首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cate TM  Perkins TD 《Tree physiology》2003,23(15):1077-1079
We conducted two experiments to determine the usefulness of a chlorophyll content meter (CCM) for the measurement of foliar chlorophyll concentration in sugar maple (Acer saccharum Marsh.) in the fall color period. In Experiment 1, four sugar maple trees were visually assigned to each of four fall foliage color categories in October 1998. On four dates in the fall of 1999, leaves were taken from the trees and analyzed for chlorophyll concentration by absorbance of pigment extracts and by determination of the chlorophyll content index (CCI) with a CCM. The two measures of chlorophyll concentration were strongly correlated (P < 0.001, r2 = 0.72). In Experiment 2, the CCI of leaves from sugar maple trees subjected to one of four fertilization treatments (lime, lime + manure, lime + 10:10:10 N,P,K fertilizer and an untreated control) were determined with a CCM. Treatment effects were distinguishable between all pairwise comparisons (P < 0.001), except for the lime versus lime + NPK fertilizer treatments.  相似文献   

2.
Two complementary experimental designs at two contrasting scales (landscape/long term; individual tree/short term) were used for an in-depth evaluation of the successional status of sugar maple (AS: Acer saccharum Marsh.). First, forest disturbances during the 20th century and composition were mapped for two landscapes in the Du Lièvre watershed of southern Quebec. Our results show that, as well as dominating stands in the absence of fire, AS often rapidly developed dominance after fire, especially in the south of our study area. Similarly, a majority of AS-dominated stands clearcut in 1928 continued to be AS-dominated 60 years later. Second, we examined AS seedlings planted under two very contrasting light regimes. AS seedlings showed a combination of traits particularly adapted to tolerate shade under a low light regime. However, owing to a surprisingly high phenotypic plasticity, AS also exhibited efficient development under high light. This suggests the classification of AS as a late-successional species should indeed be revised and that generalist or trans-successional would be a more appropriate designation for this species. We discuss the ramifications of such a status revision, with an emphasis on the implications for its silviculture.  相似文献   

3.
Raulier F  Bernier PY  Ung CH  Boutin R 《Tree physiology》2002,22(15-16):1147-1156
The spatially inexplicit or functional multilayer models used to predict canopy transpiration or photosynthesis are based on the assumption that closed stands show less functional variability than structural variability, because foliage tends to arrange itself in space to optimize the capture of light. To validate this assumption, we compared the structural and functional properties, and the measured and modeled transpiration fluxes of two sugar maple (Acer saccharum Marsh.) stands of comparable leaf mass but differing in height and diameter distributions. One stand was characterized by a well-developed single-layer canopy, whereas the other stand had a multilayered canopy and a stem diameter distribution of the classical inverse-J shape. Stand differences in height and diameter distribution, and canopy gap fraction, were highly significant. There were minor but significant differences in leaf mass and leaf mass per unit leaf area (LMA) distributions. We found no differences in tree-level relationships between basal area and either transpiration flux or sapwood area. We compared measurements of stand transpiration with transpiration estimates obtained from a multilayer gas exchange model, in which only the nonspatial inputs, leaf area index and LMA frequency distribution described stand structure. For both stands, modeled values of daily transpiration closely followed measured values (r(2) = 0.94). These results support use of the nonspatially explicit approach to estimating canopy gas exchange, especially if the intent is to scale-up to larger portions of the landscape.  相似文献   

