首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
OBJECTIVE: To determine effects of intranasal inoculation with porcine reproductive and respiratory syndrome virus (PRRSV) or Bordetella bronchiseptica on challenge with nontoxigenic Pasteurella multocida in pigs. ANIMALS: Seventy 3-week-old pigs. PROCEDURE: In experiment 1, pigs were not inoculated (n= 10) or were inoculated with PRRSV (10), P. multocida (10), or PRRSV followed by challenge with P. multocida (10). In experiment 2, pigs were not inoculated (n = 10) or were inoculated with B. bronchiseptica (10) or PRRSV and B. bronchiseptica (10); all pigs were challenged with P. multocida. Five pigs from each group were necropsied 14 and 21 days after initial inoculations. RESULTS: Pasteurella multocida was not isolated from tissue specimens of pigs challenged with P. multocida alone or after inoculation with PRRSV. However, in pigs challenged after inoculation with B. bronchiseptica, P. multocida was isolated from specimens of the nasal cavity and tonsil of the soft palate. Number of bacteria isolated increased in pigs challenged after coinoculation with PRRSV and B. bronchiseptica, and all 3 agents were isolated from pneumonic lesions in these pigs. CONCLUSIONS AND CLINICAL RELEVANCE: Infection of pigs with B. bronchiseptica but not PRRSV prior to challenge with P. multocida resulted in colonization of the upper respiratory tract and tonsil of the soft palate with P. multocida. Coinfection with PRRSV and B. bronchiseptica predisposed pigs to infection of the upper respiratory tract and lung with P. multocida. Porcine reproductive and respiratory syndrome virus and B. bronchiseptica may interact to adversely affect respiratory tract defense mechanisms, leaving pigs especially vulnerable to infection with secondary agents such as P. multocida.  相似文献   

2.
Experiments were designed to determine if porcine reproductive and respiratory syndrome virus (PRRSV) or Bordetella bronchiseptica could be transmitted through indirect airborne contact. Three principal pigs were infected with PRRSV, B. bronchiseptica or both. Five days after the principal pigs were challenged, the three principal pigs and one direct-contact pig were placed into one isolation tent together, and three indirect-contact pigs were placed into another isolation tent which received its air supply from the first isolation tent. Airborne transmission of B. bronchiseptica occurred in 5/5 trials where B. bronchiseptica was the only agent used, and in 3/5 trials where the principal pigs were coinfected with both agents. Airborne transmission of PRRSV occurred in 4/5 trials where PRRSV was the only agent used, and in 2/5 trials where the principal pigs were coinfected with both agents. Thus, airborne transmission of both agents over short distances, such as within a barn, is probable.  相似文献   

3.
4.
5.
The aim of this study was to reproduce severe pneumonic lesions, similar to those during naturally-occurring porcine respiratory disease complex, in pigs dually inoculated with porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae at 6 weeks of age, followed by inoculation with porcine circovirus type 2 at two weeks after. Time and sequence of infection with three pathogens mirror Asian field conditions. Microscopically, interstitial pneumonia and peribronchiolar lymphoid hyperplasia are considered the most characteristic lung lesions in infected pigs. The results of the present study demonstrate that inoculation of pigs with these three pathogens can lead to severe interstitial pneumonia with peribronchial or peribronchiolar lymphoid hyperplasia and fibrosis.  相似文献   

6.
The present examination was conducted to determine if the pigs infected with one strain of porcine reproductive and respiratory syndrome virus (PRRSV) would be protected against a subsequent homologous virus challenge. Sixteen 4-week-old SPF pigs were assigned to 2 experimental groups A and B. The pigs in group A were inoculated with 10(6.5) TCID50 of PRRSV by intranasal route. On 77 days post-inoculation (PI), pigs in groups A and B were similarly inoculated with same virus. After the secondary inoculation, the pigs in group A didn't show any clinical sign including pyrexia and reduction of white blood cell (WBC) number. Viremia was detected only on 3 days PI with low virus titer and any virus was not recovered from serum and tissues at the time of necropsy on 14 or 28 days PI. In contrast, pigs in group B showed pyrexia for 14 days and reduction of WBC number on 3 days PI. Viremia was detected between 3 and 28 days PI, and virus was isolated from several tissues of all pigs. These results indicate that previous exposure to PRRSV can prevent development of clinical signs and reduce virus proliferation in pigs after subsequent infection with the homologous PRRSV.  相似文献   

