首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Seasonal ecophysiology, leaf structure and nitrogen were measured in saplings of early (Populus grandidentata Michx. and Prunus serotina J.F. Ehrh.), middle (Fraxinus americana L. and Carya tomentosa Nutt.) and late (Acer rubrum L. and Cornus florida L.) successional tree species during severe drought on adjacent open and understory sites in central Pennsylvania, USA. Area-based net photosynthesis (A) and leaf conductance to water vapor diffusion (g(wv)) varied by site and species and were highest in open growing plants and early successional species at both the open and understory sites. In response to the period of maximum drought, both sunfleck and sun leaves of the early successional species exhibited smaller decreases in A than leaves of the other species. Shaded understory leaves of all species were more susceptible to drought than sun leaves and had negative midday A values during the middle and later growing season. Shaded understory leaves also displayed a reduced photosynthetic light response during the peak drought period. Sun leaves were thicker and had a greater mass per area (LMA) and nitrogen (N) content than shaded leaves, and early and middle successional species had higher N contents and concentrations than late successional species. In both sunfleck and sun leaves, seasonal A was positively related to predawn leaf Psi, g(wv), LMA and N, and was negatively related to vapor pressure deficit, midday leaf Psi and internal CO(2). Although a significant amount of plasticity occurred in all species for most gas exchange and leaf structural parameters, middle successional species exhibited the largest degree of phenotypic plasticity between open and understory plants.  相似文献   

2.
One-year-old seedlings of Abies balsamea (L.) Mill, Picea glauca (Moench) Voss, Pinus contorta Loudon, Betula papyrifera Marsh., Populus tremuloides Michx. and Populus balsamifera L. were transplanted in the spring, in pots, to the understory of a mixed P. tremuloides-P. balsamifera stand or to an adjacent open site. Growth and leaf characteristics were measured and photosynthetic light response curves determined in mid-August. Overall, the coniferous seedlings showed less photosynthetic plasticity in response to growth conditions than the deciduous species. Abies balsamea, P. glauca and B. papyrifera responded to the understory environment with higher leaf area ratios, and lower photosynthetic light saturation points and area-based leaf respiration relative to values for open-grown seedlings, while they matched or exceeded the height growth of open-grown seedlings. In contrast, seedlings of Pinus contorta, P. tremuloides and P. balsamifera displayed characteristics that were not conducive to survival in the understory. These characteristics included a high light saturation point and leaf dark respiration rate in P. contorta, and lower leaf area variables combined with higher carbon allocation to roots in P. tremuloides and P. balsamifera. By the second growing season, all seedlings of P. tremuloides and P. balsamifera growing in the understory had died.  相似文献   

3.
Changes in respiration rate, chemical content and chemical concentration were measured in leaves of field-grown Populus tremuloides Michx. and Quercus rubra L. trees throughout the growing season and autumnal senescence. Chlorophyll, soluble sugar, N, P, K and Mg contents and concentrations all declined during leaf senescence, whereas Ca content and concentration increased. Leaf dry mass per area declined 24 and 35% in P. tremuloides and Q. rubra, respectively, during senescence. In leaves of both species, respiration rates peaked during leaf expansion in the spring and then declined, as a result of reduced cytochrome-mediated respiration, to reach relatively constant rates by midsummer. In senescing P. tremuloides leaves, respiration rates remained relatively constant until mid-October and then declined rapidly. In senescing Q. rubra leaves, respiration rates increased in late September, as a result of the appearance of residual respiration that could not be reduced by respiratory inhibitors, and then declined quickly in early November. No changes in alternative pathway respiratory activity were observed in leaves of either species during senescence until late autumn when rates declined. Because respiration rates were correlated with both leaf sugar and nitrogen content during leaf senescence, we conclude that respiration rates were maintained or increased during leaf senescence to supply energy for degradation and mobilization of chemical constituents.  相似文献   

