首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The addition of natural plant secondary compounds to ruminant feed has been extensively studied because of their ability to modify digestive and metabolic functions, resulting in a potential reduction in greenhouse gas emissions, among other benefits. Condensed tannin (CT) supplementation may alter ruminal fermentation and mitigate methane (CH4) emissions. This study’s objective was to determine the effect of quebracho CT extract [QT; Schinopsis quebracho-colorado (Schltdl.) F.A. Barkley & T. Meyer] within a roughage-based diet on ruminal digestibility and kinetic parameters by using the in situ and in vitro gas production techniques, in addition to blood urea nitrogen (BUN) and ruminal (volatile fatty acid [VFA], NH3-N, and protozoa count) parameters. Twenty rumen-cannulated steers were randomly assigned to four dietary treatments: QT at 0%, 1%, 2%, and 3% of dry matter (DM; QT0: 0% CT, QT1: 0.70% CT, QT2: 1.41% CT, and QT3: 2.13% CT). The in situ DM digestibility increased linearly (P = 0.048) as QT inclusion increased, whereas in situ neutral detergent fiber digestibility (NDFD) was not altered among treatments (P = 0.980). Neither total VFA concentration nor acetate-to-propionate ratio differed among dietary treatments (P = 0.470 and P = 0.873, respectively). However, QT3 had lower isovalerate and isobutyrate concentrations compared with QT0 (P ≤ 0.025). Ruminal NH3 and BUN tended to decline (P ≤ 0.075) in a linear fashion as QT inclusion increased, suggesting decreased deamination of feed protein. Ruminal protozoa count was reduced in quadratic fashion (P = 0.005) as QT inclusion increased, where QT1 and QT2 were lower compared with QT0 and QT3. Urinary N excretion tended to reduce in a linear fashion (P = 0.080) as QT increased. There was a treatment (TRT) × Day interaction for in vitro total gas production and fractional rate of gas production (P = 0.013 and P = 0.007, respectively), and in vitro NDFD tended to be greater for QT treatments compared with no QT inclusion (P = 0.077). There was a TRT × Day interaction (P = 0.001) on CH4 production, with QT3 having less CH4 production relative to QT0 on day 0 and QT2 on days 7 and 28. Feeding QT up to 3% of the dietary DM in a roughage-based diet did not sacrifice the overall DM digestibility and ruminal parameters over time. Still, it is unclear why QT2 did not follow the same pattern as in vitro gas parameters. Detailed evaluations of amino acid degradation might be required to fully define CT influences on ruminal fermentation parameters and CH4 production.  相似文献   

2.
The objective of this study was to investigate the effects of processing index (PI) of barley grain and dietary undigested neutral detergent fiber (uNDF) concentration on dry matter (DM) intake, chewing activity, ruminal pH and fermentation characteristics, total tract digestibility, gastrointestinal barrier function, and blood metabolites of finishing beef heifers. The PI was measured as the density after processing expressed as a percentage of the density before processing, and a smaller PI equates to a more extensively processed. Six ruminally cannulated heifers (average body weight, 715 ± 29 kg) were used in a 6 × 6 Latin square design with three PI (65%, 75%, and 85%) × 2 uNDF concentration (low and high; 4.6% vs. 5.6% of DM) factorial arrangement. The heifers were fed ad libitum a total mixed ration consisting of 10% barley silage (low uNDF), or 5% silage and 5% straw (high uNDF), 87% dry-rolled barley grain, and 3% mineral and vitamin supplements. Interactions (P < 0.01) of PI × uNDF were observed for DM intake, ruminating and total chewing time, and DM digestibility in the total digestive tract. Intake of DM, organic matter (OM), starch, and crude protein (CP) did not differ (P > 0.14) between low and high uNDF diets, but intakes of NDF and acid detergent fiber were greater (P = 0.01) for high uNDF diets regardless of barley PI. Heifers fed high uNDF diets had longer (P = 0.05) eating times (min/d or min/kg DM) and tended (P = 0.10) to have longer total chewing times (min/kg DM) than those fed low uNDF diets. Additionally, heifers sorted (P = 0.01) against long particles (>19 mm) for high uNDF diets but not for low uNDF diets. Altering PI of barley grain did not affect (P > 0.12) total volatile fatty acid (VFA) concentration, molar percentages of individual VFA, or duration of ruminal pH < 5.8 and <5.6. Total VFA concentration was less (P = 0.01), acetate percentage was greater (P = 0.01), and duration of ruminal pH < 5.8 and <5.6 was less (P = 0.05) for high compared with low uNDF diets. Digestibility of DM, OM, and CP was greater (P = 0.02) for low vs. high uNDF diets with PI of 65% and 75%, with no difference between low and high uNDF diets at PI of 85%. Blood metabolites and gastrointestinal tract barrier function were not affected (P ≥ 0.10) by the treatments. These results suggest that increasing dietary uNDF concentration is an effective strategy to improve ruminal pH status in finishing cattle, regardless of the extent of grain processing, whereas manipulating the extent of barley processing did not reduce the risk of ruminal acidosis.  相似文献   

3.

