首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of a general study aiming to clarify the role of arabinoxylans (AX) in pasta processing and quality, AX were modified by the addition of endoxylanases during pasta processing. The influence on processing parameters and quality were determined. Pasta (800 g) was produced from two commercial semolinas (semA and semB) using dosages of Bacillus subtilis (XBS) and Aspergillus niger (XAN) endoxylanases of 0–0.225 Somogyi units/g of semolina. Increased dosages resulted in a drop of extrusion pressure. The endoxylanase treatments had no great effect on the resulting pasta quality (color of dry products and surface condition, viscoelastic index, and resistance to longitudinal deformations of cooked products). High dosages of XAN and XBS resulted in high levels of solubilized AX (as an extra source of soluble dietary fiber) of low molecular weight which were expected to easily leach out during the cooking process of pasta. Surprisingly, only low levels of AX were found in the cooking water, even with extremely high dosages of endoxylanases used and cooking beyond optimum time. A method is provided to obtain high‐quality pasta with increased levels of soluble fiber.  相似文献   

2.
A Bacillus subtilis endoxylanase (XBS) with a strong selectivity for hydrolysis of water‐unextractable arabinoxylan (WU‐AX) and an Aspergillus aculeatus endoxylanase (XAA) with a strong selectivity for hydrolysis of water‐extractable arabinoxylan (WE‐AX) were used in straight‐dough breadmaking with two European wheat flours. Dough, fermented dough, and bread characteristics with different levels of enzyme addition were evaluated with a strong emphasis on the arabinoxylan (AX) population. The WU‐AX solubilized by XBS during breadmaking were mainly released during mixing and had higher molecular weight, in contrast to their counterparts solubilized by XAA, which were mainly released during fermentation and had lower molecular weight. This coincided with increased loaf volume with XBS and a negative to positive loaf volume response with XAA. Bread firmness and dough extract viscosity also were affected by endoxylanase addition. Results confirmed that WU‐AX are detrimental for breadmaking, while WE‐AX and solubilized AX with medium to high molecular weight have a positive impact on loaf volume.  相似文献   

3.
Three spelt genotypes (Rouquin, Redoute, and HGQ Rouquin= Rouquin improved for gluten quality), each characterized by either high or low protein content, were processed to manufacture spaghetti, which was dried at both low (60°C) and high temperature (90°C) to assess the effects of flour properties and drying conditions on spelt pasta quality. Protein content in the spelt flour was considered low at ≈11.4% db and high at ≈13.5% db. Gluten properties, assessed by SDS sedimentation and gluten index values and by alveograph and farinograph parameters varied widely, ranging from poor for Redoute to very good for HGQ Rouquin. Pasta quality was assessed by determining color (L*, a*, and b* values), furosine, and cooking quality (stickiness, bulkiness, firmness, and total organic matter [TOM]). Furosine and color (a* and b* values) were significantly influenced by the intensity of the drying process. TOM and organoleptic judgement (OJ) showed that spelt pastas dried at low temperature, independent of their protein levels, were very poor (TOM ≥ 2.7 g/100 g of dry pasta, OJ ≤ 40), except for HGQ Rouquin which was characterized by good gluten strength. On the other hand, the cooking quality of spelt pastas dried at high temperature showed good values (TOM ≤ 1.8 g/100 g of dry pasta, OJ ≥ 53). The combination of high protein content (≥13.5% db) and high‐temperature drying resulted in the production of satisfactory cooking quality pastas from spelt wheats (TOM ≤ 1.2 g/100 g of dry pasta, OJ ≥ 67).  相似文献   