4.
We investigated the effects of altered precipitation on leaf osmotic potential at full turgor (Psi(pio)) of several species in an upland oak forest during the 1994 growing season as part of a Throughfall Displacement Experiment at the Walker Branch Watershed near Oak Ridge, Tennessee. The main species sampled included overstory chestnut oak (Quercus prinus L.), white oak (Q. alba L.), red maple (Acer rubrum L.); intermediates sugar maple (A. saccharum L.) and blackgum (Nyssa sylvatica Marsh.); and understory dogwood (Cornus florida L.) and red maple. The precipitation treatments were: ambient precipitation; ambient minus 33% of throughfall (dry); and ambient plus 33% of throughfall (wet). Except in late September, midday leaf water potentials (Psi(l)) were generally high in all species in all treatments, ranging from -0.31 to -1.34 MPa for C. florida, -0.58 to -1.51 MPa for A. rubrum, and -0.78 to -1.86 MPa for Q. prinus. Both treatment and species differences in Psi(pio) were evident, with oak species generally exhibiting lower Psi(pio) than A. saccharum, A. rubrum, C. florida, and N. sylvatica. The Psi(pio) of C. florida saplings declined in the dry treatment, and Q. prinus, Q. alba, and A. saccharum all exhibited a declining trend of Psi(pio) in the dry treatment, although Psi(pio) of Q. prinus leaves increased in late August, corresponding to a recovery in soil water potential. Cornus florida exhibited osmotic adjustment with the largest adjustment coinciding with the period of lowest soil water potential in June. The only other species to exhibit osmotic adjustment was Q. prinus, which also maintained a lower baseline Psi(pio) than the other species. We conclude that a 33% reduction of throughfall is sufficient both to alter the water relations of some species in the upland oak forest and to enable the identification of those species capable of osmotic adjustment to a short-term drought during a wet year.  相似文献   

5.
We measured component and whole-system respiration fluxes in northern hardwood (Acer saccharum Marsh., Tilia americana L., Fraxinus pennsylvanica Marsh.) and aspen (Populus tremuloides Michx.) forest stands in Price County, northern Wisconsin from 1999 through 2002. Measurements of soil, leaf and stem respiration, stem biomass, leaf area and biomass, and vertical profiles of leaf area were combined with biometric measurements to create site-specific respiration models and to estimate component and whole-system respiration fluxes. Hourly estimates of component respiration were based on site measurements of air, soil and stem temperature, leaf mass, sapwood volume and species composition. We also measured whole-system respiration from an above-canopy eddy flux tower. Measured soil respiration rates varied significantly among sites, but not consistently among dominant species (P < 0.05 and P > 0.1). Annual soil respiration ranged from 8.09 to 11.94 Mg C ha(-1) year(-1). Soil respiration varied linearly with temperature (P < 0.05), but not with soil water content (P > 0.1). Stem respiration rates per unit volume and per unit area differed significantly among species (P < 0.05). Stem respiration per unit volume of sapwood was highest in F. pennsylvanica (up to 300 micro mol m(3) s(-1)) and lowest in T. americana (22 micro mol m(3) s(-1)) when measured at peak summer temperatures (27 to 29 degrees C). In northern hardwood stands, south-side stem temperatures were higher and more variable than north-side temperatures during leaf-off periods, but were not different statistically during leaf-on periods. Cumulative annual stem respiration varied by year and species (P < 0.05) and averaged 1.59 Mg C ha(-1) year(-1). Leaf respiration rates varied significantly among species (P < 0.05). Respiration rates per unit leaf mass measured at 30 degrees C were highest for P. tremuloides (38.8 nmol g(-1) s(-1)), lowest for Ulmus rubra Muhlenb. (13.1 nmol g(-1) s(-1)) and intermediate and similar (30.2 nmol g(-1) s(-1)) for T. americana, F. pennsylvanica and Q. rubra. During the growing season, component respiration estimates were dominated by soil respiration, followed by leaf and then stem respiration. Summed component respiration averaged 11.86 Mg C ha(-1) year(-1). We found strong covariance between whole-ecosystem and summed component respiration measurements, but absolute rates and annual sums differed greatly.  相似文献   