Background

The prevalence of subacute ruminal acidosis (SARA) in dairy cows is high with large impact on economy and welfare. Its current field diagnosis is based on point ruminal pH measurements by oral probe or rumenocentesis. These techniques are invasive and inaccurate, and better markers for the diagnosis of SARA are needed. The goal of this study was to evaluate clinical signs of SARA and to investigate the use of blood, faecal and urinary parameters as indicators of SARA. Six lactating, rumen cannulated, Danish Holstein cows were used in a cross-over study with three periods. The first and second periods included two cows on control diet and two cows on nutritional SARA challenge. The third period only included two cows on SARA challenge. Control diet was a conventional total mixed ration [45.5% dry matter (DM), 17.8% crude protein, 43.8% neutral detergent fibre, and 22.5% acid detergent fibre (DM basis)]. SARA challenge was conducted by substituting control diet with grain pellets (50% wheat/barley) over 3 days to reach 40% grain in the diet. Ruminal pH was measured continuously. Blood samples were collected once daily at 7 h after feeding. Samples of faeces and urine were collected at feeding, and at 7 and 12 h after feeding. Blood samples were analysed for pCO2, pO2, pH, electrolytes, lactate, glucose, packed cell volume (PCV), and total plasma protein concentration. Milk composition, ruminal VFA, and pH of faeces and urine were measured.

Results

SARA was associated with decreased (P < 0.05) minimum ruminal, faecal and urinary pH. Daily times and areas of ruminal pH below 5.8, and 5.6 were increased to levels representative for SARA. Significant differences were detected in milk composition and ruminal VFAs. Blood calcium concentration was decreased (P < 0.05), and pCO2 tended to be increased (P = 0.10). Significant differences were not detected in other parameters.

Conclusions

SARA challenge was associated with changes in faecal and urinary pH, blood calcium concentration and pCO2. These may be helpful as indicators of SARA. However changes were small, and diurnal variations were present. None of these parameters are able to stand alone as indicators of SARA.  相似文献   

4.
This experiment evaluated the influence of protein supplementation frequency (SF) and amount offered on intake, nutrient digestibility, and ruminal fermentation by rumen-fistulated beef steers consuming low-quality [2.9% crude protein (CP); dry matter (DM) basis], cool-season forage. Seven Angus × Hereford steers (300 ± 27 kg) fitted with ruminal cannulas were randomly assigned to 1 of 7 treatments in an incomplete 7 × 4 Latin square. Treatments, in a 2 × 3 factorial design plus a non-supplemented control (CON), consisted of 2 levels of supplemental soybean meal, 100% (F) or 50% (H) of the estimated rumen-degradable protein requirement, provided daily (D), once every 5 d (5D), or once every 10 d (10D). Experimental periods were 30 d and dry matter intake (DMI) was measured from days 19 to 28. On days 21 (all supplements provided) and 30 (only daily supplements provided; day immediately prior to supplementation for 5D and 10D treatments) ruminal fluid was collected for ruminal pH, ammonia-N (NH3), volatile fatty acids (VFA), and determination of ruminal fermentation variables. Forage and total DM, organic matter (OM), and nitrogen (N) intake increased with supplementation (P ≤ 0.04). However, a linear effect of SF × amount of supplement interaction was observed for forage and total DM, OM, and N intake (P ≤ 0.04), with each variable decreasing as SF decreased, but the decrease being greater with F vs. H. Apparent total tract DM, OM, and neutral detergent fiber digestibility was not affected by supplementation or amount of supplement provided (P ≥ 0.10). In contrast, N digestibility increased with supplementation and for F vs. H (P < 0.01). Digestibility of DM, OM, and N increased linearly as SF decreased (P ≤ 0.03). When all supplements were provided, ruminal NH3, total VFA, and molar proportions of all individual VFA increased with supplementation (P ≤ 0.04), whereas acetate:propionate ratio decreased (P < 0.01). When only daily supplements were provided, none of the aforementioned fermentation parameters were affected (P ≥ 0.09). In summary, reducing the amount of supplemental CP provided to ruminants consuming low-quality forages, when supplementation intervals are >5 d, can be a management tool to maintain acceptable levels of DMI, nutrient digestibility, and ruminal fermentation while reducing supplementation cost.  相似文献   

5.
Because of its high content of polyphenolic compounds, the dietary inclusion of grape pomace (GP) in ruminant diets can reduce reactive nitrogen (N) and methane emissions and enhance the shelf life and beneficial fatty acids (FAs) content of meat. However, the dietary inclusion of GP beyond a threshold that is still to be determined for feedlot cattle can also compromise nutrient supply and, thus, growth performance. This study investigated the optimum proportion of GP in finishing cattle diets. Nutrient intake and apparent total tract digestion, ruminal pH and fermentation, estimated microbial protein synthesis, route of N excretion, and blood metabolites were measured. Six ruminally fistulated crossbred beef heifers (mean initial body weight ± SD: 714 ± 50.7 kg) were used in a replicated 3 × 3 Latin square with 21-d periods. Dietary treatments were 0%, 15%, and 30% of dietary dry matter (DM) as GP, with diets containing 84%, 69%, and 54% dry-rolled barley grain, respectively. There was a linear increase (P = 0.07) in DM intake and quadratic change (P ≤ 0.01) in neutral detergent fiber (NDF) intake. There was a quadratic change (P ≤ 0.04) in apparent total tract DM, NDF, and crude protein digestibility as dietary GP content increased. However, there were no treatment effects (P ≥ 0.18) on total ruminal short-chain FA concentration and duration and area pH < 6.2, 5.8, and 5.5. Although N intake did not differ (269, 262, 253 g/d; P = 0.33) across dietary treatments, feeding GP led to a tendency for a quadratic change (P ≤ 0.07) in ruminal ammonia-N and plasma urea-N concentrations. Total N excretion also changed (quadratic, P = 0.03) because of changes (quadratic, P = 0.02) in fecal N excretion as urinary excretion of N and urea-N did not differ (P ≥ 0.15) across treatments. Feeding GP led to quadratic changes (P ≤ 0.01) in fecal excretion of fiber-bound N. Microbial N flow and apparent N retention also changed (quadratic, P ≤ 0.04) as dietary GP proportion increased. In conclusion, responses to dietary GP proportion were mostly quadratic with indications that nutrient supply as reflected by changes in apparent total tract nutrient digestibility, microbial N supply, and apparent N retention could be compromised beyond a 15% dietary inclusion level.  相似文献   