4.
The development of high‐quality wheat (Triticum aestivum L.) cultivars depends on a thorough understanding of the constituents of grain and their variation due to genetics and environment. Arabinoxylans (pentosans) are key constituents of wheat grain and have broad and far‐reaching influences on milling and baking quality. However, variation in arabinoxylans due to genotype and environment are not fully understood. In this study, 25 hard winter and 25 hard spring wheat commercial cultivars and advanced breeding lines developed from eight public and private breeding programs in the U.S. Pacific Northwest were analyzed for water‐extractable and total arabinoxylan contents (WE‐AX and total AX), and the proportion of total AX that was water‐extractable. Winter and spring genotypes were grown in three environments each. The results indicated that there were significant differences among both sets of hard wheat genotypes for WE‐AX, total AX, and proportion of total AX that was WE‐AX. The WE‐AX and total AX mean content ranges for the winter cultivars were 0.390–0.808 and 3.09–4.04%, respectively; and for the spring cultivars 0.476–0.919 and 3.94–4.70%, respectively. WE‐AX as a percentage of total AX was similar between the two genotype sets, 11.7–23.0%. Arabinoxylan fractions were generally not correlated with grain protein, test weight, and kernel hardness. The two highest correlations for winter wheats were between protein and total AX (r = –0.40) and test weight and percentage of total AX that were water‐extractable (r = 0.37) for winter wheats. Among spring wheats, single‐kernel characterization system hardness was negatively correlated with WE‐AX and proportion of total AX that was WE‐AX (r = –0.46 and –0.51, respectively). Although often significant, arabinoxylan fractions were usually not highly intercorrelated, indicating some independence of traits. Notable genotypes, being especially high or low for one or more arabinoxylan fraction and, thus, candidates for further genetic study and cross‐breeding, included Juniper, Eddy, and ORN980995 winter wheats, and Hollis, Alta Blanca, and WQL9HDALP spring wheats. Although the results indicate that arabinoxylan fractions of wheat grain can be highly influenced by environment, there is clear support for the existence of genetic differences, especially for WE‐AX and the proportion of total AX that is water‐extractable. As such, the manipulation of arabinoxylan content of wheat grain seems to be a reasonable breeding objective.  相似文献   

5.
Water‐extractable (WE) material was isolated from a Canadian barley malt (cv. Harrington). The purified WE material contained mainly arabinoxylans, β‐glucans, proteins, and small amounts of arabinogalactans and mannose‐containing polymers. WE material was treated with specific enzymes to obtain two fractions: one enriched in arabinoxylan (AX) and another enriched in β‐glucan (BG). The AX fraction was further fractionated by stepwise precipitation in (NH4)2SO4 into five arabinoxylan subfractions. 1H‐NMR spectroscopy and sugar analyses revealed a relatively high content of unsubstituted xylose residues (48–58%) as well as a relatively high content of doubly substituted xylose residues (28–33%) in the structure of the arabinoxylans. β‐Glucans constituted a minor portion of water‐extractable malt polysaccharides and were characterized by high levels of tri‐ and tetrasaccharide residues (93.4%) with a molar ratio of 2.19 for cellotriosyl to cellotetraosyl units. Size‐exclusion chromatography revealed that the WE material contained several polymer populations. One population had a very high molecular weight that appeared to be the result of aggregation. The AX fraction contained higher molecular weight polymers than the BG fraction.  相似文献   

6.
Wheat bran‐derived arabinoxylan‐oligosaccharides (AXOS) recently have been shown to potentially exert prebiotic effects. In this study, 15 bran samples obtained by milling different wheat cultivars were treated with xylanases from Hypocrea jecorina (XHJ), Aspergillus aculeatus (XAA), and Pseudoalteromonas haloplanktis (XPH) to assess the effect of bran source and xylanase properties on the AXOS yield and structure. The total arabinoxylan (AX) extraction yield was higher with XHJ (8.2–10.7%) and XAA (8.2–10.8%) than with XPH (6.9–9.5%). Irrespective of the enzyme, a significant negative correlation was observed between extraction yield and arabinose to xylose (A/X) ratio of bran AX (r = –0.7), but not between yield and bran AX level. The A/X ratio of the extracted material was 0.27–0.34 for all bran samples and all enzymes, which combined with yield data and microscopic analysis, indicated primary hydrolysis of aleurone and nucellar epidermis AX. The average degree of polymerization (avDP) of the extracted AX was very low for all enzymes (2–3), owing to the release of high levels of monomeric arabinose and xylose. The release of these monosaccharides could be ascribed to 1) the activity of wheat bran‐associated enzymes (arabinofuranosidases and xylosidases); 2) the hydrolytic properties of the xylanases themselves; and 3) the presence of xylosidases as contaminations in enzyme preparation, in that order of importance. Heat treatment of bran before xylanase treatment significantly decreased the levels of monomeric arabinose and xylose in the extract, without affecting the extraction yield, resulting in a higher avDP of 3–7, thus yielding true AXOS. Overall, for AXOS production, wheat cultivars with a low bran A/X ratio of the AX are preferable as starting materials, and inactivation of bran‐associated enzymes before incubation is desirable. The XHJ xylanase was the best enzyme for wheat bran‐derived AXOS production.  相似文献   