4.
An experimental introduction of pear thrips (Taeniothrips inconsequens Uzel), a major defoliator in sugar maple (Acer saccharum Marsh.) forests in northeastern North America, was conducted in a field plantation to determine if compensatory gas exchange occurs in response to feeding damage by this piercing-sucking insect. Sugar maple trees were enclosed in netting (167 micro m mesh) and pear thrips adults were introduced before leaf expansion in the spring. Pear thrips reduced whole-tree leaf area by approximately 23% and reduced leaf size (both mass and area) by 20% in the upper crown. Measurements of net CO(2) assimilation rate (A(net)) and stomatal conductance (g(s)) were made on tagged foliage that was later analyzed for stable carbon isotope composition (delta(13)C) to provide estimates of short- and long-term leaf water use efficiency (WUE). Pear thrips feeding reduced A(net) for fully expanded leaves by approximately 20%, although leaf chlorophyll content and leaf mass per unit area were apparently not affected. Comparison of A(net), g(s), instantaneous WUE and leaf delta(13)C between damaged and control trees as well as visibly undamaged versus moderately damaged foliage on pear thrips-infested trees indicated that there were no effects of pear thrips feeding damage on WUE or leaf delta(13)C. Long-term WUE among sugar maple trees in the field plantation, indicated by leaf delta(13)C analysis, was related to shorter-term estimates of leaf gas exchange behavior such as g(s) and calculated leaf intercellular CO(2) concentration (C(i)). We conclude that pear thrips feeding has no effect on leaf WUE, but at the defoliation levels in our experiment, it may reduce leaf A(net), as a result of direct tissue damage or through reduced g(s). Therefore, even small reductions in leaf A(net) by pear thrips feeding damage may have an important effect on the seasonal carbon balance of sugar maple when integrated over the entire growing season.  相似文献   

5.
We investigated seasonal patterns of biomass and carbohydrate partitioning in relation to shoot growth phenology in two age classes of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.) seedlings growing in the understory of a partially harvested forest. The high root:shoot biomass ratio and carbohydrate concentration of sugar maple are characteristic of species with truncated growth patterns (i.e., cessation of aboveground shoot growth early in the growing season), a conservative growth strategy and high shade tolerance. The low root:shoot biomass ratio and carbohydrate concentration of yellow birch are characteristic of species with continuous growth patterns, an opportunistic growth strategy and low shade tolerance. In both species, starch represented up to 95% of total nonstructural carbohydrates and was mainly found in the roots. Contrary to our hypothesis, interspecific differences in shoot growth phenology (i.e., continuous versus truncated) did not result in differences in seasonal patterns of carbohydrate partitioning. Our results help explain the niche differentiation between sugar maple and yellow birch in temperate, deciduous understory forests.  相似文献   

6.
Parker WC  Dey DC 《Tree physiology》2008,28(5):797-804
A field experiment was established in a second-growth hardwood forest dominated by red oak (Quercus rubra L.) to examine the effects of shelterwood overstory density on leaf gas exchange and seedling water status of planted red oak, naturally regenerated red oak and sugar maple (Acer saccharum Marsh.) seedlings during the first growing season following harvest. Canopy cover of uncut control stands and moderate and light shelterwoods averaged 97, 80 and 49%, respectively. Understory light and vapor pressure deficit (VPD) strongly influenced gas exchange responses to overstory reduction. Increased irradiance beneath the shelterwoods significantly increased net photosynthesis (P(n)) and leaf conductance to water vapor (G(wv)) of red oak and maple seedlings; however, P(n) and G(wv) of planted and naturally regenerated red oak seedlings were two to three times higher than those of sugar maple seedlings in both partial harvest treatments, due in large part to decreased stomatal limitation of gas exchange in red oak as a result of increased VPD in the shelterwoods. In both species, seedling water status was higher in the partial harvest treatments, as reflected by the higher predawn leaf water potential and seedling water-use efficiency in seedlings in shelterwoods than in uncut stands. Within a treatment, planted and natural red oak seedlings exhibited similar leaf gas exchange rates and water status, indicating little adverse physiological effect of transplanting. We conclude that the use of shelterwoods favors photosynthetic potential of red oak over sugar maple, and should improve red oak regeneration in Ontario.  相似文献   