6.
Components of dehydration tolerance, including osmotic potential at full turgor (Psi(pio)) and osmotic adjustment (lowering of Psi(pio)), of several deciduous species were investigated in a mature, upland oak forest in eastern Tennessee. Beginning July 1993, the trees were subjected to one of three throughfall precipitation treatments: ambient, ambient minus 33% (dry treatment), and ambient plus 33% (wet treatment). During the dry 1995 growing season, leaf water potentials of all species declined to between -2.5 and -3.1 MPa in the dry treatment. There was considerable variation in Psi(pio) among species (-1.0 to -2.0 MPa). Based on Psi(pio) values, American beech (Fagus grandifolia Ehrh.), dogwood (Cornus florida L.), and sugar maple (Acer saccharum Marsh.) were least dehydration tolerant, red maple (A. rubrum L.) was intermediate in tolerance, and white oak (Quercus alba L.) and chestnut oak (Quercus prinus L.) were most tolerant. During severe drought, overstory chestnut oak and understory dogwood, red maple and chestnut oak displayed osmotic adjustment (-0.12 to -0.20 MPa) in the dry treatment relative to the wet treatment. (No osmotic adjustment was evident in understory red maple and chestnut oak during the previous wet year.) Osmotic potential at full turgor was generally correlated with leaf water potential, with both declining over the growing season, especially in species that displayed osmotic adjustment. However, osmotic adjustment was not restricted to species considered dehydration tolerant; for example, dogwood typically maintained high Psi(pio) and displayed osmotic adjustment to drought, but had the highest mortality rates of the species studied. Understory saplings tended to have higher Psi(pio) than overstory trees when water availability was high, but Psi(pio) of understory trees declined to values observed for overstory trees during severe drought. We conclude that Psi(pio) varies among deciduous hardwood species and is dependent on canopy position and soil water potential in the rooting zone.  相似文献   

7.
We compared vertical gradients in leaf gas exchange, CO(2) concentrations, and refixation of respired CO(2) in stands of Populus tremuloides Michx., Pinus banksiana Lamb. and Picea mariana (Mill.) B.S.P. at the northern and southern boundaries of the central Canadian boreal forest. Midsummer gas exchange rates in Populus tremuloides were over twice those of the two conifer species, and Pinus banksiana rates were greater than Picea mariana rates. Gas exchange differences among the species were attributed to variation in leaf nitrogen concentration. Despite these differences, ratios of intercellular CO(2) to ambient CO(2) (c(i)/c(a)) were similar among species, indicating a common balance between photosynthesis and stomatal conductance in boreal trees. At night, CO(2) concentrations were high and vertically stratified within the canopy, with maximum concentrations near the soil surface. Daytime CO(2) gradients were reduced and concentrations throughout the canopy were similar to the CO(2) concentration in the well-mixed atmosphere above the canopy space. Photosynthesis had a diurnal pattern opposite to the CO(2) profile, with the highest rates of photosynthesis occurring when CO(2) concentrations and gradients were lowest. After accounting for this diurnal interaction, we determined that photosynthesizing leaves in the understory experienced greater daily CO(2) concentrations than leaves at the top of the canopy. These elevated CO(2) concentrations were the result of plant and soil respiration. We estimated that understory leaves in the Picea mariana and Pinus banksiana stands gained approximately 5 to 6% of their carbon from respired CO(2).  相似文献   

8.
During the summers of 1986 and 1987, stem and leaf growth were measured on coppiced plants of Populus trichocarpa Torr. & A. Gray, P. deltoides Bartr. ex Marsh, and P. trichocarpa x deltoides growing in the field in Puyallup, WA. The trees were either irrigated periodically throughout the season, or grown without irrigation. In both treatments, stem volume at the end of the growing season was directly proportional to total leaf area in all three genotypes. The rate of individual leaf growth was reduced by lack of irrigation more in the parental species than in the hybrid. Only in the parental species did unirrigated trees have lower leaf water potentials (predawn and midday) than irrigated trees. However, stomatal conductances of all three genotypes were lower in unirrigated trees than in irrigated trees. Osmotic potentials of growing leaves of all three genotypes were also lower in unirrigated trees than in irrigated trees. As a consequence, turgor of growing leaves was as great in unirrigated trees as in irrigated trees, which indicates that turgor differences cannot explain the lower rates of leaf growth in the unirrigated trees. However, cell wall extensibility of leaves was lower in unirrigated trees than in irrigated trees, and the difference was greater in the parental species than in the hybrid. Unlike its effect on leaf area growth, irrigation increased stem volume growth of the hybrid and the parental species by a similar amount (12-16%).  相似文献   