7.
Twenty‐three wheat samples from 19 different European wheat cultivars (Triticum aestivum L.) were tested for their quantitative and qualitative variation in inhibition activity against family 11 endoxylanases of Aspergillus niger, Bacillus subtilis, and Trichoderma viride and a family 10 endoxylanase of A. aculeatus. Under the experimental conditions, the A. aculeatus enzyme was not inhibited by the wheat extracts, the A. niger and B. subtilis endoxylanases were affected to a similar extent, while the T. viride enzyme was much more inhibited. The inhibition activities in the different wheat samples against the A. niger, B. subtilis, and T. viride endoxylanases varied between 36.0 and 11.7, 34.0 and 12.9, and 86.2 and 46.6 IU/100 mg of dry whole meal, respectively. One IU (inhibition unit) corresponds to the amount of inhibitor resulting in 50% inhibition of endoxylanase activity under the conditions of the assay. The inhibitor activities were linearly related, indicating that the levels of different endoxylanase inhibitors with different endoxylanase specificities in the dormant wheat grains are also linearly related or that one (or more) of these inhibitors are predominantly present or has much higher specific activity, consequently causing almost all of the inhibition activity measured. Wheat flour accounted for ≈57% of the total inhibition activity in wheat grains, while the shorts and bran fractions each contained ≈21% of the total activity. On dry weight basis, the inhibition activities were about three times higher in shorts and about two times higher in bran than in flour. The results obtained may be useful in explaining differences in functionality of different endoxylanases in biotechnological processes in which wheats of different cultivars, or fractions thereof, are used as well as in screening endoxylanases for applications in wheat‐based processes.  相似文献   

8.
In situ enrichment of bread with arabinoxylan‐oligosaccharides (AXOS) through enzymic degradation of wheat flour arabinoxylan (AX) by the hyperthermophilic xylanase B from Thermotoga maritima (rXTMB) was studied. The xylanolytic activity of rXTMB during breadmaking was essentially restricted to the baking phase. This prevented problems with dough processability and bread quality that generally are associated with thorough hydrolysis of the flour AX during dough mixing and fermentation. rXTMB action did not affect loaf volume. Bread with a dry matter AXOS content of 1.5% was obtained. Further increase in bread AXOS levels was achieved by combining rXTMB with xylanases from Pseudoalteromonas haloplanktis or Bacillus subtilis. Remarkably, such a combination synergistically increased the specific bread loaf volume. Assuming an average daily consumption of 180 g of fresh bread, the bread AXOS levels suffice to provide a substantial part of the AXOS intake leading to desired physiological effects in humans.  相似文献   

9.
Water-unextractable pentosans (WUP) isolated from the flours of three wheat cultivars (Apollo, Soissons, Thésée) were treated with enzymes to solubilize the arabinoxylans. The water-unextractable arabinoxylans from the three cultivars had similar susceptibility to solubilization by enzymes: Grindamyl S 100 (GS100), a commercial preparation for baking, rich in pentosanase activities that originated from an Aspergillus niger culture; and three endoxylanases (E1, E2, E3), an arabinofuranosidase (Af), a β- glucanase (βG), and a ferulate esterase (FAE) purified from GS100. A cellulase (C) and a pure endoglucanase (eG) from Trichoderma reesei were also used. GS100 was able to solubilize high molecular weight arabinoxylans (HMWAX) from WUP that markedly enhance the viscosity of the reaction mixture supernatants. The endoxylanase E1 was responsible for this solubilizing activity of GS100, whereas E2 and E3 made only a very low contribution. Combining E1 with FAE led to a limited increase in the arabinoxylan-solubilizing effect. Also, enzymes hydrolyzing cellulose and β-glucans slightly improved the arabinoxylan solubilization from WUP when combined with GS100 or E1, but produced arabinoxylans of lower intrinsic viscosity. Similar effects of the enzymes were observed on arabinoxylan solubilization when applied to dough instead of isolated WUP.  相似文献   