6.
Effects of dried distillers grains plus solubles (DDGS) on ruminal fermentation, degradation kinetics, and feeding behavior of steers offered annual (Eragrostis tef; TEFF) or perennial (Bothriochloa bladhii; OWB) grass hay were evaluated. Ruminally cannulated Angus crossbred steers (n = 6; body weight [BW] = 304 ± 11 kg) were assigned to a 4 × 6 unbalanced Latin square design with four treatments arranged as a 2 × 2 factorial: hay type (OWB or TEFF) and DDGS supplementation (0% or 0.5% BW [dry matter {DM} basis]). Steers had ad libitum access to hay. Periods consisted of a 14-d adaptation followed by 7 d of collection. Residues from the in situ incubations (0, 3, 6, 12, 24, 36, 48, 72, and 96 h post-feeding) were fitted to a first-order kinetics model using the NLIN procedure of SAS. The DDGS decreased (P < 0.01) TEFF DM intake (DMI) by 11.3%, while not affecting DMI of OWB. The greatest DMI was observed for steers supplemented with DDGS, regardless of forage, and least in steers consuming OWB without DDGS (hay type × DDGS; P = 0.03). Non-supplemented steers spent more (P < 0.01) time eating hay. Digestibility of DM tended (P = 0.06) to increase with DDGS supplementation. A hay type × DDGS interaction was observed (P ≤ 0.05) on ruminal effective degradable fractions. The rate of degradation, soluble fraction, and the potentially degradable fraction of organic matter (OM), neutral detergent fiber, and acid detergent fiber (ADF) increased (P ≤ 0.05), while the undegradable fraction of all components decreased (P ≤ 0.01) when steers were offered TEFF compared to OWB. Ruminal DM, OM, and ADF degradation lag-time increased (P ≤ 0.02) in steers offered OWB. Ruminal degradation kinetics were not (P ≥ 0.17) independently affected by DDGS supplementation. Average ruminal pH of steers offered TEFF (P < 0.01) and those offered DDGS (P < 0.01) were lower than OWB and non-supplemented steers. Total concentration of VFA tended (P = 0.09) to increase when DDGS was provided with OWB, while decreasing when TEFF was offered. The acetate:propionate increased (P < 0.01) with DDGS supplementation due to a decrease (P = 0.03) in propionate. Ruminal NH3-N was greater (P = 0.03) in steers offered TEFF compared to OWB, and those supplemented with DDGS (P = 0.03). An annual, in place of a conventional, perennial hay improved intake and digestion of nutrients, without affecting feeding behavior. The supplementation with DDGS appears to affect forage intake, ruminal degradation, and feeding behavior, although not independent of forage quality.  相似文献   

7.
The individual and combined effects of 3-nitrooxypropanol (3-NOP) and canola oil (OIL) supplementation on enteric methane (CH4) and hydrogen (H2) emissions, rumen fermentation and biohydrogenation, and total tract nutrient digestibility were investigated in beef cattle. Eight beef heifers (mean body weight ± SD, 732 ± 43 kg) with ruminal fistulas were used in a replicated 4 × 4 Latin square with a 2 (with and without 3-NOP) × 2 (with and without OIL) arrangement of treatments and 28-d periods (13 d adaption and 15 d measurements). The four treatments were: control (no 3-NOP, no OIL), 3-NOP (200 mg/kg dry matter [DM]), OIL (50 g/kg DM), and 3-NOP (200 mg/kg DM) plus OIL (50 g/kg DM). Animals were fed restrictively (7.6 kg DM/d) a basal diet of 900 g/kg DM barley silage and 100 g/kg DM supplement. 3-NOP and OIL decreased (P < 0.01) CH4 yield (g/kg DM intake) by 31.6% and 27.4%, respectively, with no 3-NOP × OIL interaction (P = 0.85). Feeding 3-NOP plus OIL decreased CH4 yield by 51% compared with control. There was a 3-NOP × OIL interaction (P = 0.02) for H2 yield (g/kg DM intake); the increase in H2 yield (P < 0.01) due to 3-NOP was less when it was combined with OIL. There were 3-NOP × OIL interactions for molar percentages of acetate and propionate (P < 0.01); individually, 3-NOP and OIL decreased acetate and increased propionate percentages with no further effect when supplemented together. 3-NOP slightly increased crude protein (P = 0.02) and starch (P = 0.01) digestibilities, while OIL decreased the digestibilities of DM (P < 0.01) and neutral detergent fiber (P < 0.01) with no interactions (P = 0.15 and 0.10, respectively). 3-NOP and OIL increased (P = 0.04 and P < 0.01, respectively) saturated fatty acid concentration in rumen fluid, with no interaction effect. Interactions for ruminal trans-monounsaturated fatty acids (t-MUFA) concentration and percentage were observed (P = 0.02 and P < 0.01); 3-NOP had no effect on t-MUFA concentration and percentage, while OIL increased the concentration (P < 0.01) and percentage (P < 0.01) of t-MUFA but to a lesser extent when combined with 3-NOP. In conclusion, the CH4-mitigating effects of 3-NOP and OIL were independent and incremental. Supplementing ruminant diets with a combination of 3-NOP and OIL may help mitigate CH4 emissions, but the decrease in total tract digestibility due to OIL may decrease animal performance and needs further investigation.  相似文献   