9.
We investigated seasonal patterns of water relations in current-year leaves of three evergreen broad-leaved trees (Ilex pedunculosa Miq., Ligustrum japonicum Thunb., and Eurya japonica Thunb.) with delayed greening in a warm-temperate forest in Japan. We used the pressure-volume method to: (1) assess the extent to which seasonal variation in leaf water relations is attributable to leaf development processes in delayed greening leaves versus seasonal variation in environmental variables; and (2) investigate variation in leaf water relations during the transition from the sapling to the adult tree stage. Leaf mass per unit leaf area was generally lowest just after completion of leaf expansion in May (late spring), and increased gradually throughout the year. Osmotic potential at full turgor (Psi(o) (ft)) and leaf water potential at the turgor loss point (Psi(w) (tlp)) were highest in May, and lowest in midwinter in all species. In response to decreasing air temperature, Psi(o) (ft) dropped at the rate of 0.037 MPa degrees C(-1). Dry-mass-based water content of leaves and the symplastic water fraction of total leaf water content gradually decreased throughout the year in all species. These results indicate that reductions in the symplastic water fraction during leaf development contributed to the passive concentration of solutes in cells and the resulting drop in winter Psi(o) (ft). The ratio of solutes to water volume increased in winter in current-year leaves of L. japonicum and E. japonica, indicating that osmotic adjustment (active accumulation of solutes) also contributed to the drop in winter in Psi(o) (ft). Bulk modulus of elasticity in cell walls fluctuated seasonally, but no general trend was found across species. Over the growing season, Psi(o) (ft) and Psi(w) (tlp) were lower in adult trees than in saplings especially in the case of I. pedunculosa, suggesting that adult-tree leaves are more drought and cold tolerant than sapling leaves. The ontogenetic increase in the stress resistance of I. pedunculosa may be related to its characteristic life form because I. pedunculosa grows taller than the other species studied.  相似文献   

10.
We have developed an automated microprocessor controlled system for subjecting hydroponically grown plants to drought. Pumps and valves were used to move nutrient solutions into and out of a system of culture vessels in a growth chamber to provide periods of drought. Drought conditions were obtained by exposing the roots of hydroponically grown clones of aspen, Populus tremuloides Michx., to air in culture vessels temporarily emptied of nutrient medium. Over a 3-week period, the daily duration of drought was increased from 0 to 6 h. During this period, the plants became increasingly tolerant to drought, as shown by a decreasing propensity to wilt. All three clones sustained diurnal drought periods of 6 h for up to 5 weeks without detectable deterioration of health. Typical drought stress symptoms were observed including inhibition of growth, increased tissue amino acid content, and decreased water, solute, and turgor potentials in young leaves. In all clones, control plants had leaf water potentials between -1.0 and -1.6 MPa, whereas leaf water potentials of drought-treated plants were significantly lower, ranging from -1.7 to -3.0 MPa. Only one of the clones showed a significant decrease in leaf solute potential in response to drought. The decrease in leaf solute potential paralleled the decrease in water potential resulting in no significant difference in turgor potential. The other two clones had nonsignificant decreases to more negative leaf solute potentials under drought conditions resulting in significantly lowered turgor potentials. Leaf water potentials, solute potentials, and turgor potentials of the drought-treated plants returned to control values within two hours after rewatering. The growth inhibitions observed could not have been the consequence of loss of turgor. These results demonstrate genetic differences among aspen clones in water relations responses to drought.  相似文献   

11.
New Forests - Trembling aspen (Populus tremuloides Michx.) is an important early successional species in the boreal region that commonly regenerates via root suckering and, to a lesser extent,...  相似文献   

12.
Specific leaf area (SLA) and leaf area index (LAI) were estimated using site-specific allometric equations for a boreal black spruce (Picea mariana (Mill.) BSP) fire chronosequence in northern Manitoba, Canada. Stands ranged from 3 to 131 years in age and had soils that were categorized as well or poorly drained. The goals of the study were to: (i) measure SLA for the dominant tree and understory species of boreal black spruce-dominated stands, and examine the effect of various biophysical conditions on SLA; and (ii) examine leaf area dynamics of both understory and overstory for well- and poorly drained stands in the chronosequence. Overall, average SLA values for black spruce (n = 215), jack pine (Pinus banksiana Lamb., n = 72) and trembling aspen (Populus tremuloides Michx., n = 27) were 5.82 +/- 1.91, 5.76 +/- 1.91 and 17.42 +/- 2.21 m2 x kg-1, respectively. Foliage age, stand age, vertical position in the canopy and soil drainage had significant effects on SLA. Black spruce dominated overstory LAI in the older stands. Well-drained stands had significantly higher overstory LAI (P < 0.001), but lower understory LAI (P = 0.022), than poorly drained stands. Overstory LAI was negligible in the recent (3-12 years old) burn sites and highest in the 70-year-old burn site (6.8 and 3.0 in the well- and poorly drained stands, respectively), declining significantly (by 30-50%) from this peak in the oldest stands. Understory leaf area represented a significant portion (> 40%) of total leaf area in all stands except the oldest.  相似文献   