7.
Leaf nutrition and photosynthetic performance of sugar maple (Acer saccharum Marsh.) were compared between two sugar maple stands in northwestern Vermont with contrasting health conditions as indicated by annual basal area growth, degree of crown dieback, and foliar appearance. Observations made during the diurnal cycle of both stands showed no apparent leaf water stress. In both stands, leaves had similar concentrations of major non-structural carbohydrates (starch and sucrose). Over two consecutive growing seasons (1991 and 1992), we consistently observed lower leaf Ca and Mg concentrations in the declining stand than in the healthy stand. Compared with the healthy stand, lower leaf chlorophyll concentrations and apparent leaf chlorosis were observed in the declining stand, and some trees had very low foliar Ca and Mg concentrations (0.31 +/- 0.03% and 0.09 +/- 0.01%, respectively). Trees in the declining stand had lower light-saturated net photosynthetic rates on a dry mass basis at both ambient CO(2) (P(n,amb)) and saturating CO(2) (P(n,sat)) than trees in the healthy stand. There were significant linear correlations between P(n,amb) and leaf mass per unit area (LMA) and between P(n,sat) per unit leaf area and LMA. There were also linear correlations between both P(n,amb) and P(n,sat) and leaf N when expressed on an area basis in both stands, indicating that variation in LMA may have been largely responsible for the observed photosynthesis-nitrogen relationship. The values of P(n,amb) and P(n,sat) were not significantly correlated with leaf N on a mass basis but were weakly correlated with leaf Ca and Mg on a mass basis. We conclude that low leaf Ca or Mg concentrations may limit leaf CO(2) assimilation and tree carbohydrate status in the declining stand.  相似文献   

8.
Leaf and crown morphology of shade-tolerant sugar maple (Acer saccharum Marsh.) were examined to test the hypotheses (1) that leaf area exhibits significant plasticity both within and between crown classes and individual tree crowns and (2) that leaf area is accurately predicted from estimates of crown volume. A total of 18 trees, ranging from 3.3 to 43.4 cm dbh, were felled and dissected into upper, middle, lower, and below-crown layers, for measurements of leaf, bark, and xylem dimensions. For dominant trees only, bark thickness and xylem radii were higher within the crown than below the crown. Cumulative leaf area index increased with decreasing stratum height at similar rates in all trees, except for two trees that were located in the understory. Area leaf weight declined with decreasing stratum height within the crown of all except four overstory trees. These four trees showed an increase with decreasing stratum height, i.e., leaves were heavier per unit area in the lower crown stratum and below the crown than they were at mid-crown. Within-tree leaf area density was usually higher in the upper crown of overstory trees and in the lower crown of understory trees. Total crown volume was the best predictor of whole-tree leaf area, but it was only slightly better than dbh.  相似文献   

9.
A comparison is made between a big-leaf model (i.e., without details of the canopy profile) and two multilayer models (i.e., with details of the canopy profile) to estimate daily canopy photosynthesis of a sugar maple (Acer saccharum Marsh.) stand. The first multilayer model uses the distribution of leaf area by leaf mass per unit area (LMA) classes, the observed relationships between the parameters of a photosynthesis-irradiance curve and LMA, and the relationship between relative irradiance and LMA to estimate canopy photosynthesis. When compared with this model, the big-leaf model underestimates daily canopy photosynthesis by 26% because of an assumed proportionality between photosynthetic capacity and relative irradiance, a proportionality that is inconsistent with our data. The bias induced by this assumption is reduced when the big-leaf model is compared with the second multilayer model which, in addition to the assumptions made for the first multilayer model, accounts for the sunlit and shaded fractions of leaf area. The residual bias is almost eliminated when the big-leaf model is run using a weekly averaged irradiance. It is likely, however, that this is the result of a compensating bias that, in this particular case, compensates for the initial bias introduced by the proportionality assumption. It is also shown that canopy photosynthesis can be represented by spatially inexplicit multilayer models that use leaf mass per area as a covariable to describe leaf characteristics and environment. Such models represent an interesting alternative to the biased big-leaf approach.  相似文献   

10.
Summary Water vapour diffusion characteristics and adsorption isotherms were determined for cell-lumen and cell-wall treated wood polymer composites (WPC). The diffusion coefficients of the cell-lumen WPC were lower than untreated wood and the cell-wall WPC coefficients were lower than cell-lumen. Using the Hailwood and Horrobin sorption model, it was found that the unimolecular layer is formed at lower moisture contents in WPC than in wood. The amount of free dissolved water was reduced only in the cell-wall WPC. The polymer reduces the water vapour accessibility in both types of WPC.  相似文献   

