首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite ample literature, the influence of the individual soil properties and covers on the hydrological response of burned soils of forests has not clearly identified. A clear understanding of the surface runoff and erosion rates altered by wildfires and prescribed fires is beneficial to identify the most suitable post-fire treatment. This study has carried out a combined analysis of the hydrological response of soil and its driving factors in burned forests of Central-Eastern Spain. The pine stands of these forests were subjected to both prescribed fire and wildfire, and, in the latter case, to post-fire treatment with mulching. Moreover, simple multi-regression models are proposed to predict runoff and erosion in the experimental conditions. In the case of the prescribed burning, the fire had a limited impact on runoff and erosion compared to the unburned areas, due to the limited changes in soil parameters. In contrast, the wildfire increased many-fold the runoff and erosion rates, but the mulching reduced the hydrological response of the burned soils, particularly for the first two-three rainfalls after the fire. The increase in runoff and erosion after the wildfire was associated to the removal of the vegetation cover, soil water repellency, and ash left by fire; the changes in water infiltration played a minor role on runoff and erosion. The multi-regression models developed for the prescribed fire were accurate to predict the post-fire runoff coefficients. However, these models were less reliable for predictions of the mean erosion rates. The predictions of erosion after wildfire and mulching were excellent, while those of runoff were not satisfactory (except for the mean values). These results are useful to better understand the relations among the hydrological effects of fire on one side and the main soil properties and covers on the other side. Moreover, the proposed prediction models are useful to support the planning activities of forest managers and hydrologists towards a more effective conservation of forest soils.  相似文献   

2.
This study compares mercury (Hg) and methylmercury (MeHg) distribution in the soils of two forested stream watersheds at Acadia National Park, Maine, U.S.A. Cadillac Brook watershed, which burned in 1947, has thin soils and predominantly deciduous vegetation. It was compared to the unburned Hadlock Brook watershed, with thicker soil and predominantly coniferous vegetation. Soils in both watersheds were primarily well drained. The fire had a significant impact on the Cadillac watershed, by raising the soil pH, altering the vegetation, and reducing carbon and Hg pools. Total Hg content was significantly higher (P > 0.05) in Hadlock soils (0.18 kg Hg ha-1) compared to Cadillac soils (0.13 kg Hg ha-1). Hadlock O horizon had an average Hg concentration of 134±48 ng Hg g-1 dry weight, compared to 103±23 ng Hg g-1 dry weight in Cadillac O horizon. Soil pH was significantly higher in all soil horizons at Cadillac compared to Hadlock soils. This difference was especially significant in the O horizon, where Cadillac soils had an average pH of 3.41±0.22 compared to Hadlock soils with an average pH of 2.99±0.13.To study the mobilization potential of Hg in the O horizons of the two watersheds, batch adsorption experiments were conducted, and the results were modeled using surface complexation modeling. The results of Hg adsorption experiments indicated that the dissolved Hg concentration was controlled by the dissolved organic carbon (DOC) concentration. The adsorption isotherms suggest that Hg is more mobile in the O horizon of the unburned Hadlock watershed because of higher solubility of organic carbon resulting in higher DOC concentrations in that watershed.Methylmercury concentrations, however, were consistently higher in the burned Cadillac O horizon (0.20±0.13 ng Hg g-1 dry weight) than in the unburned Hadlock O horizon (0.07±0.07 ng Hg g-1 dry weight). Similarly, Cadillac soils possessed a higher MeHg content (0.30 g MeHg ha-1) than Hadlock soils (0.16 g MeHg ha-1). The higher MeHg concentrations in Cadillac soils may reflect generally faster rates of microbial metabolism due to more rapid nutrient cycling and higher soil pH in the deciduous forest. In this research, we have shown that the amount of MeHg is not a function of the total pool of Hg in the watershed. Indeed, MeHg was inversely proportional to total Hg, suggesting that landscape factors such as soil pH, vegetation type, or land use history (e.g., fire) may be the determining factors for susceptibility to high Hg in biota.  相似文献   

3.
In 2003, the Lost Creek fire burned 21,000 ha of nearly contiguous crown land forests in the headwater regions of the Oldman River Basin, Alberta. Seven small watersheds with various levels of land disturbance (burned, post-fire salvage logged, unburned) were instrumented and monitored for four years to measure stream discharge, sediment concentration, and sediment yields for a range of dominant flow periods characteristic of the region (baseflow, spring melt, and stormflow). Stream discharges reflected runoff regimes consistent with high regional precipitation and the high relief physiographic setting of the study area. Suspended sediment concentrations and yields were significantly higher in both burned and post-fire salvage logged watersheds than in unburned watersheds and were strongly influenced by topographic and hydro-climatic controls. Sediment availability was much higher in both the burned and post-fire salvage logged watersheds but it varied strongly with flow condition, particularly during the snowmelt freshet and high flow events. Because of increases in wildfire frequency and severity over recent decades, understanding the range of impacts from both wildfire and post-disturbance management strategies such as salvage logging is likely to become increasingly important for land managers.  相似文献   