7.
Forty-five sows and 15 boars were selected at random from a breeding herd known to be chronically infected with porcine reproductive and respiratory syndrome virus (PRRSV) and lymphoid, immune-privileged, and non-lymphoid/non-immune-privileged tissues were tested for the presence of the virus by PCR, virus isolation, and immunohistochemistry. The virus was isolated from the lateral retropharyngeal lymph node of one sow; the isolate was nucleic acid sequenced and determined to be of field origin, and it was inoculated into two PRRSV-naive pregnant sows (A and B) at 95 days of gestation. They were necropsied 14 days later and samples of maternal and fetal tissue and blood samples were collected. Sow A had 10 fresh, six partially autolysed, and two mummified fetuses, and sow B had six fresh and viable fetuses. Viral nucleic acid was detected by PCR in tissue pools from each sow and also from pooled fetal tissues, and the virus was isolated from fetal pools from sow A.  相似文献   

8.
We examined the two acute phase proteins, alpha (alpha)-1 acid glycoprotein (AGP) and haptoglobin (HP), in serum of pigs following experimental porcine reproductive and respiratory syndrome (PRRS) virus infection. Increased levels of serum HP, but not AGP, were observed from 7 to 21 days post-inoculation in the infected pigs. Furthermore, serum IL-6 increased in the infected pigs, but TNF-alpha did not. The increase of serum IL-6 in pigs following PRRS virus infection may induce production of HP. Also, in the field investigation, serum HP in pigs was dramatically increased after exposure to the PRRS virus.  相似文献   

9.
10.
猪繁殖与呼吸综合征病毒和致病性沙门氏菌的混合感染   总被引:1,自引:1,他引:1  
2003年9~11月某猪场发生母猪持续性繁殖障碍和7日龄仔猪呼吸困难、寒颤、下痢、体温升高和实质性器官出血为主要特征的疾病。3头发病仔猪的病变组织用RT-PCR检测。均为猪繁殖与呼吸综合征病毒(PRRSV)阳性;由3头发病猪病料中所分离的细菌。可于普通琼脂、伊红美蓝和麦康凯琼脂培养基上生长,革兰氏染色阴性,形态与组织触片镜检及生化反应特性与沙门氏菌一致,可致死小鼠。仅对头孢唑啉呈中度敏感。结合该病的流行病学调查、临床症状、病理剖检,确诊为猪繁殖与呼吸综合征病毒(PRRSV)和致病性沙门氏菌混合感染。  相似文献   

11.
One hundred pigs from the NE Index Line (NEI) and 100 Hampshire-Duroc cross pigs (HD) were inoculated intranasally with porcine respiratory and reproductive syndrome virus (PRRSV 97-7895 strain) at 26 d of age to determine whether genetic variation in response to PRRSV exists. An uninfected littermate to each infected pig served as a control. Pigs were from 163 dams and 83 sires. Body weight and rectal temperature were recorded, and blood samples were drawn from each pig on d 0 before inoculation and on d 4, 7, and 14 after inoculation. Pigs were sacrificed on d 14. Lung and bronchial lymph nodes were collected, placed in optimal cutting temperature compound, and frozen at -80 degrees C. The presence of PRRSV in serum and in lung tissue and bronchial lymph nodes was determined by isolation in cell culture. The presence of antibodies in serum collected on d 14 was determined by a commercial ELISA test. Lung tissue was examined microscopically and scored for incidence and severity of lesions (score of 1 to 3; 1 = no or few lesions, and 3 = severe interstitial pneumonia). Data were analyzed with a mixed model that included random sire and dam effects. The interaction of line x treatment was significant (P < 0.001) for weight change and rectal temperature. Un-infected HD pigs gained 0.67 kg more from d 0 to 14 and averaged 0.32 degrees C higher rectal temperature than uninfected NEI pigs (P < 0.001), whereas infected NEI pigs gained 0.34 kg more and had -0.54 degrees C lower temperature than infected HD pigs (P < 0.001). Viremic titer (cell culture infectious dose 50%/mL) was greater (P < 0.05) in HD than NEI at d 4 (10(4.52) vs. 10(4.22)), 7 (10(4.47) vs. 10(3.99)), and 14 (10(3.49) vs. 10(3.23)). Viral titer loads in lung (P = 0.11) and bronchial lymph nodes tended (P = 0.07) to be greater in HD than NEI pigs. Antibody signal-to-positive (S/P) ELISA ratios in infected pigs ranged from 0.18 to 3.38, and 88% had levels > or = 0.40, which is the positive threshold for this ELISA. The S/P range in uninfected pigs was 0 to 1.11, and 99% had levels < or = 0.40. Mean S/P ratio for infected pigs was 0.23 units higher in HD than in NEI (P < 0.001). The HD pigs had a greater incidence of interstitial pneumonia and 0.65 higher mean lesion scores than NEI pigs (P < 0.001). In summary, responses of pigs of the two lines to infection with PRRSV differed, indicating that underlying genetic variation existed.  相似文献   