11.
Liu X  Tyree MT 《Tree physiology》1997,17(3):179-185
Soil and root characteristics were contrasted between a "declining" and a "healthy" sugar maple (Acer saccharum Marsh.) stand in Vermont, USA. The declining stand had lower basal area increment and more crown dieback than the healthy stand. Soil pH and base cation content were lower and soil water content was higher at the site of the declining stand than at the site of the healthy stand, whereas soil temperature did not differ significantly between the sites. In live fine roots, concentrations of K and Ca were marginally (P < 0.07) lower in the declining than in the healthy stand, whereas concentrations of N, P, Mg, and Al were not significantly different (P = 0.13 to 0.87) between stands. Starch and soluble sugar concentrations of fine and coarse roots did not differ significantly between stands, indicating that crown dieback did not affect carbohydrate supply to the roots in the declining stand. Throughout the growing season, the standing live and dead root biomass were significantly higher in the declining stand than in the healthy stand, indicating that more carbon was allocated to roots and that root turnover was higher in the declining stand than in the healthy stand.  相似文献   

12.
Summary The extractives of clear and sticker stained sapwood from sugar maple (Acer saccharum Marsh.) were isolated and screened for low molecular-weight phenols, which could be involved in the formation of sticker stain. Scopoletin (7-hydroxy-6-methoxycoumarin) was identified as the major low molecular-weight free phenol in the samples studied. This compound, which has not previously been reported in extractives from maple wood, was quantified in stained and clear samples. Additionally, the two major fatty acids present were identified as palmitic acid and linolenic acid, and the two major sterols as stigmasterol and sitosterol.The authors are indebted to Mr. Peter Garrahan for provision of wood samples and the Canadian Forestry Service for financial support  相似文献   

13.
Heavy atmospheric nitrogen (N) deposition has been associated with altered nutrient cycling, and even N saturation, in forest ecosystems previously thought to be N-limited. This observation has prompted application to such forests of non-N mineral nutrients as a mitigation measure. We examined leaf gas-exchange, leaf chemistry and leaf and shoot morphological responses of Acer saccharum Marsh. saplings and mature trees to experimental additions of non-nitrogenous mineral nutrients (dolomitic lime, phosphorus + potassium (P + K) and lime plus P + K) over 2 years in the Haliburton region of central Ontario, which receives some of the largest annual N inputs in North America. Nutrients were adsorbed in the mineral soil and taken up by A. saccharum trees within 1 year of fertilizer application; however, contrary to expectation, liming had no effect on soil P availability. Saplings and canopy trees showed significant responses to both P + K fertilization and liming, including increased foliar nutrient concentration, leaf size and shoot extension growth; however, no treatment effects on leaf gas-exchange parameters were detected. Increases in shoot extension preceded increases in diameter growth in saplings and canopy trees. Vector analysis of shoot extension growth and nutrient content was consistent with sufficiency of N but marked limitation of P, with co-limitation by calcium (Ca) in saplings and by Ca, Mg and K in canopy trees.  相似文献   

14.
Various human-induced changes to the atmosphere have caused carbon dioxide (CO?), nitrogen dioxide (NO?) and nitrate deposition (NO??) to increase in many regions of the world. The goal of this study was to examine the simultaneous influence of these three factors on tree seedlings. We used open-top chambers to fumigate sugar maple (Acer saccharum) and eastern hemlock (Tsuga canadensis) with ambient or elevated CO? and NO? (elevated concentrations were 760 ppm and 40 ppb, respectively). In addition, we applied an artificial wet deposition of 30 kg ha?1 year?1 NO?? to half of the open-top chambers. After two growing seasons, hemlocks showed a stimulation of growth under elevated CO?, but the addition of elevated NO? or NO?? eliminated this effect. In contrast, sugar maple seedlings showed no growth enhancement under elevated CO? alone and decreased growth in the presence of NO? or NO??, and the combined treatments of elevated CO? with increased NO? or NO?? were similar to control plants. Elevated CO? induced changes in the leaf characteristics of both species, including decreased specific leaf area, decreased %N and increased C:N. The effects of elevated CO?, NO? and NO?? on growth were not additive and treatments that singly had no effect often modified the effects of other treatments. The growth of both maple and hemlock seedlings under the full combination of treatments (CO??+?NO??+?NO??) was similar to that of seedlings grown under control conditions, suggesting that models predicting increased seedling growth under future atmospheric conditions may be overestimating the growth and carbon storage potential of young trees.  相似文献   