8.
Twelve Angus steers (BW 452.8 ± 6.1 kg) fitted with ruminal cannulae were used to determine the impact of trace mineral (TM) source on digestibility, ruminal volatile fatty acid (VFA) composition, ruminal soluble concentrations of Cu, Zn, and Mn, and relative binding strength of trace minerals located in the rumen insoluble digesta fraction. Steers were fed a medium-quality grass hay diet (DM basis: 10.8% CP, 63.1% neutral detergent fiber [NDF], 6.9 mg Cu/kg, 65.5 mg Mn/kg, and 39.4 mg Zn/kg) supplemented with protein for 21 d. Treatments consisted of either sulfate (STM) or hydroxy (HTM) sources (n = 6 steers/treatment) to provide 20, 40, and 60 mg supplemental Cu, Mn, and Zn/kg DM, respectively. Following a 21-d adaptation period, total fecal output was collected for 5 d. Dry matter (P < 0.07) and CP (P < 0.06) digestibility tended to be reduced, and NDF (P < 0.04) and acid detergent fiber (ADF) (P < 0.05) digestibility were reduced in STM- vs. HTM-supplemented steers. On day 6, ruminal fluid was collected at 0, 2, and 4 h post-feeding and analyzed for VFA. There were no treatment x time interactions for VFA. Steers receiving HTM had less (P < 0.02) molar proportions of butyric acid and greater (P < 0.05) total VFA concentrations than STM-supplemented steers. Steers were then fed the same diet without supplemental Cu, Zn, or Mn for 14 d. On day 15 steers received a pulse dose of 20 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM from either STM or HTM (n = 6 steers/treatment). Ruminal samples were obtained at 2-h intervals starting at −4 and ending at 24 h relative to dosing. There was a treatment x time interaction (P < 0.03) for ruminal soluble Cu, Mn, and Zn concentrations. Ruminal soluble mineral concentrations were greater (P < 0.05) for Cu at 4, 6, 8, 10, 12, and 14 h; for Mn at 4 and 6 h; and for Zn at 4, 6, and 8 h post-dosing in STM compared with HTM-supplemented steers. Copper concentrations were greater (P < 0.05) at 12 and 24 h and Zn concentrations in ruminal solid digesta were greater at 24 h in HTM-supplemented steers. Upon dialysis against Tris-EDTA, the percent Zn released from digesta was greater (P < 0.05) at 12 h (P < 0.03) and 24 h (P < 0.05), and the percent Cu released was greater (P < 0.02) at 24 h post-dosing in HTM steers when compared with STM-supplemented steers. Results indicate that Cu and Zn from HTM have low solubility in the rumen and appear to be less tightly bound to ruminal solid digesta than Cu and Zn from STM. The lower ruminal soluble concentrations of Cu and Zn in steers given HTM were associated with greater fiber digestibility.  相似文献   

9.
This study was carried out aiming to evaluate the effects of yeast or monensin supplementation on dry matter intake, nutrients digestibility, ruminal volatile fatty acids profile, ruminal pH and ammonia concentration, microbial protein synthesis, and the balance of nitrogen compounds of cattle fed high concentrate diet (80 % dry matter (DM) basis) with two different levels of starch. Eight crossbred beef steers fitted with rumen cannula were assigned to two simultaneous 4?×?4 Latin squares arranged in a 4?×?2 factorial design. Two different starch levels (23 and 38 % of DM) were assigned to each Latin square, independently. Within each Latin square, four treatments were randomly assigned to the experimental animals (control; monensin; 1-g yeast [1 g/100 kg body weight (BW)/day] treatment; and 2.5-g yeast [2.5 g/100 kg BW/day] treatment). Feed additives did not influence ruminal pH (P?>?0.05). Total ruminal volatile fatty acids (VFA) concentration was greater (P?<?0.05) in the diet with the lowest starch level. Similarly, monensin and 1-g yeast treatments resulted in greater (P?<?0.05) VFA concentration in the rumen. Monensin inclusion in the diet with the highest starch level led to a decrease (P?<?0.05) in lactate concentration in the rumen. However, acetate levels were increased (P?<?0.05) by the inclusion of 1 g of yeast in the diet with lowest starch level. Ruminal concentrations of propionate and butyrate, and ammonia-N were not influenced (P?>?0.05) by none of the additives evaluated. However, propionate concentration was greater (P?<?0.05) in the low-starch diets. Low-starch diets resulted in lower ruminal ammonia-N concentration and greater neutral detergent fiber digestibility (P?<?0.05). The excretion of urinary nitrogenous compounds, purine derivatives, synthesis of microbial protein, microbial efficiency, and balance of nitrogenous compounds were not affected by treatments evaluated (P?>?0.05). Monensin or yeast inclusion in high concentrate beef cattle diets in tropical regions as in Brazil is not justified by do not alter nutrient digestibility, nitrogen balance, and main ruminal parameters.  相似文献   