4.
《CATENA》2010,80(3):189-197
In 2003, the Lost Creek fire burned 21,000 ha of nearly contiguous crown land forests in the headwater regions of the Oldman River Basin, Alberta. Seven small watersheds with various levels of land disturbance (burned, post-fire salvage logged, unburned) were instrumented and monitored for four years to measure stream discharge, sediment concentration, and sediment yields for a range of dominant flow periods characteristic of the region (baseflow, spring melt, and stormflow). Stream discharges reflected runoff regimes consistent with high regional precipitation and the high relief physiographic setting of the study area. Suspended sediment concentrations and yields were significantly higher in both burned and post-fire salvage logged watersheds than in unburned watersheds and were strongly influenced by topographic and hydro-climatic controls. Sediment availability was much higher in both the burned and post-fire salvage logged watersheds but it varied strongly with flow condition, particularly during the snowmelt freshet and high flow events. Because of increases in wildfire frequency and severity over recent decades, understanding the range of impacts from both wildfire and post-disturbance management strategies such as salvage logging is likely to become increasingly important for land managers.  相似文献   

5.
Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burned boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.  相似文献   

6.
The frequency and intensity of wildfires are expected to increase in the coming years due to the changing climate, particularly in areas of high net primary production. Wildfires represent severe perturbations to terrestrial ecosystems and may have lasting effects. The objective of this study was to characterize the impacts of wildfire on an ecologically and economically important ecosystem by linking soil properties to shifts in microbial community structure in organic horizon soils. The study was conducted after a severe wildfire burned over 7000 ha of the New Jersey Pinelands, a low nutrient system with a historical incidence of fires. Soil properties in burned and non-burned soils were measured periodically up to two years after the fire occurred, in conjunction with molecular analysis of the soil bacterial, fungal and archaeal communities to determine the extent and duration of the ecosystem responses. The results of our study indicate that the wildfire resulted in significant changes in the soil physical and chemical characteristics in the organic horizon, including declines in soil organic matter, moisture content and total Kjeldahl nitrogen. These changes persisted for up to 25 months post-fire and were linked to shifts in the composition of soil bacterial, fungal and archaeal communities in the organic horizon. Of particular interest is the fact that the bacterial, fungal and archaeal communities in the severely burned soils all changed most dramatically during the first year after fire, changed more slowly during the second year after the fire, and were still distinct from communities in the non-burned soils 25 months post-fire. This slow recovery in soil physical, chemical and biological properties could have long term consequences for the soil ecosystem. These results highlight the importance of relating the response of the soil microbial communities to changing soil properties after a naturally occurring wildfire.  相似文献   

7.
Nutrients sorbed onto eroded sediment from small bounded plots installed in newly burned and unburned Eucalyptus globulus and Pinus pinaster forests in the Águeda Basin, north-central Portugal were measured over an 18-month period. The data are used to determine: (i) the effects of fire on nutrient loss, (ii) the importance of fire-induced losses on soil fertility, and (iii) temporal variations in nutrient losses. Fire increased losses of total nitrogen, exchangeable potassium and available phosphorus by 3–4 orders of magnitude. This is attributed to increased erosion and high nutrient concentrations at the soil surface in the burned forests, where burning of organic matter and vegetation increased nutrient availability. Enhanced rates of loss were sustained for at least 3 years, resulting in much greater post-fire nutrient losses than reported in drier regions of the Mediterranean. Losses of available P had the greatest potential for reductions in soil fertility.  相似文献   