12.
Pulmonary dysfunction was evaluated in pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV, isolate VR-2332) and compared to clinical and pathological findings. Infected pigs developed fever, reduced appetite, respiratory distress and dullness at 9 days post-inoculation (dpi). Non-invasive pulmonary function tests using impulse oscillometry and rebreathing of test gases (He, CO) revealed peripheral airway obstruction, reduced lung compliance and reduced lung CO-transfer factor. PRRSV-induced pulmonary dysfunction was most marked at 9–18 dpi and was accompanied by a significantly increased respiratory rate and decreased tidal volume. Expiration was affected more than inspiration. On histopathological examination, multifocal areas of interstitial pneumonia (more severe and extensive at 10 dpi than 21 dpi) were identified as a possible structural basis for reduced lung compliance and gas exchange disturbances.  相似文献   

13.
Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) impairs local pulmonary immune responses by damaging the mucociliary transport system, impairing the function of porcine alveolar macrophages and inducing apoptosis of immune cells. An imbalance between pro- and anti-inflammatory cytokines, including tumour necrosis factor-α and interleukin-10, in PRRS may impair the immune response of the lung. Pulmonary macrophage subpopulations have a range of susceptibilities to different PRRSV strains and different capacities to express cytokines. Infection with PRRSV decreases the bactericidal activity of macrophages, which increases susceptibility to secondary bacterial infections. PRRSV infection is associated with an increase in concentrations of haptoglobin, which may interact with the virus receptor (CD163) and induce the synthesis of anti-inflammatory mediators. The balance between pro- and anti-inflammatory cytokines modulates the expression of CD163, which may affect the pathogenicity and replication of the virus in different tissues. With the emergence of highly pathogenic PRRSV, there is a need for more information on the immunopathogenesis of different strains of PRRS, particularly to develop more effective vaccines.  相似文献   

14.
The acclimatization program included exposure to serum and recovery. A continuous flow unit (nursery to finishing) from the same farm was selected as a potential source of porcine reproductive and respiratory syndrome virus (PRRSV). Negative gilts were inoculated 5 d after arrival by intramuscular injection of serum from selected animals. There was a significant reduction in seroprevalence in the sow herd 1 y after implementation of the gilt inoculation program (P < 0.05). At that time, all of the tested nursery pigs were negative for PRRSV. The fully segregated finisher population had a significant reduction in the frequency of PRRSV positive animals (P < 0.05) by enzyme-linked immunosorbent assay (ELISA), with all animals testing negative by the end of the study. However a persistent seroconversion was observed in the partially segregated finisher pigs (P > 0.05). In conclusion, the gilt serum inoculation program achieved sow herd stabilization, as defined by the production of negative weaned pigs and this resulted in the eradication of PRRSV in the fully segregated flow.  相似文献   

15.
Twenty 6-week-old specific pathogen-free pigs were divided into four groups. On day 0 of the experiment, PRRSV-PRV (n = 6) and PRRSV (n = 4) groups were intranasally inoculated with porcine reproductive and respiratory syndrome virus (PRRSV) (10(5.6) TCID50). On day 7, the PRRSV-PRV and PRV (n = 6) groups were intranasally inoculated with pseudorabies virus (PRV) (10(3.6) TCID50). Control pigs (n = 4) were kept as uninoculated negative controls. Half of the pigs in each group were euthanized and necropsied on day 14 or 21. Clinical signs such as depression and anorexia were observed in the PRRSV-PRV and PRV groups after inoculation with PRV. Although febrile response was observed after virus inoculations, the duration of that response was prolonged in the PRRSV-PRV group compared with the other groups. The lungs in the PRRSV-PRV group failed to collapse and were mottled or diffusely tan and red, whereas the lungs of the pigs in the other groups were grossly normal. Histopathologically, interstitial pneumonia was present in all PRRSV-inoculated pigs, but the pneumonic lesions were more severe in the PRRSV-PRV group. Mean PRRSV titres of tonsil and lung in the PRRSV-PRV group were significantly (P < 0.05) higher than that in the PRRSV group on day 21. These results indicate that dual infection with PRRSV and PRV increased clinical signs and pneumonic lesions in pigs infected with both viruses, as compared to pigs infected with PRRSV or PRV only, at least in the present experimental conditions.  相似文献   