10.
Three industrial pasta processing lines for different products (macaroni, capellini and instant noodles) were sampled at three subsequent stages (semolina, extruded, and dried end products) in the process. Arabinoxylans (AX) and arabinogalactan peptides (AGP) were analyzed. Although very low endoxylanase activities were measured, the level of water-extractable AX (WE-AX) increased, probably because of mechanical forces. No change was observed in the level and structural characteristics of AGP. The WE-AX molecular weight (MW) profiles showed a very small shift toward lower MW profiles; those of AGP revealed no changes as a result of the production process. After separation of WE-AX and AGP, (1)H NMR analysis and gas chromatography of the alditol acetates obtained following hydrolysis, reduction, and acetylation revealed no changes in the arabinose substitution profile of the WE-AX samples during pasta processing. At optimal cooking times, WE-AX losses in the cooking water are small (maximally 5.9%). However, the loss of AGP is more pronounced (maximally 25.0%). Overcooking led to more losses of both components.  相似文献   

11.
The impact of varying levels of endoxylanase activity in wheat flour on arabinoxylan (AX) in mixed and rested dough was studied using eight industrially milled wheat flour fractions with varying endoxylanase activity levels. Analysis of the levels of reducing end xylose (RX) and solubilized AX (S-AX) formed during mixing and resting and their correlation with the endoxylanase activity in the flour milling fractions showed that solubilization of AX during the mixing phase is mainly due to mechanical forces, while solubilization of AX during resting is caused by endoxylanase activity. Moreover, solubilization of AX during the dough resting phase is more outspoken than that during the mixing phase. Besides endoxylanase activity, there were significant xylosidase and arabinofuranosidase activities during the dough resting phase. The results indicate that wheat flour-associated endoxylanases can alter part of the AX in dough, thereby changing their functionality in bread making and potentially affecting dough and end product properties.  相似文献   

12.
To gain insight into the distribution of arabinoxylans (AX), endoxylanases, and endoxylanase inhibitors in industrial wheat roller milling, all streams, that is, 54 flour fractions, 4 bran fractions, and the germ, were analyzed for ash, starch, and protein contents, alpha-amylase activity levels, total (TOT-AX) and water-extractable arabinoxylan (WE-AX) contents, endoxylanase activity levels, and endoxylanase inhibitor (TAXI and XIP) contents. In general, bran fractions were significantly richer in TOT-AX and WE-AX contents, endoxylanase activity levels, and endoxylanase inhibitor contents than germ and, even more so, than flour fractions. In the 54 different flour fractions, minimal and maximal values for TOT-AX and WE-AX contents differed by ca. 2-fold, whereas they differed by ca. 15-fold for endoxylanase activity levels. The latter were positively correlated with ash and negatively correlated with starch content, suggesting that the endoxylanase activity in flour is strongly influenced by the level of bran contamination. TAXI contents in the flour fractions varied ca. 4-fold and were strongly correlated with bran-related parameters such as ash content and enzyme activity levels, whereas XIP contents varied ca. 3-fold and were not correlated with any of the parameters measured in this study. The results can be valuable in blending and optimizing wheat flour fractions to obtain flours with specific technological and nutritional benefits.  相似文献   

13.
The effects of transglutaminase (TG) on the properties of semolina dough and pasta cooking properties in durum‐only and fiber‐enriched pasta were investigated. TG was blended at levels 0, 0.05, 0.1, 0.25, 0.5, and 1% of semolina weight with semolina and semolina‐pollard (60% w/w) and semolina‐guar gum (15%) mixtures. The addition of TG increased dough maximal resistance, making the dough inextensible at >1%. Optimum effects on dough strength were obtained at 0.5% TG; this dough gave the firmest and least sticky pasta. A more extensive and thicker protein matrix was observed in the TG pasta by confocal scanning laser microscopy, indicating more cross‐links were formed, a finding supported by measuring percentage of unextracted polymeric protein. TG was unable to overcome the negative effect of 60% pollard on cooking loss or 15% guar gum on stickiness. Gluten was generally more effective than TG in restoring the properties of pastas with added fiber.  相似文献   