13.
We compared seedling water relations of three Mediterranean Quercus species (the evergreen shrub Q. coccifera L., the evergreen tree Q. ilex L. subsp. ballota (Desf.) Samp. and the deciduous or marcescent tree Q. faginea L.). We also explored seedling potential for acclimation to contrasting growing conditions. In March, 1-year-old seedlings of the three species were planted in pots and grown outdoors in a factorial combination of two irrigation regimes (daily (HW) and alternate day watering (LW)) and two irradiances (43 and 100% of full sunlight). At the end of July, predawn and midday water potentials (Psi(pd), Psi(md)) were measured, and pressure-volume (P-V) curves were obtained for mature current-year shoots. Species exhibited similar Psi(pd) and Psi(md) values, but differed in leaf morphology and water relations. The evergreens possessed larger leaf mass per area (LMA) and were able to maintain positive turgor pressure at lower water potentials than the deciduous species because of their lower osmotic potential at full turgor. However, the three species had similar relative water contents at the turgor loss point because Q. faginea compensated for its higher osmotic potential with greater cell wall elasticity. Values of Psi(pd) had a mean of -1.12 MPa in LW and -0.63 MPa in HW, and Psi(md) had a mean of -1.13 MPa in full sunlight and -1.64 MPa in shade, where seedlings exhibited lower LMA. However, the P-V curve traits were unaffected by the treatments. Our results suggest that Q. faginea seedlings combine the water-use characteristics of mesic deciduous oak and the drought-tolerance of xeric evergreen oak. The ability of Q. coccifera to colonize drier sites than Q. ilex was not a result of higher drought tolerance, but rather may be associated with other dehydration postponement mechanisms including drought-induced leaf shedding. The lack of treatment effects may reflect a relatively low contrast between treatment regimes, or a low inherent responsiveness of these traits in the study species, or both.  相似文献   

14.
Boreal forests are crucial to climate change predictions because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through more frequent wildfires, warmer, longer growing seasons and potential drainage of forested wetlands. This study aims at quantifying controls over tree transpiration with drainage condition, stand age and species in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 2007 and data were collected through 2008 on 118 trees (69 Picea mariana (Mill.) Britton, Sterns & Poggenb. (black spruce), 25 Populus tremuloides Michx. (trembling aspen), 19 Pinus banksiana Lamb. (jack pine), 3 Larix laricina (Du Roi) K. Koch (tamarack) and 2 Salix spp. (willow)) at four stand ages (18, 43, 77 and 157 years old) each containing a well- and poorly-drained stand. Transpiration estimates from sap flux were expressed per unit xylem area, J(S), per unit ground area, E(C) and per unit leaf area, E(L), using sapwood (A(S)) and leaf (A(L)) area calculated from stand- and species-specific allometry. Soil drainage differences in transpiration were variable; only the 43- and 157-year-old poorly-drained stands had?~?50% higher total stand E(C) than well-drained locations. Total stand E(C) tended to decrease with stand age after an initial increase between the 18- and 43-year-old stands. Soil drainage differences in transpiration were controlled primarily by short-term physiological drivers such as vapor pressure deficit and soil moisture whereas stand age differences were controlled by successional species shifts and changes in tree size (i.e., A(S)). Future predictions of boreal climate change must include stand age, species and soil drainage heterogeneity to avoid biased estimates of forest water loss and latent energy exchanges.  相似文献   