10.
Live yeast (Saccharomyces cerevisiae) constitutes an effective additive for animal production; its probiotic effect may be related to the concentrate-to-forage ratio (CTFR). The objective of this study was to assess the effects of S. cerevisiae (SC) on fiber degradation and rumen microbial populations in steers fed diets with different levels of dietary concentrate. Ten Simmental × Local crossbred steers (450 ± 50 kg BW) were assigned to a control group or an SC group. Both groups were fed the same basal diet but the SC group received SC supplementation (8 × 109 cfu/h/d through the ruminal fistula) following a two-period crossover design. Each period consisted of four phases, each of which lasted 17 d: 10 d for dietary adaptation, 6 d for degradation study, and 1 d for rumen sample collection. From the 1st to the 4th phase, steers were fed in a stepwise fashion with increasing CTFRs, i.e., 30:70, 50:50, 70:30, and 90:10. The kinetics of dry matter and fiber degradation of alfalfa pellets were evaluated; the rumen microbial populations were detected using real-time PCR. The results revealed no significant (P > 0.05) interactions between dietary CTFR and SC for most parameters. Dietary CTFR had a significant effect (P < 0.01) on degradation characteristics of alfalfa pellets and the copies of rumen microorganism; the increasing concentrate level resulted in linear, quadratic or cubic variation trend for these parameters. SC supplementation significantly (P < 0.05) affected dry matter (DM) and neutral detergent fiber (NDF) degradation rates (cDM, cNDF) and NDF effective degradability (EDNDF). Compared with the control group, there was an increasing trend of rumen fungi and protozoa in SC group (P < 0.1); copies of total bacteria in SC group were significantly higher (P < 0.05). Additionally, percentage of Ruminobacter amylophilus was significantly lower (P < 0.05) but percentage of Selenomonas ruminantium was significantly higher (P < 0.05) in the SC group. In a word, dietary CTFR had a significant effect on degradation characteristics of forage and rumen microbial population. S. cerevisiae had positive effects on DM and NDF degradation rate or effective degradability of forage; S. cerevisiae increased rumen total bacteria, fungi, protozoa, and lactate-utilizing bacteria but reduced starch-degrading and lactate-producing bacteria.  相似文献   

11.
Two experiments were performed to evaluate the effects of bismuth subsalicylate (BSS) and calcium-ammonium nitrate (CAN) on in vitro ruminal fermentation, growth, apparent total tract digestibility of nutrients, liver mineral concentration, and carcass quality of beef cattle. In Exp. 1, four ruminally cannulated steers (520 ± 30 kg body weight [BW]) were used as donors to perform a batch culture and an in vitro organic matter digestibility (IVOMD) procedure. Treatments were arranged in a 2 × 2 factorial with factors being BSS (0 or 0.33% of substrate dry matter [DM]) and CAN (0 or 2.22% of substrate DM). In Exp. 2, 200 Angus-crossbred steers (385 ± 27 kg BW) were blocked by BW and allocated to 50 pens (4 steers/pen) in a randomized complete block design with a 2 × 2 + 1 factorial arrangement of treatments. Factors included BSS (0 or 0.33% of the diet DM) and nonprotein nitrogen (NPN) source (urea or encapsulated CAN [eCAN] included at 0.68% or 2.0% of the diet, respectively) with 0.28% ruminally available S (RAS). A low S diet was included as a positive control containing urea (0.68% of DM) and 0.14% RAS. For Exp. 1, data were analyzed using the MIXED procedure of SAS with the fixed effects of BSS, CAN, BSS × CAN, and the random effect of donor. For Exp. 2, the MIXED procedure of SAS was used for continuous variables and the GLIMMIX procedure for categorical data. For Exp. 1, no differences (P > 0.230) were observed for IVOMD. There was a tendency (P = 0.055) for an interaction regarding H2S production. Acetate:propionate increased (P = 0.003) with the addition of CAN. In Exp. 2, there was a NPN source effect (P = 0.032) where steers consuming urea had greater carcass-adjusted final shrunk BW than those consuming eCAN. Intake of DM (P < 0.001) and carcass-adjusted average daily gain (P = 0.024) were reduced by eCAN; however, it did not affect (P = 0.650) carcass-adjusted feed efficiency. Steers consuming urea had greater (P = 0.032) hot carcass weight, and a BSS × NPN interaction (P = 0.019) was observed on calculated yield grade. Apparent absorption of S decreased (P < 0.001) with the addition of BSS. Final liver Cu concentration was reduced (P = 0.042) by 58% in cattle fed BSS, indicating that BSS may decrease Cu absorption and storage in the liver. The results observed in this experiment indicate that BSS does not have negative effects on feedlot steer performance, whereas CAN may hinder performance of steers fed finishing diets.  相似文献   

12.
To assess the relative bioavailability of bis-glycinate bound Cu, 90 Angus-cross steers (265 ± 21 kg) were blocked by body weight (BW) to pens with GrowSafe bunks and randomly assigned to dietary treatments (14 to 18 steers/treatment): 0 mg supplemental Cu/kg dry matter (DM; CON), 5 or 10 mg supplemental Cu/kg DM as Cu sulfate (CS5; CS10) or bis-glycinate bound Cu (GLY5; GLY10). Steers received a high antagonist growing diet (analyzed 4.9 mg Cu/kg DM, 0.48% S, and 5.3 mg Mo/kg DM). Steers were weighed at the beginning (days 1 and 0) and end (days 125 and 126) of the trial to determine average daily gain (ADG) and gain:feed (G:F). Blood was collected from all steers on days 0, 28, 56, 84, and 126. Liver samples were collected on days −3 or −2 and day 123 or 124. Data were analyzed using ProcMixed of SAS (experimental unit = steer; fixed effect = treatment and block). Plasma Cu was analyzed as repeated measures (repeated effect = day). Plasma and liver Cu concentrations were regressed against total Cu intake using ProcGLM to calculate relative bioavailability of GLY. Final BW and overall ADG were greatest for CS5 and CS10 and least for CON and GLY5 (P = 0.01). Overall, DMI was not affected by treatment (P = 0.14), but overall G:F tended to be greatest for CS5, CS10, and GLY5 and least for CON (P = 0.08). Total and supplemental Cu intake was greatest for steers supplemented either source at 10 mg Cu/kg DM and least for CON (P < 0.01). However, total and supplemental Cu intake was greater for CS5 than GLY5 (P < 0.01). Final liver Cu concentrations were greatest for CS10, least for CON, CS5, and CS10, and intermediate for GLY10 (P < 0.01). Final plasma Cu was greatest for steers supplemented either source at 10 mg Cu/kg DM (P < 0.01). Relative bioavailability of GLY was 82% compared to CS based on liver Cu (P < 0.01) but did not differ based on plasma Cu (P = 0.60). The lesser bioavailability of GLY relative to CS could be due to a high concentration of dietary antagonists and lower solubility of GLY (68.9% relative to CS) in pH conditions (5.2) similar to the ruminal pH of a beef animal consuming a high concentrate diet. Future studies should examine the effects of bis-glycinate bound Cu fed in blended combination with inorganic Cu sulfate to determine the most effective blend of sources for feedlot cattle experiencing varying amounts of dietary Cu antagonists.  相似文献   