14.
Lignans are of increasing interest because of their potential anticarcinogenic, antioxidant, estrogenic, and antiestrogenic activities. In this work, mixed‐cereal pastas manufactured by adding 60% whole‐grain flours of different cereals (wheat, oat, rye, barley, and rice) to durum wheat semolina, a multigrain pasta with different grains (cereals, legumes, and flaxseed), and a traditional industrial durum wheat semolina were analyzed for their lignans content both in the raw and in the cooked state, ready for consumption. For raw mixed‐cereal pastas, total lignans were within the range 94.91–485.62 μg/100 g d.w. After cooking, total lignans losses of about 35.5, 18.31, and 5.46% were observed respectively in oat‐, rye‐, and rice‐added pastas, whereas increases of 5.74 and 13.62% were observed in barley‐added and whole durum wheat pastas. Interesting results were obtained for the multigrain pasta: the raw product exhibited a total lignans content of 9,686.17 ± 287.03 μg/100 g d.w., and the major contribution was given by secoisolariciresinol. This highest total lignans value resulted from its rich and varied composition in seeds of different origin, legumes, and flaxseed in particular. Our findings showed that mixed‐cereal and multigrain pastas can be considered a good source of lignans. The effect of cooking was not the same for each product, and it depended on the different lignans profile of each grain, on the different chemical structure of each lignan, and on the nature of the food matrix.  相似文献   

15.
A new procedure was developed for the isolation of highly purified water‐extractable arabinoxylan (WE‐AX) from hull‐less barley flour. It included inactivation of endogenous enzymes, removal of proteins with silica gel, and removing β‐glucans, arabinogalactan‐peptides, and starch fragments by enzyme or solvent precipitation steps. WE‐AX recovered by this isolation procedure represented, on average, 47% of all WE‐AX present in hull‐less barley flour. Purified WE‐AX from flour of different hull‐less European barley cultivars contained 84.9–91.8% AX and showed small structural differences. The apparent peak molecular weight of the purified WE‐AX was 730,000–250,000, and the arabinose‐to‐xylose ratio was 0.55–0.63. Proton nuclear magnetic resonance spectroscopy showed that the levels of un‐, O‐2 mono‐, O‐3 mono‐, and O‐2,O‐3 disubstituted xylose residues were 59.1–64.7%, 8.2–10.0%, 5.7–10.6%, and 17.6– 23.1%, respectively, and the ratio of di‐ to monosubstituted xylose was 0.90–1.54. Both O‐3 mono‐ and disubstituted xylose residues occurred isolated or next to disubstituted xylose residues in the WE‐AX chain.  相似文献   

16.
Common wheat adulteration of durum wheat pasta was quantified using real‐time duplex polymerase chain reaction (PCR). The total DNA content of pasta was determined by amplifying part of a wheat gene encoding a lipid transfer protein, and common wheat DNA was quantified by amplifying part of the puroindoline‐b gene. Under the conditions defined by this study, for pasta with a theoretical adulteration of 3%, the experimentally determined mean value was 2.6–3.4%, depending on drying temperature. Pure durum wheat pastas were distinguished from adulterated pastas without ambiguity. This study demonstrates the feasibility of using real‐time duplex PCR to quantify common wheat adulteration of pasta dried at high temperature, quantification that was impossible with the French official peroxidase‐marker method.  相似文献   

17.
The variability in rye flour alkali-extractable arabinoxylan (AE-AX) structures was examined by extensive fractionation and enzymic degradation studies. AX were isolated from destarched rye water-unextractables by sequential extraction with saturated barium hydroxide solution, water, 1.0 M sodium hydroxide, and water. The isolated AE-AX contained ca. 51% AX with an arabinose to xylose (A/X) ratio of 0.71. Fractionation of the isolated AE-AX by ethanol precipitation yielded a range of AE-AX fractions containing AX molecules with different A/X ratios and substitution patterns. Degradation of these structurally different AE-AX fractions by an Aspergillus aculeatus endoxylanase (XAA) and a Bacillus subtilis endoxylanase (XBS) resulted in AX fragments with various structural features. Further fractionation of the degraded AE-AX fractions by ethanol precipitation showed that a strong correlation exists between the structural features of the AX fragments, that is, average degree of polymerization (DP) of the xylan backbone, A/X ratio, and substitution pattern. Results indicated that the rye flour AE-AX consist of a continuum of structures rather than of two types of AX or two types of regions in the AX molecule.  相似文献   

