首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vibrational performance of wood materials critical affects the acoustic quality of a lute. The purpose of this research was to apply a multiple choice model to predict the quality of musical instruments based on data on lute soundboard vibrational properties of Paulownia wood.In the lute production, lute material selection mainly depends on the subjective evaluation of technicians, which is not only inefficient, but inaccurate. In this study, nine lutes were fabricated. Using the multiple selection model,the lute tone quality was predicted by the soundboard wood vibration data. Compared with the actual value, the dependent value predicted by the count of observations with the maximum probability had 22 erroneous judgments. The model precision is 87.78%. The results confirmed that the prediction model can be used as a guideline for the selection of the soundboard wood in musical instrument plants.  相似文献   

2.
近红外光谱技术具有快速、无损、样品易于准备、适合实际生产在线检测等优点,在木材科学研究领域的应用越来越广泛。文中阐述近红外光谱技术在木材纤维素、木质素和抽提物等化学属性预测,生长特性及物理力学特征等物理属性预测,以及在木质复合材料生产中应用的研究进展,分析了其在木材材性分析及木质复合材料生产中的研究趋势。  相似文献   

3.
乐器共鸣板用木材声学振动性能改良研究现状及趋势   总被引:1,自引:0,他引:1  
木材是制作乐器共鸣板的重要材料, 木材的声学性能在很大程度上决定了乐器的声学品质。文中在分析乐器板用木材声学振动性能改良的着手点与切入点的基础上, 总结木材声学振动性能改良方面的研究进展, 认为以下几个方面将成为未来研究的热点:1)从弹性模量、比弹性模量、声辐射品质常数和声阻抗等指标出发进行木材声学性能功能性改良研究; 2)开展乐器共鸣板用木材的替代树种用材的功能性改良研究, 扩大可用于制作乐器共鸣板的资源范围; 3)从改善木材声学振动效率和振动音色角度进行木材功能性改良的研究; 4)开展新型的乐器共鸣板用材研究。  相似文献   

4.
Plantations of tropical species are becoming an increasingly important source of wood.However, it is important that research trials focus not only on tree growth performance, but also on wood quality.The aims of this study were to assess the growth performance of six commercially and ecologically important tree species from separate plantation trials in Indonesia and to determine the relationships between tree growth and wood quality in terms of the dynamic modulus of elasticity(MOE) and wood density.Forty-eight 7-year Maesopsis eminii Engl.and thirty-five 9-year specimens(7 each of 5 Shorea spp.)were selected from two trials.The MOE, based on acoustic velocity, was indirectly measured to evaluate wood stiffness.Tree-growth performance was evaluated, and correlations between growth traits and acoustic velocity as well as density and wood stiffness properties were estimated.The growth performance of M.eminii in terms of tree volume was significantly different in three different categories of growth(i.e.fast, medium, slow).Of the five Shorea spp.studied, Shorea leprosula Miq.had the highest growth rate, as expected since it is known to be a fastgrowing Shorea species.Indirect measurement of wood quality by means of non-destructive ultrasonic methods showed a weak negative correlation between tree volume and acoustic velocity and dynamic MOE.Although each fast-growing tree could reach a merchantable size faster than other varieties or species, wood traits of various species tested were not significantly different based on tree growth rate performance.The findings from this study could be used to improve selection criteria in future breeding trials; indirect measurements of the dynamic modulus of elasticity can be used in mass pre-selection of genetic materials, to choose the most-promising material for in-depth evaluation.  相似文献   

5.
以钢琴音板用西加云杉锯材试件为研究对象,依据梁的纵向、横向弯曲原理及其动力学理论,采用振动频率法和声学频率法,测量该批试材在自由支承状态下的基频值,得到杨氏弹性模量值,并对其性能进行评价。  相似文献   

6.
木材声学振动特性科学机理与评价方法的研究正逐渐兴起,而针对竹材声学振动特性的相关研究则少有报道.文中重点围绕木竹材声学振动特性,从声振动效率、音色和发音效果稳定性3个方面介绍了木竹材声学振动特性的定量评价方法;从不同尺度(宏观—微观)、不同层次(化学组分—物理性质)和不同方式(选材—加工)系统阐述其主要影响因素;在此基...  相似文献   

7.
Finite element numerical analyses were performed to determine three-dimensional heat flux generated by friction to wood pieces during linear friction welding. The objective was to develop a computational model to explain the thermal behaviour of welded wood material rather than experimental methods, which are usually expensive and time consuming. This model serves as a prediction tool for welding parameters, leading to optimal thermo-mechanical performance of welded joints. The energy produced by the friction welding of small wood specimens of Scots pine (Pinus sylvestris L.) was determined by thermocouples and used as input data in the model. The model is based on anisotropic elasticity and the thermal properties were modelled as isotropic. This numerical simulation gave information on the distribution of the temperature in the welding interface during the entire welding process. A good agreement between the simulation and experimental results showed the appropriateness of the model for planning welded wood manufacture and prediction of thermal behaviour of wood during other mechanically induced vibration processes. The specimens presented in this model required a heat flux of 11 kW/m2 to achieve a satisfactory welding joint.  相似文献   