8.
9.
Although it is known that cool fire can result in carbon loss in organic soils, data are lacking on the effects of such fire on the distinctive lowland organic soils of the southern hemisphere and on the relationship of fire-induced carbon loss to topography. We established an experiment to determine the effects of a low severity burn on organic and total mass of soils, the position of the water table and vegetation cover. We recorded soil losses directly after the fire, after the first rain and after 4 years. We also recorded losses as a result of the first rain and at 4 years after a wildfire at another locality with the same vegetation and topography. We compared soil surface temperatures over summer between burned and unburned moorland. The planned fire resulted in substantial soil and carbon losses, which, up to 4 years after the wildfire, occurred mostly as a result of the fire itself and the first rains. The topographic wetness index was strongly related to soil and organic matter loss for the pooled data for both sites, while fire severity, slope and vegetation cover were less predictive. Burning increased dissolved organic material in streams; the depth of the water table; and, soil temperatures. The continuing soil loss on slopes 18 years after fire contrasts with faster recovery on the shelves and in the basins, reflecting a strong topographic component in variation. Fire is a major influence on the depth of the organic soils of the southern hemisphere, as in the northern hemisphere. The influence of fire on soils varies markedly between topographic positions, with the time interval between fires that would maintain organic soils in basins being markedly less than that necessary to maintain organic soils on slopes. The topographic effect appears to be a consequence of relative drying rather than relative exposure to water or aeolian erosion or differences in fire severity.  相似文献   

10.
Variations in the distribution pattern of soil water repellency (SWR) and soil moisture are of major importance for the hydrological and geomorphological processes in Mediterranean burned areas, and also for their ecological implications concerning to re-establishment of the vegetation cover. This paper studies the influence of Rosmarinus officinalis L. and Quercus coccifera L. vegetated patches on SWR and their relationships with soil moisture content (SMC) and soil organic matter (SOM) in burned and unburned calcareous soils of a Mediterranean shrubland ecosystem, considering the first rainfall event occurred after the wildfire in Les Useres (Castellón, eastern Spain).  相似文献   

11.

Purpose  

The impact of wildfire on (a) slope hydrological processes, (b) soil erodibility, and (c) post-fire hillslope sediment and phosphorus (P; dissolved and particulate) yields are quantified for natural forest areas of the burned Evrotas River basin, Peloponnese, Greece. Further, the geochemical partitioning of P in burned and unburned sediment is evaluated by sequential extraction to assess potential bioavailability of particulate P (PP) in downstream aquatic ecosystems.  相似文献   

12.
Abstract. Soil microstructures and biological activity were studied in thin sections of Culluna heathland soils subject to periodic burning. Freely drained Brown Podzolic soils from a species-rich heath at Dinnet Muir, Aberdeenshire, Scotland were compared with shallow Humo-ferric Podzols with a thick humus layer (5–10 cm) supporting a species-poor heath at Balmenach, Aberdeenshire.
Structures with greater porosity occurred in all Dinnet soils and the most recently burned Balmenach soil. Burning led to an increase in soil porosity which gradually disappeared after a period of 2–3 years. Soils of the recently burned site had more enchytraeid worms than those burned ten years previously. Most of the Dinnet soil samples were dominated by extremely fine granular structure which could have been produced by flocculation of well decomposed organic matter or by enchytraeid worms. In recently burned sites the increase in soil macro- and microbial activities may lead to the formation of composite structures.
Regular burning every 10–15 years has been the land management practice in Scottish heathlands to ensure the production of fresh browse of nutritious heather shoots for herbivores. The near-ground microclimate and regeneration mechanisms of heathland plants are well adjusted to the periodic disturbance by fire. We found that the gradual decrease in surface soil porosity over time can be restored by prescribed burning. Soil structure and the distribution and continuity of pores in the soil profile directly affect soil water movement and retention. These factors have important ecological implications for post-fire vegetation recovery.  相似文献   

13.
The concern that climate change may increase fire frequency and intensity has recently heightened the interest in the effects of wildfires on ecosystem functioning. Although short-term fire effects on forest soils are well known, less information can be found on the long-term effects of wildfires on soil fertility. Our objective was to study the 17-year effect of wildfires on forest net mineralization rates and extractable inorganic nitrogen (N) and phosphorus (P) concentrations. We hypothesize that (1) burned forest stands should exhibit lower net mineralization rates than unburned ones; (2) these differences would be greatest during the growing season; (3) differences between soil variables might also be observed among plots from different years since the last fire; and (4) due to fire-resistant geochemical processes controlling P availability, this nutrient should recover faster than N. We used a wildfire chronosequence of natural and unmanaged Pinus canariensis forests in La Palma Island (Canary Islands). Soil samples were collected during winter and spring at 22 burned and unburned plots. We found significantly higher values for net N mineralization and extractable N pools in unburned plots. These differences were higher for the winter sampling date than for the spring sampling date. Unlike extractable N and N mineralization rates, extractable P levels of burned plots exhibited a gradual recovery over time after an initial decrease. These results demonstrate that P. canariensis forest soils showed low resilience after wildfires, especially for N, and that this disturbance might induce long-term changes in ecosystem functioning.  相似文献   

14.