18.
Changes in total yellow pigment (TYP) content and carotenoid composition were examined at different stages of pasta processing. Semolina samples were milled from durum genotypes with and without the Lpx‐B1.1 gene deletion and then processed into dry pasta. Significant pigment loss (12.8–15.3%) based on TYP content was observed from semolina to dough in genotypes without the gene deletion. Such loss remained low (2.0–2.8%) for genotypes with the Lpx‐B1.1 gene deletion. Extrusion and drying processes did not result in substantial pigment loss. The overall pigment loss (from semolina to dried pasta) of genotypes with the gene deletion was 9.1–12.8%, in comparison with 19.0–21.7% in genotypes without the deletion. Changes in carotenoids examined by ultra‐performance liquid chromatography showed that lutein decreased gradually from representing 80% of total carotenoids to 70% of total carotenoids during pasta processing. The reduction of lutein was mostly during dough mixing, with a decrease of 16.7% in genotypes with the Lpx‐B1.1 deletion and 27.8% in genotypes without the deletion. Minor carotenoids increased during pasta drying, possibly at the expense of lutein. Results of this study showed that although breeding for elevated yellow pigments is the key, pasta color can be further improved by reducing pigment losses at different stages of pasta processing through selection of genotypes with Lpx‐B1.1 deletion and applying a vacuum during mixing and extrusion processes.  相似文献   

19.
Recent attention to dietary fiber in wheat (Triticum aestivum L.) has invigorated research in the nonstarch carbohydrate arabinoxylan (AX). AX molecules are composed of a linear xylose backbone with arabinose substitutions along the backbone. These arabinose substituents can also carry a ferulic acid moiety. AX molecules can be fractionated into two categories based on extraction properties that have a structural and conformational basis: water‐extractable (WEAX) and water‐unextractable (WUAX) molecules. The ferulic acid moieties also allow for oxidative cross‐linking between AX molecules or the tyrosine residues of proteins. The contents of total AX and WEAX molecules are primarily influenced by genetic differences; however, there is also evidence of environmental influence on content. There are several useful methods for quantifying AX molecules, providing varying levels of structural information as well as accuracy and precision. The high water‐absorption capacity of AX molecules results in a strong influence of AX on end‐use quality. Whereas WEAX molecules, in particular, tend to be detrimental for the quality of soft wheat products such as cookies, WEAX molecules are beneficial to the quality of hard wheat products such as bread. The role of WUAX molecules among the range of soft wheat products is as yet unclear; however, WUAX molecules tend to have a detrimental influence on bread. Because of the variable influence of AX structure on end‐use product functionality, closer examination of structure–function relationships may provide key insights into how to direct breeding efforts to maximize these relationships between AX molecules and other ingredients. Further investigation is necessary to obtain a more complete understanding of how the arabinose substitution levels and patterns affect end‐use quality and how the genetic basis of these traits can be resolved and manipulated for optimum end‐use quality.  相似文献   

20.
Fractions rich in indigestible carbohydrates, such as fructan and arabinoxylan, are obtained as by‐products when ethanol, starch, and gluten are produced from wheat flour. Today, these fractions are used as animal feed. However, these components may have positive physiological effects in humans. In this study, the content of indigestible carbohydrates in distillers' grains and process streams from the wet fractionation of wheat flour was determined. The fractions were further characterized by ethanol extractability analysis, anion‐exchange chromatography, NMR, and size‐exclusion chromatography. One fraction from wet fractionation contained (g/100 g, db) 6.0 ± 1.0 fructan and 10.3 ± 1.1 dietary fiber (66 ± 4% arabinoxylan), while distillers' grains contained 20.7 g/100 g (db) dietary fiber (30% arabinoxylan). In addition to indigestible carbohydrates from wheat, distillers' grains contained β‐(1→3) and β‐(1→6) glucans and mannoproteins from the yeast and low molecular weight carbohydrates mainly composed of arabinose. The use of endoxylanase in wet fractionation decreased the molecular weight of the arabinoxylans and increased the arabinose to xylose ratio but had no effect on the fructans. In conclusion, waste streams from industrial wheat processing were enriched in fructan, arabinoxylan, and other indigestible carbohydrates. However, the physiological effects of these fractions require further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号