16.
The current study was performed to determine if porcine reproductive and respiratory syndrome virus (PRRSV) could be transmitted to pigs by feeding muscle tissue obtained from recently infected pigs. Muscle obtained from pigs infected with either a European strain (EU donor pigs) or American strain (US donor pigs) of PRRSV was fed to PRRSV-free receiver pigs. The donor pigs were slaughtered 11 days post-infection (dpi). PRRSV was detected by conventional virus isolation in muscle at 11 dpi from 7 of 12 EU donor pigs and 5 of 12 US donor pigs. In contrast to conventional virus isolation, all muscle samples from infected pigs were positive for viral nucleic acid by PCR, except for muscle from one animal infected with the American strain of PRRSV. Five hundred grams of raw semimembranosus muscle from each of the donor pigs was fed over a 2 days period (250 g per day) to each of two receiver pigs (48 receiver pigs). The receiver pigs were housed separately in five groups. One of the five groups was fed muscle obtained from US donor pigs that was also spiked with the American strain of PRRSV. Sentinel pigs were placed in-contact with the group of receiver pigs fed spiked muscle. All receiver pigs became viraemic by 6 days post-feeding (dpf). There was evidence of horizontal transmission with sentinel pigs, in-contact with receiver pigs, becoming viraemic. The study demonstrates that PRRSV could be infectious through the oral route via the feeding of meat obtained from recently infected pigs.  相似文献   

17.
猪繁殖与呼吸综合征病毒的研究进展   总被引:5,自引:0,他引:5  
猪繁殖与呼吸综合征 (Porcine reproductiveand respiratory syndrome,PRRS)是 1 987年发现的一种新的猪病 ,它主要是引起母猪的繁殖障碍 ,如流产、早产、死胎、木乃伊胎和呼吸道症状的一种由猪繁殖与呼吸综合征病毒 (PRRSV)引起的接触性传染病。此病最初在美国首先被发现 ,随后相继在世界各国报道 ,我国台湾省也有疫情的报道。 1 995年我国首次从进口猪中检出 PRRS阳性猪 ,并从中分离到 PRRSV。 1 996年郭宝清等首次从国内 PRRS血清阳性猪群中分离到 PRRSV,从而证实了我国也有此病的流行[1] 。由于 PRRS主要是引起母猪的繁殖…  相似文献   

18.
19.
猪繁殖与呼吸综合征病毒(PRRSV)灭活疫苗、表达GP5蛋白的DNA重组质粒分别与表达IL-2和IL-4的重组质粒(pcDNA-IL-2和pcDNA-IL-4)联合免疫健康仔猪,经3次免疫后人工感染PRRSV HB-2株,检测仔猪体液免疫以及攻毒保护性反应。研究结果显示,重组质粒pCI-GP5可诱导免疫猪产生抗GP5抗体,最高ELISA抗体效价可达1∶285。攻毒后组织中PRRSV核酸的检出率下降30.3%,与对照组相比,差异显著(P<0.05),表明表达PRRSV GP5的DNA重组质粒pCI-GP5可诱导一定的免疫效力。pcDNA-IL-2与pCI-GP5联合免疫后,病毒血症的出现频率减少38.9%,PRRSV阳性组织检出率下降28.8%,与对照组差异显著(P<0.05);pcDNA-IL-4与pCI-GP5联合免疫后,最高ELISA抗体效价可达1∶320,病毒血症的出现频率下降38.9%,PRRSV阳性组织检出率减少34.8%,与对照组相比差异极显著(P<0.01)。本研究表明,PRRS DNA重组质粒pCI-GP5对猪的免疫保护力是稳定的,真核表达的细胞因子pcDNA-IL-2与pcDNA-IL-4能够显著增强pCI-GP5的免疫保护力。  相似文献   

20.
The objectives of the study were to determine the duration of porcine reproductive and respiratory syndrome virus (PRRSV) survival in houseflies (Musca domestica Linnaeus) following feeding on an infected pig, and to determine whether the virus was present on the exterior surface or within the internal viscera of the fly. A total of 210 laboratory-colonized houseflies were allowed to feed to repletion on a pig, experimentally infected with PRRSV on day 7 postinoculation, and then maintained alive under laboratory conditions (27°C). Two subsets (A and B) of 30 flies were collected at each of the following sampling points; 0, 6, and 12 hours post feeding (pf). Subset A contained an extra group of 30 flies collected at 24 hours pf due to the availability of extra flies. Flies in subset A were processed as whole fly homogenates, while the exterior surface washes and digestive organs were collected from flies in subset B. Whole fly homogenates, collected at 0, 6, and 12 hours pf, were positive by both polymerase chain reaction (PCR) and swine bioassay. Digestive organs, collected at 0 and 12 hours pf, were positive by PCR and swine bioassay. The PRRSV RNA was detected by PCR from the exterior surface wash of subset B flies collected at 0, 6, and 12 hours pf; however, only the subset collected at 0 hour pf was swine bioassay-positive. This study indicates that infectious PRRSV can survive within the intestinal tract of houseflies for up to 12 hours following feeding on an infected pig, but only for a short period on the exterior surface of the flies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号