line possessing only HMW-GS 17 + 18 at Glu-B1, the stability of the tortillas were, however, maintained and improved as compared to the parent lines containing a full compliment of HMW-GS. Thus, the presence of subunits 5 + 10 at Glu-D1 alone or in combination with subunit 1 at Glu-A1 appears to provide a compromise of improvement in dough extensibility for improved tortilla diameters while also providing sufficient gluten strength to maintain ideal shelf stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号