15.
This study investigates the effects of increasing soil penetration resistance(SPR) on seedling morphology and seedling architecture. When seedlings of deciduous Cappadocian maple(Acer cappadocicum Gled.) were grown in a greenhouse in a loamy soil under a wide range of soil compactions, all morphological variables studied changed significantly with increasing SPR. The relationships between increasing SPR and all morphological responses except lateral root length followed a negative quadratic curve. All biomass variables except lateral root biomass showed a bell-shaped response with respect to SPR, with a maximum biomass variable between 0.6 and1.2 MPa, decreasing at higher soil compaction values. All allocation ratios were significantly affected by soil penetration resistance. Biomass allocation to roots was also affected by soil compaction. There was not a significant relationship between the specific stem length and increasing soil penetration resistance. The specific root length showed two trends to increasing SPR; it first decreased in response to the moderate compaction treatment(up to about 1.2 MPa), then increased significantly. We concluded that increasing soil compaction caused morphological changes to root and shoot sections of A.cappadocicum seedlings.  相似文献   

16.
Field measurements were made of leaf photosynthesis (A), stomatal conductance (g) and leaf water relations for sugar maple (Acer saccharum Marsh.) seedlings growing in a forest understory, small gap or large clearing habitat in southwestern Wisconsin, USA. Predawn water status, leaf gas exchange and plasticity in field and laboratory water relations characteristics were compared among contrasting light environments in a wet year (1987) and a dry year (1988) to evaluate possible interactions between light and water availability in these habitats. Leaf water potentials (Psi(leaf)) at predawn and midday were lower for clearing than gap or understory seedlings. Acclimation of tissue osmotic potentials to light environment was observed among habitats but did not occur within any of the habitats in response to prolonged drought. During a summer drought in 1988, decreases in daily maximum g (g(max)) and maximum A (A(max)) in clearing seedlings were correlated with predawn Psi(leaf), which reached a seasonal minimum of -2.0 MPa. Under well-watered conditions, diurnal fluctuations in Psi(leaf) of up to 2.0 MPa in clearing seedlings occurred along with large midday depressions of A and g. In a wet year, strong stomatal responses to leaf-to-air vapor pressure difference (VPD) in sunny habitats were observed over nine diurnal courses of gas exchange measurements on seedlings in a gap and a clearing. Increasing stomatal limitations to photosynthesis appeared to be responsible for the reduction in A at high VPD for clearing seedlings. In understory seedlings, however, low water-use efficiency and development of leaf water deficits in sunflecks was related to reduced stomatal limitations to photosynthesis relative to seedlings in sunny habitats. Predawn Psi(leaf) and VPD appear to be important factors limiting carbon assimilation in sugar maple seedlings in light-saturating irradiances, primarily through stomatal closure. The overall results are consistent with the idea that sugar maple seedlings exhibit "conservative" water use patterns and have low drought tolerance. Leaf water relations and patterns of water use should be considered in studies of acclimation and species photosynthetic performance in contrasting light environments.  相似文献   