15.
We studied late-entry commercial thinning effects on growth, yield, and regeneration in a 48-year-old jack pine(Pinus banksiana Lamb.) stand. Applied thinning intensities were 27, 32, and 47% of merchantable basal area(BA) excluding skidding trails. After 15 years, mean diameter at breast height of surviving trees in the 47% BA removal increased by 4.9 cm(25%) compared to the unthinned control. The 47% BA removal also increased gross merchantable volume(GMV) tree-1by 46% compared to the control. The 27% BA removal had twice as much GMV ha-1compared to the 47% BA removal after15 years. Moreover, cumulative GMV ha-1was much higher in the 27% BA removal than in the unthinned control. The highest thinning intensity produced larger trees on average, while the lowest thinning intensity maximized volume production per hectare. Maintenance of acceptable growing stock throughout the 15-year period in the 27% BA removal could provide other ecosystem functions such as biodiversity enhancement or wildlife habitat by delaying senescence. Regeneration data showed that a shift in species composition occurred in the understory. After 15 years, the understory was dominated by black spruce(Picea mariana(Mill.) B.S.P.), white birch(Betula papyrifera Marsh.), and trembling aspen(Populus tremuloides Michx.). If regenerating jack pine is an objective after final overstory removal, additional efforts will be needed to re-establish this species.  相似文献   

16.
Pita P  Pardos JA 《Tree physiology》2001,21(9):599-607
Changes in leaf size, specific leaf area (SLA), transpiration and tissue water relations were studied in leaves of rooted cuttings of selected clones of Eucalyptus globulus Labill. subjected to well-watered or drought conditions in a greenhouse. Significant differences between clones were found in leaf expansion and transpiration. There was a significant clone x treatment interaction on SLA. Water stress significantly reduced osmotic potential at the turgor loss point (Pi0) and at full turgor (Pi100), and significantly increased relative water content at the turgor loss point and maximum bulk elastic modulus. Differences in tissue water relations between clones were significant only in the mild drought treatment. Among clones in the drought treatments, the highest leaf expansion and the highest increase in transpiration during the experiment were measured in those clones that showed an early and large decrease in Pi0 and Pi100.  相似文献   

17.
We investigated interannual variability of canopy transpiration per unit ground area (E (C)) and per unit leaf area (E (L)) across seven tree species in northern Wisconsin over two years. These species have previously been shown to be sufficient to upscale stand-level transpiration to the landscape level during one growing season. Our objective was to test whether a simple plant hydraulic model could capture interannual variation in transpiration. Three species, wetland balsam fir (Abies balsamea (L.) Mill), basswood (Tilia Americana L.) and speckled alder (Alnus rugosa (DuRoi) Spreng), had no change in E (C) or E (L) between 2000 and 2001. Red pine (Pinus resinosa Ait) had a 57 and 19% increase in E (C) and E (L), respectively, and sugar maple (Acer saccharum Marsh) had an 83 and 41% increase in E (C) and E (L), respectively, from 2000 to 2001. Quaking aspen (Populus tremuloides Michx) had a 50 and 21% decrease in E (C) and E (L), respectively, from 2000 to 2001 in response to complete defoliation by forest tent caterpillar (Malascoma distria Hüber) and subsequent lower total leaf area index of the reflushed foliage. White cedar (Thuja occidentalis L.) had a 20% decrease in both E (C) and E (L) caused by lowered surface water in wetlands in 2001 because of lower precipitation and wetland flow management. Upland A. balsamea increased E (L) and E (C) by 55 and 53%, respectively, as a result of release from light competition of the defoliated, overstory P. tremuloides. We hypothesized that regardless of different drivers of interannual variability in E (C) and E (L), minimum leaf water potential would be regulated at the same value. Minimum midday water potentials were consistent over the two years within each of the seven species despite large changes in transpiration between years. This regulation was independently verified by the exponential saturation between daily E (C) and vapor pressure deficit (D) and the tradeoff between a reference canopy stomatal conductance (G (S)) and the sensitivity of G (S) to D, indicating that trees with high G (S) must decrease G (S) in response to atmospheric drought faster than trees with low G (S). Our results show that models of forest canopy transpiration can be simplified by incorporating G (S) regulation of minimum leaf water potential for isohydric species.  相似文献   