8.
沈隽 《林业科学》2006,42(3):21-24
采集7种我国具有代表性的云杉属木材及1种作对比用的美国产西加云杉试件,通过纵、横向木材试件在高次振动模式下的试验,测量木材各项声振动参数.研究发现:纵向材与径向材振动参数比之间存在着一定的相关性,据此可以选择各向异性适中,韧性好,纵向、径向振动受剪切影响小的木材制作乐器的音板.  相似文献   

9.
木材声振动特性的研究与进展   总被引:26,自引:0,他引:26  
木材受机械振动作用表现出的特性,是木材声学性质研究的基础。通过对棒状、薄板木材模型的研究,了解乐器材振动特性,掌握乐器材料振动测试的关键参数,对乐器材选择十分重要。文章论述了国内外木材声振动特性研究的发展历史、研究现状与发展趋势,着重描述了国外同行在此研究领域作出的贡献,为今后国内乐器材振动特性研究提供借鉴。  相似文献   

10.
The vibrational properties of a harp soundboard were investigated with respect to its multi-layered structure. The surfaces of harp soundboards are usually reinforced with veneer; however, this reduces the specific dynamic Young’s modulus (E′/ρ) and significantly increases the internal friction (Q ?1) of soundboards. Since smaller E′/ρ and greater Q ?1 values impart a smaller acoustic conversion efficiency, the attachment of veneer is predicted to reduce the amplitude of the sound produced, as suggested by harp makers. The vibrational properties of veneer-reinforced wood are elucidated using a multi-layered model comprising base wood, a glue layer, veneer and a varnish layer. The results of calculations suggest that a thinner veneer attached with minimal glue would increase the sound amplitude.  相似文献   

11.
Acoustic technologies have been well established as material evaluation tools in the past several decades, and their use has become widely accepted in the forest products industry for online quality control and products grading. Recent research developments on acoustic sensing technology offer further opportunities to evaluate standing trees and logs for general wood quality and intrinsic wood properties. Although the concept of using acoustic velocity as an effective measure of stiffness applies to both standing trees and felled logs, the method typically used to measure acoustic velocity in trees is different from that used in logs. Consequently, there is a significant difference in measured velocity values between trees and logs. Other factors affecting tree–log velocity relationships include tree diameter, stand age, operating temperature, and wood moisture content. This paper presents the fundamentals of acoustic wave propagation in trees and logs and discusses two different mechanisms of acoustic velocity measurement, time-of-flight for standing trees and resonance for logs. Experimental data from previous studies are reviewed and analyzed to examine the strength of the tree–log velocity relationships and discuss the factors that influence tree velocity deviation.  相似文献   

12.
13.
The effects of a carbon fiber-reinforced plastic (CFRP) overlay on the wooden soundboard of a harp were compared to those of conventional veneer reinforcement with respect to the vibrational properties and bending strength. CFRP reinforcement has a minimal effect on the vibrational properties of the soundboard in its width direction, whereas conventional veneer reinforcement significantly reduces the acoustic conversion efficiency of the soundboard. The CFRP-reinforced soundboard also has sufficient bending strength in its longitudinal direction. These results indicate that CFRP is a promising material for the reinforcement of the wooden soundboards of harps to minimize the reduction of the sound amplitude.  相似文献   

14.
lntroductionChinesefir(Cunntwh8mi8IanceoIat8(Lamb.)Hook)isaveryimportantspeciesofwoodresourcesinSouthernChina.TheheredityandameliorationonChinesefirareaIwayspaidgreatattention.However,inthepast,thefocaIpointOftheworkonheredityandamelioF8tionwashowtoCuItivatetheChinesefirwithcharaCtersoff8stgrowth,goodfigure,wideadaPt-abilityandStrongdiseaseresistance.LittleworkwasdoneonameIior8tionofwoodquaIity.AlongwiththecompositionchangeoftheforeStresourcesinChina,Chinesewoodindustryismoredependen…  相似文献   

15.
木材顺纹抗压强度是评价木材力学性能的重要指标,而传统测量方法操作复杂、精确度低。以桦木为例,提出基于近红外光谱技术(NIR)的SEPA-VISSA-RVM木材顺纹抗压强度模型,实现对其更加精确的预测。试验选取100个木材试件,在900~1700 nm近红外光谱波段上采集数据并测量抗压强度真值;然后采用卷积平滑(SG)方法进行光谱预处理;使用采样误差分布分析(SEPA)作为变量空间迭代收缩算法(VISSA)的改进策略进行特征波长优选;最后通过粒子群优化算法(PSO)优化核函数参数并建立相关向量机(RVM)的预测模型。试验表明:在特征波长优选方面,以偏最小二乘法(PLS)建模为基础的SEPA-VISSA方法,其预测决定系数为0.9593,预测均方根误差为2.8995,相对分析误差为3.0256,光谱变量数由512减小到111个,占总波长的22%,均优于VCPA、CARS和VISSA算法;在建模预测方面,以SEPA-VISSA所选波长为基础的RVM模型,PSO优化的拉普拉斯(Laplacian)核函数的核宽度为10.4043,决定系数为0.9449,预测均方根误差为2.0432,相对分析误差为4.2936,预测效果优于PLS和SVR。因此,基于近红外光谱的SEPA-VISSA-RVM建模能够实现对桦木顺纹抗压强度更准确和稳定的无损检测。  相似文献   

