首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 21 毫秒
1.
高光谱遥感反演黑土养分含量时,光谱变换方法对提取精度具有显著影响,为明确二者响应关系,提高反演精度和稳定度,该文以黑龙江建三江地区为研究区,引入航空高光谱成像系统CASI-1500,获取380~1 050 nm数据进行分析。均匀采样60个样品,化验获得其有机质、全氮、全磷和全钾含量数据,利用神经网络方法对有机质含量、支持向量机对氮、磷、钾含量进行建模。对比研究了重采样(RE)、对数倒数(LR)、一阶微分(FD)、包络线去除(CR)和多元散射校正(MSC)变换5种光谱变换后的提取精度。结果表明:MSC、MSC、LR和RE光谱变换方法分别应用到有机质、氮、磷和钾特征波段的组合运算中,得出黑土养分含量的空间分布精度相对最高,预测样本的决定系数分别为0.748、0.673、0.631和0.420。  相似文献   

2.
基于高光谱的三江源区土壤有机质含量反演   总被引:1,自引:0,他引:1       下载免费PDF全文
周伟  谢利娟  杨晗  黄露  李浩然  杨猛 《土壤通报》2021,52(3):564-574
土壤有机质(SOM)是指土壤中各种含碳有机化合物的总称,其动态变化不仅影响农业生态系统的稳定,而且与大气圈和生物圈的碳循环密切相关,对土壤有机碳的大规模快速监测和碳储量核算具有重要意义。本研究于2017年、2018年7月在三江源区野外采集了145个土壤样品,检测了土壤光谱信息。然后将原始光谱反射率数据及其不同数据变换形式下的光谱分别与土壤有机质(SOM)含量进行相关分析,并选取了特征波段,此外利用偏最小二乘回归(PLSR)、支持向量机(SVM)和随机森林(RF)模型对三江源区SOM含量进行建模估算。结果表明,不同深度土壤有机质含量差异明显,且呈逐层下降趋势。而三种建模方法的检验精度分别为:RF> SVM> PLSR,其中RF和一阶微分(FD)组合模拟最好(建模集和验证集的R2、RMSE分别为0.9678、8.9132和0.7841、20.9787)。对于三江源土壤有机质含量反演,不同模型的最佳数据变换方法不同。本研究成果能为后续的高光谱遥感反演提供理论支撑,从而实现三江源区土壤有机质含量的快速检测和实时动态监测。  相似文献   

3.
基于高光谱的土壤不同颗粒含量预测分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以典型黄河下游冲积平原区的土壤为研究对象,分析土壤高光谱特征,探讨土壤质地不同粒级颗粒含量的统一估测途径,为土壤质地快速监测评价提供技术支持.选择原始光谱,及其倒数、对数、标准正交变换、多元散射变化、一阶微分、二阶微分共7种光谱变换形式,首先主成分降维,然后分别建立土壤黏粒、粉粒和砂粒含量的支持向量机预测模型,采用决定...  相似文献   

4.
运用高光谱数据对北京典型铁矿区土壤重金属镍含量进行建模反演,探索高光谱遥感技术在土壤重金属污染快速监测上应用的可行性。使用便携式地物光谱仪采集研究区土壤样本光谱反射率数据,光谱反射率数据经多种数学变换后,经逐步回归方法筛选最佳特征波段,利用多元线性回归(SLR)和偏最小二乘回归(PLSR)方法建立模型以光谱反射数据对土壤重金属镍元素含量进行反演。基于光谱二阶微分的多元线性回归模型(SD-MLR)的稳定性和精度最高(R2 = 0.842,RMSE = 4.474),能够良好地预测研究区土壤镍元素含量。光谱数据数学变换能够有效提高其与土壤镍元素含量间的相关性。不同的光谱变换形式建立模型的预测能力和精度有如下关系,光谱二阶微分 > 光谱倒数对数一阶微分 > 光谱一阶微分 > 光谱倒数对数 > 光谱连续统去除 > 原始光谱。采用光谱二阶微分建立多元线性回归模型为研究区土壤镍元素含量反演的最佳模型,可为土壤重金属污染快速监测提供技术参考。  相似文献   

5.
为更好地研究利用光谱反映的土壤重金属信息,实现具有多重金属复合污染问题的铅锌矿区土壤重金属含量高光谱快速估测,该研究以河北省某铅锌矿区为例,首先对研究区土壤的Cu、Cr、Ni、Zn、Cd、Pb污染状况进行了评价分析,其次基于实验室高光谱数据,组合变换光谱、特征变量和反演算法形成不同反演策略,通过各反演策略下的重金属反演精度比较,定量分析不同光谱预处理、特征选择和建模算法的优劣与适应性,构建最优反演模型。研究结果表明:1)研究区土壤Cr、Ni清洁程度较好,其余Cu、Zn、Cd、Pb均有不同程度污染;参比当地土壤背景值,区域内梅罗综合污染指数均值29.71,为重度污染,潜在生态风险因子均值1330.32,处于高生态风险状态;2)光谱预处理可以增强土壤重金属信息表达。其中,光谱微分效果较好,但易受噪声影响,而多元散射校正、标准正态变量、倒数对数变换可以进行光谱去噪,提升处理效果;3)特征选择方法中,相关系数法选择特征波段数目多,不同重金属反演R2 差异较大;Boruta法选择特征波段数目少,不同重金属反演R2 差异较小;4)BPNN、XGBoost可以较好描述重金属含量与光谱的非线性关系,相较于其他算法具有更好表现,分别实现了Cr、Ni、Zn和Pb、Cd的最优反演,SVMR实现了Cu的最优反演。研究表明,不同的光谱预处理、特征选择与建模算法对于土壤重金属含量的反演均具有较大影响,选择合适的处理、建模算法可以有效提升反演精度。该研究为进一步实现高效、准确、大范围遥感监测铅锌矿区土壤重金属污染状况提供参考依据。  相似文献   