13.
Six ruminally cannulated steers (average BW = 791 ± 71 kg) were used in a replicated 3 × 3 Latin square experiment to determine the effects of roughage type on rumination, fiber mat characteristics, and rumen fermentation variables. Three roughages were included at 7% (DM basis) in a steam flaked corn-based diet: cotton burrs (CB), wheat silage (WS), or corn stalks (CS). Steers were fitted with a sensory collar to record rumination behaviors in 2-h intervals at the beginning of the experiment. Each 30-d period consisted of 7 d of recovery, 14 d of diet adaptation, 7 d of rumination data collection (daily and bi-hourly average rumination), 1 d of rumen fluid collection, and 1 d of rumen evacuations. In situ degradation of individual roughages was determined for 4 d after period 3 evacuations. During rumen evacuations, ruminal contents were removed; the rumen fiber mat (RF) was separated from the liquid portion with a 2-mm sieve, weighed, and a subsample was dried. Data were analyzed using the MIXED procedure of SAS with steer as the experimental unit and roughage (CB, WS, and CS) as the main effect. Dry matter intake (DMI) was not different for CB and WS (P = 0.25) and greatest for steers consuming CS diet (P ≤ 0.01). Roughage type did not influence the weight of the RF dry matter (%; DM; P = 0.92), RF weight (P = 0.69), or RF:DMI ratio (P = 0.29). Daily rumination (min/d) did not differ among roughages (P = 0.40), but min of rumination/kg of DMI was greatest for CS (18.0 min), min/kg of NDF was greatest for WS (89.8 min; P = 0.02), and min/kg of peNDF was greatest for CS (132.4 min; P ≤ 0.01). Wheat silage had the greatest percentage of soluble and degradable DM. Rumen fiber mat did not differ for roughages, although rumination min/kg of DMI and peNDF was greatest for steers consuming CS and WS. In situ degradation determined that CB-R and CS-R had the greatest percentage of ruminal undegraded DM. Based on the objective of the experiment, roughage type did not influence daily rumination or fiber mat characteristics.  相似文献   

14.
Two experiments were conducted to determine the effects of crude protein (CP) level in concentrate (experiment 1) and concentrate level (experiment 2) on feed intake, nutrient digestibility, nitrogen (N) retention, ruminal pH and NH3-N concentration and average daily gain (ADG) of Vietnamese local fattening cattle. Animals (24 cattle, initial live weight (LW) 150.3?±?11.8 kg in experiment 1 and 145.1?±?9.8 kg in experiment 2) were allotted based on LW to one of four treatments in a randomised complete block design. In experiment 1, concentrate with four levels of CP (10, 13, 16 and 19 %) was fed at 1.5 % of LW. In experiment 2, concentrate was fed at 1.0, 1.4, 1.8 and 2.2 % of LW. In both experiments, roughage was 5 kg/day native grass and ad libitum rice straw (fresh basis). Results showed that the CP level in concentrate significantly affected dry matter (DM) intake (P?<?0.05), N retention, ADG and ruminal NH3-N concentration (P?<?0.01), but it had no significant effect on DM, organic matter (OM) and neutral detergent fibre (NDF) digestibility (P?>?0.05), whereas CP digestibility increased (P?<?0.001) along with the CP level. DM intake, N retention and ADG increased (P?<?0.001) linearly with concentrate intake. DM and CP digestibility were not significantly affected by concentrate intake (P?>?0.05). OM digestibility and NH3-N concentration increased linearly (P?<?0.05), whereas NDF digestibility and ruminal pH declined linearly with increased concentrate consumption (P?<?0.01). These results indicate that 16 % CP in concentrate and feeding concentrate at the rate of 2.2 % of LW are recommendable for fattening local cattle in Vietnam.  相似文献   