18.
We measured responses of leaf respiration to temperature and leaf characteristics in three deciduous tree species (Quercus rubra L., Quercus prinus L. and Acer rubrum L.) at two sites differing in water availability within a single catchment in the Black Rock Forest, New York. The response of respiration to temperature differed significantly among the species. Acer rubrum displayed the smallest increase in respiration with increasing temperature. Corresponding Q(10) values ranged from 1.5 in A. rubrum to 2.1 in Q. prinus. Dark respiration at ambient air temperatures, expressed on a leaf area basis (Rarea), did not differ significantly between species, but it was significantly lower (P < 0.01) in trees at the wetter (lower) site than at the drier (upper) site (Q. rubra: 0.8 versus 1.1 micromol m(-2) s(-1); Q. prinus: 0.95 versus 1.2 micromol m(-2) s(-1)). In contrast, when expressed on a leaf mass basis (R(mass)), respiration rates were significantly higher (P < 0.01) in A. rubrum (12.5-14.6 micromol CO(2) kg(-1) s(-1)) than in Q. rubra (8.6-9.9 micromol CO(2) kg(-1) s(-1)) and Q. prinus (9.2-10.6 micromol CO(2) kg(-1) s(-1)) at both the lower and upper sites. Respiration on a nitrogen basis (R(N)) displayed a similar response to R(mass). The consistency in R(mass) and R(N) between sites indicates a strong coupling between factors influencing respiration and those affecting leaf characteristics. Finally, the relationships between dark respiration and A(max) differed between sites. Trees at the upper site had higher rates of leaf respiration and lower A(max) than trees at the lower site. This shift in the balance of carbon gain and loss clearly limits carbon acquisition by trees at sites of low water availability, particularly in the case of A. rubrum.  相似文献   

19.
Dillaway DN  Kruger EL 《Tree physiology》2011,31(10):1114-1127
In common gardens along an ~900 km latitudinal transect through Wisconsin and Illinois, U.S.A., tree species typical of boreal and temperate forests were compared with respect to the nature and magnitude of leaf respiratory acclimation to contrasting climates. The boreal representatives were trembling aspen (Populus tremuloides Michx.) and paper birch (Betula papyrifera Marsh.), while the temperate species were eastern cottonwood (Populus deltoides Bartr ex. Marsh var. deltoides) and sweetgum (Liquidambar styraciflua L.). Assessments were conducted on seedlings grown from seed sources collected near southern and northern range boundaries, respectively. Nighttime rates of leaf dark respiration (R(d)) at common temperatures, as well as R(d)'s short-term temperature sensitivity (energy of activation, E(o)), were assessed for all species and gardens twice during a growing season. Little evidence of R(d) thermal acclimation was observed, despite a 12 °C range in average air temperature across gardens. Instead, R(d) variation at warm temperatures was linked most closely with prior leaf photosynthetic performance, while R(d) variation at cooler temperatures was most strongly related to leaf nitrogen concentration. Moreover, E(o) differences across species and gardens appeared to stem from the somewhat independent limitations on warm versus cool R(d). Based on this construct, an empirical model relying on R(d) estimates from leaf photosynthesis and nitrogen concentration explained 55% of the observed E(o) variation.  相似文献   

20.
Ishii H  Ohsugi Y 《Tree physiology》2011,31(8):819-830
We compared light acclimation potential among three evergreen broadleaved species with contrasting patterns of shoot elongation, leaf emergence and leaf maturation. Understory saplings were transferred to a high-light environment before bud break, grown for 13 months, and then transferred back to the understory to observe subsequent carry-over effects. Acclimation potential was highest and sapling mortality was lowest for Cinnamomum japonicum Sieb. ex Nakai. Indeterminate growth and successive leaf emergence allowed this species to acclimate to both high and low light by adjusting leaf production as well as leaf properties. Sapling mortality occurred after both transfers for Camellia japonica L., which also has indeterminate growth and successive leaf emergence. In this species, carry-over effects were observed at the individual level, but leaf-level acclimation potential was high. Acclimation potential was lowest and sapling mortality occurred soon after the transfer to high light for Quercus glauca Thunb. ex Murray. Determinate growth and flush-type leaf emergence resulted in significant carry-over effects in this species. Indeterminate growth and successive leaf emergence increase whole-plant acclimation potential by extending the period of growth and architectural development during the growing season. Similarly, we inferred that delayed leaf maturation, observed in many evergreen species, increases the acclimation potential of current-year leaves by extending the period of leaf development. In evergreen species, the acclimation potential of preexisting leaves determines the role that leaf turnover plays in whole-plant light acclimation, resulting in diverse strategies for light acclimation among species, as observed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号