16.
含LT型裂纹木梁起裂载荷确定方法的试验研究   总被引:1,自引:0,他引:1  
木材裂纹萌生的准确判定对木材损伤断裂的评估具有重要的意义,起裂载荷是标定裂纹萌生的关键参数。本试验以杉木为研究对象,利用声发射技术(AE)、数字图像相关法(DIC)和电测法(EM),对含LT型裂纹木梁的损伤断裂特性进行了试验研究。通过研究木梁在加载过程中声发射参数变化规律以及裂尖区域的表面应变信息的演变,分析木梁裂纹萌生规律并确定起裂载荷Pini。结果表明:声发射累计振铃计数、幅度可有效反映木梁内部损伤的产生和演化,利用声发射参数的变化规律能准确确定含LT型裂纹木梁的起裂载荷Pini;数字图像相关法、电测法可以实时监测木梁表面裂缝尖端区域的应变变化,根据应变演变特征可以有效监测木梁表面裂纹的萌生和扩展。声发射技术、数字图像相关法、电测法在确定木梁起裂载荷Pini方面有较好的适用性,所确定的起裂载荷大小为:电测法>数字图像相关法>声发射。试验结果为研究监测含LT型裂纹木材裂纹萌生的试验方法提供了依据,应用时可结合实际工况选择合适的测量方法。  相似文献   

17.
本文基于BBD响应面优化方法,建立杨木强化材目标性能可评价工艺参数模型,并优化出室内家具用杨木强化材环保生产工艺,结果表明:以加压压力、加压时间、树脂质量分数作为响应因子,分别以MOE、WPG、TVOC释放量和甲醛释放量作为响应值的预测模型显著,模型决定系数大于0.9;当加压压力、加压时间、树脂质量分数分别为0.89 MPa、2.5 h、32%时,产品环保性能在考察工艺参数范围内最优。  相似文献   

18.
人工林胡桃楸木材纤维长度径向变异规律研究   总被引:1,自引:0,他引:1  
木材纤维长度是衡量木材材质、材性和植物纤维原料质量优劣的较重要的指标之一。为初步掌握人工林胡桃楸木材材质材性的径向变异规律,以其木纤维长度为研究对象,采用时间序列和一元回归两种分析方法,进行数据拟合和短期预测。研究结果表明,采用时间序列模型ARIMA和一元回归方程可以对人工林胡桃楸木纤维长度进行数据拟合与4 a短期预测,ARIMA模型的拟合效果优于一元回归方程,一元回归方程的预测效果优于ARIMA模型。  相似文献   

19.
We used acoustic tests on a quarter-sawn poplar timbers to study the effects of wood anisotropy and cavity defects on acoustic wave velocity and travel path, and we investigated acoustic wave propagation behavior in wood. The timber specimens were first tested in unmodified condition and then tested after introduction of cavity defects of varying sizes to quantify the transmitting time of acoustic waves in laboratory conditions. Two-dimensional acoustic wave contour maps on the radial section of specimens were then simulated and analyzed based on the experimental data. We tested the relationship between wood grain and acoustic wave velocity as waves passed in various directions through wood. Wood anisotropy has significant effects on both velocity and travel path of acoustic waves, and the velocity of waves passing longitudinally through timbers exceeded the radial velocity. Moreover, cavity defects altered acoustic wave time contours on radial sections of timbers. Acous-tic wave transits from an excitation point to the region behind a cavity in defective wood more slowly than in intact wood.  相似文献   

20.
Abstract

Nondestructive testing (NDT) can play an important role in improving the quality and reliability of tropical hardwood as an engineering material. By means of these methods, the stiffness of the material can be determined and the information used to improve its structural performance. Although, it is a usual approach for qualifying the material used to manufacture engineered wood products made mainly from softwoods, it is not so common for tropical hardwoods. Additionally, the lack of information regarding properties of glulam beam made from these kinds of wood is evident. In this context, the paper aimed at evaluating the theoretical and experimental deflection of glulam beams made from the Brazilian hardwood louro-vermelho (Sextonia rubra). Initially, the stiffness of each lamina was determined nondestructively using transverse vibration method (E dtv), which has been demonstrated to be the most suitable method for this wood species. Then, ten 5-lamina glulam beams were assembled according to descending lamina E dtv values. The experimental evaluation was performed using a four-point bending schedule. In general, the theoretical values of deflection were 2% higher than the experimental ones. The transverse vibration showed to be a suitable method to both measure lamina stiffness and predict glulam beam deflection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号