Purpose

Wildfires represent one of the major natural disturbances within forested landscapes and have potential implications for the quality and function of downstream aquatic ecosystems. This study aimed to determine if a wildfire in a mountainous, forested watershed in British Columbia, Canada, caused a change in the dominant sediment source in the immediate 1?C2?years following the wildfire, and if the sediment sources changed over the medium term (3?C7?years) as the landscape recovered.

Materials and methods

Source materials (surface soil, subsurface soil and channel bank material) and fluvial (suspended and channel bed) sediment samples were collected over the period 2004 to 2010 from a watershed burnt by a wildfire in 2003, and from an adjacent watershed that was not impacted by the fire. Samples were analysed for the fallout radionuclides (FRNs) caesium-137 (137Cs) and unsupported lead-210 (210Pbun). An unmixing model was used to calculate the relative source contributions of the fluvial sediment samples.

Results and discussion

137Cs and 210Pbun were concentrated in the upper layers of surface soils in both watersheds and were statistically different to concentrations in subsurface and channel bank material. In the burnt watershed, FRN concentrations were greatest in the ash layer. Sediment sources as determined by the unmixing model were 100?% subsurface/channel bank material in the unburnt watershed, while in the burnt watershed 8.5?±?2.5?% was derived from surface soils. In both watersheds, there were no major changes in the relative contributions from surface soil and from subsurface/channel bank material over the period 2004 to 2010. Thus, while the wildfire did cause a change in sediment sources, it was fairly subtle and did not conform to the effects following wildfire described for other studies in contrasting environments, which typically document a major increase in hillslope contributions relative to channel bank sources.

Conclusions

There was a limited response in terms of fine-grained sediment sources (and also sediment fluxes) in the burnt watershed. The reason for this muted response to a severe wildfire is likely to be the lack of precipitation, especially winter precipitation and the associated snowmelt, in the first year following the wildfire. Thus while the landscape was primed for erosion and sediment transport, the lack of a driving force meant that there was a limited immediate post-fire sediment response.  相似文献   

15.
Several insect groups have adapted to fire cycles in boreal forests, and can efficiently use new habitats created by fire. Our study aimed at producing a first characterization of post-fire Coleoptera assemblages of black spruce forests of eastern North America. For two years, we sampled Coleoptera using flight-interception traps in burned stands of contrasting age and structure in a 5097-ha wildfire and in neighbouring unburned mature stands. More than 40 species were exclusively captured in burned stands. Time elapsed since fire and proximity of unburned forests were the most significant parameters affecting Coleoptera assemblages. Stand age and structure had limited effects on assemblage structure; the Scolytid Polygraphus rufipennis Kirby was the only common species to clearly favor older stands. Fire-associated Coleoptera assemblages found in our study area were clearly distinct from those found in similar unburned stands; we should thus be conservative in our management approach concerning recently burned stands.  相似文献   

16.
Hillslopes are thought to be most susceptible to enhanced surface runoff and erosion immediately following wildfire due to removal of protective vegetation and litter cover, and in many cases a fire-induced reduction in soil wettability. This enhanced susceptibility declines as vegetation and litter layer recover. For logistical reasons, however, few studies have been able to examine the responses of burnt terrain immediately following burning and little is therefore known about the effect of the wettable ash layer that often covers the ground until it is redistributed or removed by wind or water erosion.  相似文献   

17.
Chaparral watersheds associated with Mediterranean-type climate are distributed over five regions of the world. Because brushland soils are often shallow with low water holding capacities, and are on slopes prone to erosion, disturbances such as fire can adversely affect their physical properties. Fire can also increase the spatial coverage of soil water repellency, reducing infiltration, and, in turn, increasing overland flow and subsequent erosion. We studied the impacts of fire on soil properties by collecting data before and after a prescribed burn conducted during Spring 2001 on the San Dimas Experimental Forest, southern California. The fire removed the litter layer and destroyed the weak surface soil structure; leaving a thin band of ash and char on top of, and mixed in with, an unstable, granular soil of loose consistency. Median litter thickness and clay content were significantly decreased after fire while soil bulk density increased. At 7 d post-fire, soil surface repellency in the watershed was significantly higher than prior to the burn. At 76 d post-fire, surface soil water repellency was returning to near pre-fire values. At the 2 and 4 cm depths, 7 d post-fire soil repellency was also significantly higher than pre-fire, however, conditions at 76 d post-fire were similar to pre-fire values. Variability in soil water repellency between replicates within a given 15 × 15 cm site was as large as the variability seen between sites over the 1.28 ha watershed. The increase in post-fire persistence of water repellency was largest beneath ceanothus (Ceanothus crassifolius) as compared to a small increase beneath chamise (Adenostoma fasciculatum). However, pre-fire persistence was higher under chamise than for ceanothus. Post-fire changes to soil properties may increase the watershed hydrologic response, however the mosaic distribution of water repellency may lead to a less severe increase in hydrologic response than might be expected for a spatially more homogenous increase in repellency.  相似文献   