15.
Subacute ruminal acidosis(SARA)represents one of the most important digestive disorders in intensive dairy farms,and dairy cows are individually different in the severity of SARA risk.The objectives of the current study were to investigate differences in the ruminal bacterial community and metabolome in dairy cattle with different susceptibility to SARA.In the present study,12 cows were initially enrolled in the experiment.Based on average ruminal pH,4 cows with the lowest ruminal pH were assigned to the susceptible group(SUS,pH=5.76,n=4)and 4 cows with the highest ruminal pH assigned to the tolerant group(TOL,pH=6.10,n=4).Rumen contents from susceptible(SUS,n=4)and tolerant(TOL,n=4)dairy cows were collected through rumen fistula to systematically reveal the rumen microbial and metabolic alterations of dairy cows with different susceptibility to SARA using multi-omics approaches(16S and 18S rRNA gene sequencing and metabolome).The results showed that despite being fed the same diet,SUS cows had lower ruminal pH and higher concentrations of total volatile fatty acids(VFA)and propionate than TOL cows(P<0.05).No significant differences were observed in dry matter intake,milk yield,and other milk compositions between the SUS and TOL groups(P>0.05).The principal coordinates analysis based on the analysis of molecular variance indicated a significant difference in bacterial composition between the two groups(P=0.01).More specifically,the relative abundance of starch-degrading bacteria(Prevotella spp.)was greater(P<0.05),while the proportion of fiber-degrading bacteria(unclassified Ruminococcaceae spp.,Ruminococcus spp.,Papillibacter,and unclassified Family_-XIII)was lower in the rumen of SUS cows compared with TOL cows(P<0.05).Community analysis of protozoa showed that there were no significant differences in the diversity,richness,and community structure(P>0.05).Metabolomics analysis revealed that the concentrations of organic acids(such as lactic acid),biogenic amines(such as histamine),and bacterial degradation products(such as hypoxanthine)were significantly higher in the SUS group compared to the TOL group(P<0.05).These findings revealed that the higher proportion of starch-degrading bacteria/lower fiber-degrading bacteria in the rumen of SUS cows resulted in higher VFA-producing capacity,in particular propionate.This caused a disruption in metabolic homeostasis in the rumen which might be the reason for the higher susceptibility to SARA.Overall,these findings enhanced our understanding of the ruminal microbiome and metabolic changes in cows susceptible to SARA.  相似文献   

16.
An experiment was conducted with eight ruminally-cannulated cows using a crossover design with 2 periods to determine the effects of yeast supplementation on rumen fermentation. Holstein dairy cows in late lactation were either supplemented with 0.5 g/hd/d of Saccharomyces cerevisiae, an active dry yeast (CNCM-1077, Levucell SC20 (r) SC, Lallemand Animal Nutrition) or not supplemented (control). A basal diet consisting of 60% forage and 40% concentrate (DM basis) was fed once daily to both groups of cows throughout the entire experiment. Ruminal pH was measured continuously every 22 min using a pH probe that was placed in the ventral rumen sac for 6 consecutive days. Volatile fatty acid and ammonia N concentrations in the rumen were measured on days 5 or 6 of the 12-d period for each cow and DM intake was monitored throughout the experiment. Data were analyzed using a mixed-effects model with repeated measures. There were no differences in dry matter intake between treatments. Mean ruminal pH was greater (P < 0.05) when yeast was supplemented (6.53 ± 0.07) compared with the control (6.32 ± 0.07). Average maximum and minimum ruminal pH were also greater (P < 0.05) when yeast was supplemented (7.01 ± 0.09 and 5.97 ± 0.08, respectively) compared with the control (6.80 ± 0.09 and 5.69 ± 0.09, respectively). Time spent under the subacute acidosis threshold, pH less than 5.6, was lower (P < 0.05) with yeast supplementation compared with control cows. No difference was observed for ruminal ammonia N concentrations (mean = 14.0 ± 1.2 mg/dL) between treatments. Total VFA concentration (mM) in the rumen tended to be lower (P = 0.10) in the yeast-supplemented cows (107.3 ± 6.35) than in the control cows (122.4 ± 6.35), which could be related to the greater pH observed with yeast supplementation. Supplementing dairy cows with active dry yeast in the current experiment increased the mean, minimum and maximum ruminal pH; decreased time spent in subacute rumen acidosis, and tended to decrease total VFA concentration in the rumen compared with control cows.  相似文献   

17.
We evaluated the influence of amount and crude protein (CP) supplementation frequency (SF) on nitrogen (N) use by wethers and the performance of late-gestation beef cows. In exp. 1, seven Western whiteface wethers (31.8 ± 1.4 kg) were used in an incomplete 7 × 4 Latin square to evaluate intake and N use. Wethers received one of the seven treatments in a 2 × 3 factorial design containing two levels of supplemental soybean meal offered at a rate of 100% (F) or 50% (H; 50% of F) of the estimated CP requirement daily, once every 5, or once every 10 d, plus a non-supplemented control (CON). Low-quality cool-season forage (4.9 % CP; dry matter [DM] basis) was provided daily for ad libitum intake. Experimental periods lasted 30 d. In exp. 2, 84 Angus × Hereford cows (560 ± 35 kg) were stratified by age, body condition score (BCS), and expected calving date and allocated to 1 of the 21 feedlot pens (three pens per treatment). Pens were randomly assigned to receive the same treatments as in exp. 1 and cows had free access to low-quality cool-season forage (2.9% CP; DM basis). Cow body weight (BW) and BCS were measured every 14 d until calving and within 24 h after calving. In exp. 1, supplementation did not alter total DM and organic matter (OM) intake (P ≥ 0.26), but both parameters linearly decreased as SF decreased (P = 0.02). Supplementation increased DM, OM, and neutral detergent fiber (NDF) digestibility (P ≤ 0.02). Additionally, F feeding linearly increased DM, OM, and NDF digestibility as SF decreased (P ≤ 0.04). Digestibility of N, N balance, and digested N retained were greater with supplementation (P < 0.01), and N digestibility linearly increased as SF decreased (P = 0.01). Mean plasma urea-N concentration was not only greater (P < 0.01) for supplemented vs. CON wethers but also greater (P = 0.03) for F vs. H. In exp. 2, pre-calving BCS change was greater (P = 0.03) for supplemented cows. A linear effect of SF × supplementation rate for pre-calving BCS change was noted (P = 0.05), as F-supplemented cows lost more BCS compared with H as SF decreased. When considering supplementation intervals greater than 5 d, reducing the quantity of supplement provided, compared with daily supplementation, may be a feasible management strategy to maintain acceptable nutrient use and animal performance while reducing supplement and labor costs.  相似文献   