6.
利用高光谱遥感技术监测小麦土壤重金属污染   总被引:1,自引:1,他引:1       下载免费PDF全文
为了探讨基于小麦叶片高光谱间接估测土壤重金属含量的潜力,该研究以江苏省宜兴市徐舍镇为研究区域,于2019-2020年采集农田土壤样品和小麦叶片光谱,经7种不同的光谱变换预处理后,以遗传算法(genetic algorithm,GA)优化的偏最小二乘回归算法(partial least squares regression,PLSR)对预处理后的光谱建立土壤重金属镉(Cd)和砷(As)含量的估测模型,并对模型结果进行精度评价。研究结果表明:1)光谱预处理技术能够突出光谱中的一些隐藏信息,对小麦叶片光谱进行微分变换、多元散射校正、标准正态变换等数学变换后更加有利于提取光谱敏感信息。2)GA-PLSR相较于一般的PLSR方法提高了模型精度,将GA用于光谱波段选择可以优化模型精度和提高稳定性。3)土壤Cd含量的最佳估测模型为标准正态变换预处理光谱与GA-PLSR结合,其外部验证的决定系数为0.87、均方根误差为0.04 mg/kg、相对分析误差为2.72;土壤As含量的最佳估测模型为多元散射校正预处理光谱与GA-PLSR结合,其外部验证的决定系数为0.91、均方根误差为0.32 mg/kg,相对分析误差为3.25。因此,能够利用小麦叶片高光谱间接估测土壤重金属Cd和As含量,该研究为将来实现定量、动态、无损遥感监测大面积农田土壤重金属污染状况提供参考依据。  相似文献   

7.
田烨  沈润平  丁国香 《土壤》2015,47(3):602-607
研究利用土壤样本实验反射光谱,分析了土壤镁(Mg)含量与土壤反射光谱的关系,比较了主成分回归分析(PCR)、偏最小二乘回归分析(PLSR)和支持向量机回归分析(SVMR)等方法,以及土壤反射光谱及其变换光谱与土壤Mg含量之间的估算模型,为土壤Mg含量高光谱估算提供依据。结果表明:PCR、PLSR、SVMR 3种建模方法在Mg含量的估算中,SVMR的估算精度相对较高,估算精度平均达到80.96%,分别比PCR和PLSR提高了6.16%、4.20%;对于不同的数学变换处理方法,一阶微分变换相对较好,估算精度平均为80.76%,分别比反射率、倒数对数变换提高了4.95%、4.61%。因此,运用土壤反射光谱一阶微分变换的SVMR进行建模,可以相对较好地估算全Mg含量,精度达84.04%。  相似文献   

8.
以建设一套基于光谱数据的土壤重金属信息提取系统为研究目标,总结了土壤重金属指标及其光谱学机理。在软件技术和数据库技术支持下,实现了土壤重金属光谱信息管理、处理、分析和应用。研究表明:土壤重金属元素在其特征波段上所显示的光谱特性,经过光谱预处理、变换和定量化提取,能够为建模提供理论依据。在计算光谱统计特征量基础上,采用光谱分析法,自动检索土壤重金属光谱特征位置。以东北黑土地机载高光谱CASI和SASI数据为例,计算了硒、锰和铁等元素的含量,最高硒元素含量达到了80.767 mg kg~(-1)。随着植被覆盖率的提升,硒、锰、锡和锌元素的含量随之升高,说明水稻吸收了部分金属元素,对特征波段反射率产生了影响。  相似文献   

9.
基于核偏最小二乘的矿区土壤Cu含量高光谱反演   总被引:1,自引:1,他引:1  
本文探究应用高光谱遥感手段反演铜锌矿区土壤Cu含量的可行性,以湖南省某矿区土壤为例。在对原始高光谱重采样、一阶微分、对数、连续统预处理后,分别进行与Cu含量的相关性分析,最终选用一阶微分变换光谱数据进行建模。在建模反演时,针对多元线性回归(MFL)和传统偏最小二乘(PLS)在应用过程中没有考虑变量间的非线性关系的缺点,提出了基于核偏最小二乘(KPLS)回归的土壤Cu含量预测模型。研究结果表明,相对于PLS和MFL,KPLS能较好的提升土壤Cu含量估算能力,预测样本的平均相对误差为13.25%,明显高于MFL的32.22%和PLS的14.18%。研究结果也表明了高光谱遥感手段可以反演矿区土壤Cu含量,且核偏最小二乘模型也可为其它土壤重金属的反演提供参考。  相似文献   

10.
为快速估测砂姜黑土有机质含量,该研究以河南省商水县砂姜黑土为对象,采用光谱指数和遗传算法结合支持向量机构建砂姜黑土有机质估测模型。结果表明,以Savitzky-Golay(SG)平滑后的一阶导数光谱792和1 389 nm两波段组合构建的比值指数表现最好,建模集决定系数为0.81。利用独立的样本验证,预测决定系数和均方根误差分别为0.91和1.56 g/kg。而相同样本经遗传算法筛选敏感波段结合支持向量机回归构建的模型以SG平滑的一阶导数光谱表现最好,建模集和验证集决定系数分别为0.95和0.91,均方根误差分别为1.01和1.69 g/kg。基于遗传算法结合支持向量机回归和光谱指数2种方法构建的有机质含量估测模型均表现出较高的精度,前者稍优于后者,可用于对砂姜黑土有机质含量的有效估测。该研究成果可为砂姜黑土有机质含量的快速定量估算提供依据和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号