18.
The current study investigates the spatial and temporal dynamics of post-fire vegetation and the subsequent influence on seasonal and annual hydrologic responses in chaparral-dominated watersheds. Post-fire climatology, burn severity, slope aspect, and vegetation behavior are evaluated for two basins burned during the 2003 Old Fire in the San Bernardino Mountains in Southern California. Climate and discharge data are used to evaluate seasonal and annual variability of post-fire hydrologic fluxes. Data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used to estimate Enhanced Vegetation Index (EVI) and differenced Normalized Burn Ratio (dNBR). A Savitzky–Golay filtering technique and an integrated EVI annual fraction are utilized to assess vegetation recovery under a range of potential controls. Vegetation recovery is highly variable in both watersheds and is related to slope aspect (solar and water availability), initial biomass levels, and burn severity. South and west facing slopes show higher pre-fire EVI (biomass) and significant loss of vegetation cover after fire. Vegetation in both watersheds responds to an extreme wet season during the second post-fire year, however recovery rates are not sustained. North and east aspects show the quickest biomass gain relative to pre-fire conditions by the end of the study period (WY 2010), while the west and south slopes show lower biomass recovery. High burn severity areas show the slowest recovery across all slope aspects, with these regions just approaching 90% of pre-fire biomass by the end of the seven-year post-fire period. The variable rate of vegetation recovery across the watersheds results in significant changes in annual and seasonal discharge throughout the post-fire period. Runoff ratios remain elevated in both systems and there is increased dry season flow for much of the study period, indicating that plant water consumption and flowpaths are not back to pre-fire behavior by the end of WY 2010.  相似文献   

19.
The increasing frequency and severity of wildfires has led to growing attention to the effects of fire disturbance on soil microbial communities and biogeochemical cycling. While many studies have examined fire impacts on plant communities, and a growing body of research is detailing the effects of fire on soil microbial communities, little attention has been paid to the interaction between plant recolonization and shifts in soil properties and microbial community structure and function. In this study, we examined the effect of a common post-fire colonizer plant species, Corydalis aurea, on soil chemistry, microbial biomass, soil enzyme activity and bacterial community structure one year after a major forest wildfire in Colorado, USA, in severely burned and lightly burned soils. Consistent with past research, we find significant differences in soil edaphic and biotic properties between severe and light burn soils. Further, our work suggests an important interaction between fire severity and plant effects by demonstrating that the recolonization of soils by C. aurea plants only has a significant effect on soil bacterial communities and biogeochemistry in severely burned soils, resulting in increases in percent nitrogen, extractable organic carbon, microbial biomass, β-glucosidase enzyme activity and shifts in bacterial community diversity. This work propounds the important role of plant colonization in succession by demonstrating a clear connection between plant colonization and bacterial community structure as well as the cycling of carbon in a post-fire landscape. This study conveys how the strength of plant–microbe interactions in secondary succession may shift based on an abiotic context, where plant effects are accentuated in harsher abiotic conditions of severe burn soils, with implications for bacterial community structure and enzyme activity.  相似文献   

20.
The ecosystem response to wildfire is often linked to fire severity, with potentially large consequences for belowground biogeochemistry and microbial processes. While the impacts of wildfire on belowground processes are generally well documented, it remains unclear how fire affects the fine-scale composition of microbial communities. Here, we investigate the composition of soil bacterial and fungal communities in burned and unburned forests in an attempt to better understand how these diverse communities respond to wildfire. We explored the belowground responses to three wildfires in Linville Gorge, NC, USA. Wildfires generally increased soil carbon content while simultaneously reducing soil respiration. We employed amplicon sequencing to describe soil microbial communities and found that fires decreased both bacterial and fungal diversity. In addition, wildfires resulted in significant shifts in both bacterial and fungal community composition. Bacterial phylum-level distributions in response to fire were mixed without clear patterns, with members of Acidobacteria being representative of both burned and unburned sites. Fungal communities showed consistent increases in Ascomycota dominance and concurrent decreases in Basidiomycota and Zygomycota dominance in response to burning. Indicator species analysis confirmed shift to Ascomycota in burned sites. These shifts in microbial communities may reflect differences in the quality and quantity of soil organic matter following wildfires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号