18.
BackgroundIncreased risk of neoplasia in humans with diabetes mellitus (DM) is well documented. It is unknown if dogs with DM have increased risk of neoplasia.ObjectiveDetermine if dogs with DM have an overall increased risk of neoplasia and risk for specific forms of neoplasia compared to dogs without DM.AnimalsSeven hundred dogs with DM and 700 breed, age, and sex‐matched dogs without DM, examined during the same years.MethodsRetrospective case‐control study. Odds ratios (OR), corresponding 95% confidence intervals (CI), and P‐values were calculated using conditional logistic regression to determine if dogs with DM had increased odds of developing neoplasia compared to dogs without DM.ResultsThe overall odds of developing neoplasia were not significantly different in dogs with and without DM. However, dogs with DM had significantly higher odds of developing an adrenal mass (OR, 4; 95% CI, 1.1‐14.2; P = .03) compared to dogs without DM. The odds of developing a splenic mass in dogs with DM (OR, 1.2; 95% CI, 0.99‐1.39) were increased compared to dogs without DM, but this difference was not significant (P = .07).Conclusions and Clinical ImportanceDogs with DM may be at increased risk for adrenal neoplasia. Awareness of this risk can facilitate early diagnosis of this life‐threatening comorbidity. Larger studies are needed to confirm these findings.  相似文献   

19.
We evaluated the effects of different types of additives on the fermentation and aerobic stability of alfalfa (Medicago sativa) ensiled at 2 dry matters (DM). Alfalfa was untreated (CTRL) or treated with sodium benzoate, potassium sorbate, and sodium nitrite (SFE), or microbial inoculants (Lactobacillus plantarum MTD1 [LP] or L. buchneri 40788 and Pediococcus pentocaseus 12455 [LBPP]) at a moderate (38%) and high (46%) DM using a completely randomized design with a 2 × 4 factorial arrangement of treatments. High DM silage was higher (P < 0.01) in pH, had less lactic and acetic acid (P < 0.01) and had more yeasts (P < 0.05) and molds (P < 0.01) than moderate DM silage. Recovery of DM declined (P < 0.01) for CTRL and LP treated silages with increasing DM but was not different between LBPP and SFE treatments. Compared to CTRL, LBPP had a lower (P < 0.01) DM recovery at the moderate DM, but SFE had the greatest (P < 0.01) recovery of all treatments at the high DM. Treatment with LBPP increased (P < 0.05) the concentrations of acetic acid and 1,2 propanediol (PD) compared with other treatments (P < 0.01). Numerically, fewer yeasts were found in additive treated silages compared with CTRL, but they were statistically (P < 0.01) lower only when treated with SFE. Treatment with LP resulted in a small improvement in aerobic stability at the moderate but not high DM. In contrast, treatment with SFE and LBPP markedly improved (P < 0.01) the aerobic stability of alfalfa silage at both DM. Whereas SFE and LBPP were similar in their improvements in aerobic stability at the DM, LBPP was better (P < 0.01) than SFE at the high DM. A higher (P < 0.01) concentration of acetic acid in LBPP compared with other treatments was most likely responsible for better stability. This study showed that LBPP and SFE resulted in increases in the aerobic stability of alfalfa silage and it is the first study showing SFE, can markedly improve the aerobic stability of alfalfa silage.  相似文献   

20.
This experiment was conducted to evaluate potential replacements for pharmacological levels of Zn (provided by Zn oxide), such as diet acidification (sodium diformate) and low dietary crude protein (CP: 21 vs 18%) on nursery pig performance and fecal dry matter (DM). A total of 360 weaned pigs (Line 200 × 400, DNA, Columbus, NE; initially 5.90 ± 0.014 kg) were used in a 42-d growth study. Pigs were weaned at approximately 21 d of age and randomly assigned to pens (five pigs per pen). Pens were then allotted to one of eight dietary treatments with nine pens per treatment. Experimental diets were fed in two phases: phase 1 from weaning to day 7 and phase 2 from days 7 to 21, with all pigs fed the same common diet from days 21 to 42. The eight treatment diets were arranged as a 2 × 2 × 2 factorial with main effects of Zn (110 mg/kg from days 0 to 21 or 3,000 mg/kg from days 0 to 7, and 2,000 mg/kg from days 7 to 21), diet acidification, (without or with 1.2% sodium diformate), and dietary CP (21% or 18%, 1.40% and 1.35% in phases 1 and 2 vs. 1.20% standardized ileal digestible Lys, respectively). Fecal samples were collected weekly from the same three pigs per pen to determine DM content. No 2- or 3-way interactions (P > 0.05) were observed throughout the 42-d study for growth performance; however, there was a Zn × acidifier × CP interaction (P < 0.05) for fecal DM on day 7 and for the overall average of the six collection periods. Reducing CP without acidification or pharmacological levels of Zn increased fecal DM, but CP had little effect when ZnO was present in the diet. From days 0 to 21, significant (P < 0.05) main effects were observed where average daily gain (ADG) and gain:feed (G:F) increased for pigs fed pharmacological levels of Zn, sodium diformate, or 21% CP (P < 0.065). In the subsequent period (days 21 to 42) after the experimental diets were fed, there was no evidence of difference in growth performance among treatments. Overall (days 0 to 42), main effect tendencies were observed (P < 0.066) for pigs fed added Zn or sodium diformate from days 0 to 21, whereas pigs fed 21% CP had greater G:F than those fed 18% CP. Pig weight on day 42 was increased by adding Zn (P < 0.05) or acidifier (P < 0.06) but not CP. In summary, none of the feed additives had a major influence on fecal DM, but dietary addition of pharmacological levels of Zn or sodium diformate independently improved nursery pig performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号