17.
KERR  GARY; NILES  JOHN 《Forestry》1998,71(3):219-224
The results of an experiment to investigate the early growthand form of ten different provenances of Norway maple (Acerplatanoides L.) are described. Two sites were planted and after8 years survival was 88 per cent and 95 per cent and heightincrement was 402 cm and 201 cm; confirmmg the potential ofNorway maple to be a productive forest tree. Provenances thatperformed well were from Germany, the Netherlands, Denmark andYugoslavia; exact locations were not known for all seed collections.A provenance from Russia was included, material from this fareast has rarely been tested in Britain. However, as expected,its performance was relatively poor. The main constraint tofurther planting of Norway maple is the palatability of thebark to grey squirrels (Sciurus carolinensis Gmelin.). However,it is a useful tree for high pH and heavy soils and as an alternativespecies to sycamore (Acer pseudoplatanus L.).  相似文献   

18.
Twenty percent of of the world's flowering plants produce recalcitrant seeds (i.e., seeds that cannot withstand drying or freezing). We investigated whether the embryonic axis from the normally recalcitrant seeds of silver maple (Acer saccharinum L.) can be made tolerant to desiccation (10% water content) and low temperature (-196 degrees C, cryopreservation) by pretreatment with ABA or the compound tetcyclacis, which enhances endogenous ABA concentrations. Pretreatment of axes with both ABA and tetcyclacis increased germination after desiccation and freezing to 55% from a control value of zero. Pretreatment of axes with ABA and tetcyclacis increased the ABA content of the axes, as measured by enzyme-linked immunoassay, and stimulated the synthesis of storage and dehydrin-like proteins, believed to have a role in the desiccation tolerance of orthodox seeds.  相似文献   

19.
Physiological acclimation and genotypic adaptation to prevailing temperatures may influence forest responses to future climatic warming. We examined photosynthetic and respiratory responses of sugar maple (Acer saccharum Marsh.) from two portions of the species' range for evidence of both phenomena in a laboratory study with seedlings. A field study was also conducted to assess the impacts of temperature acclimation on saplings subjected to an imposed temperature manipulation (4 degrees C above ambient temperature). The two seedling populations exhibited more evidence of physiological acclimation to warming than of ecotypic adaptation, although respiration was less sensitive to short-term warming in the southern population than in the northern population. In both seedling populations, thermal compensation increased photosynthesis by 14% and decreased respiration by 10% in the warm-acclimated groups. Saplings growing in open-top field chambers at ambient temperature and 4 degrees C above ambient temperature showed evidence of temperature acclimation, but photosynthesis did not increase in response to the 4 degrees C warming. On the contrary, photosynthetic rates measured at the prevailing chamber temperature throughout three growing seasons were similar, or lower (12% lower on average) in saplings maintained at 4 degrees C above ambient temperature compared with saplings maintained at ambient temperature. However, the long-term photosynthetic temperature optimum for saplings in the field experiment was higher than it was for seedlings in either the 27 or the 31 degrees C growth chamber. Respiratory acclimation was also evident in the saplings in the field chambers. Saplings had similar rates of respiration in both temperature treatments, and respiration showed little dependence on prevailing temperature during the growing season. We conclude that photosynthesis and respiration in sugar maple have the potential for physiological acclimation to temperature, but exhibit a low degree of genetic adaptation. Some of the potential for acclimation to a 4 degrees C increase above a background of naturally fluctuating temperatures may be offset by differences in water relations, and, in the long term, may be obscured by the inherent variability in rates under field conditions. Nevertheless, physiologically based models should incorporate seasonal acclimation to temperature and permit ecotypic differences to influence model outcomes for those species with high genetic differentiation between regions.  相似文献   

20.
Container-grown seedlings of red oak (Quercus rubra L.), sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britton) in their first year of growth were overwintered outdoors. Tolerance of roots and stems to freezing was compared from late summer to the following spring. Mitotic activity in the apical bud was related more closely to air temperature than to bud dormancy as defined by days to bud break. In all species, stem hardening was observed before days to bud break reached a maximum. Dormancy release (days to bud break equal to zero) of yellow birch coincided with loss of stem hardening in the spring. Roots hardened more slowly, had a lower frost tolerance than stems in fall and winter, and dehardened earlier than stems in the spring. There were differences in stem and root hardiness among the species, with yellow birch being the most tolerant, followed by sugar maple and red oak. Primarily because of root sensitivity to frost, winter was a critical period for all three species, but particularly for red oak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号