首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在农业生产中,过量偏施氮肥导致的硝酸盐富集是次生盐渍化、酸化等土壤障碍的重要诱因。生物炭因良好的吸附特性逐渐成为缓解盐渍化的土壤调理剂,但果菜秸秆生物炭对硝酸盐等离子的吸附研究鲜见报道。以甜椒、番茄和茄子3种果菜秸秆为原料热解制备生物炭,进行硝态氮吸附试验。通过扫描电镜(SEM)和傅里叶近红外光谱(FTIR)等技术对生物炭吸附前、后表面形貌、官能团等进行表征分析,利用吸附动力学模型和等温吸附模型等进行拟合分析,综合模型参数和形貌表征解析果菜秸秆生物炭的吸附性能和机制。研究结果表明,3种果菜秸秆生物炭对硝态氮均具有一定吸附能力,茄子秸秆生物炭吸附能力最强,最大理论平衡吸附量为114.788mg/g,其次为番茄(29.736mg/g)和甜椒(9.759mg/g);茄子和甜椒秸秆生物炭吸附性能优于玉米、稻壳等大田作物秸秆生物炭,吸附过程符合准二级动力学模型,受化学键吸附、表面吸附和内扩散吸附过程的控制,番茄秸秆生物炭吸附过程符合准一级动力学模型,主要为物理吸附;FTIR分析显示,3种生物炭均含有羟基、甲基、亚甲基、羧基和羰基官能团,除此之外,甜椒和茄子秸秆生物炭还含有醚键,番茄秸秆生物炭含有醇羟基。因此,3种果菜秸秆生物炭对硝态氮均具有吸附能力,茄子秸秆生物炭吸附能力最强,受孔隙填充、官能团和络合作用等多种理化机制的影响,具有消减土壤次生盐渍化的潜力。本研究对盐渍化土壤修复和果菜秸秆资源化利用具有理论意义。  相似文献   

2.
秸秆水热炭与热裂解炭结构表征及铅吸附机制研究   总被引:1,自引:0,他引:1  
以玉米秸秆为原料,在不同温度下(280℃和320℃),分别采用水热炭化法和热裂解炭化法制备秸秆水热炭和热裂解炭,对比分析了两种生物质炭的结构差异,并结合等温吸附模型和吸附动力学模型研究了秸秆水热炭和热裂解炭对铅离子的吸附机制。结果表明:随着反应温度的升高,水热炭的脱氢效果更显著,形成了无序的晶体结构及丰富的表面含氧官能团;热裂解炭的脱氧效果更显著,其表面含氧官能团较少,且形成了有序的晶体结构。水热炭的孔隙率先增大、后减小,呈现致密、平滑的表面形貌;热裂解炭的孔隙率持续增加,具有显著的中孔结构特征,呈现粗糙多孔的表面形貌。秸秆水热炭和热裂解炭分别在4h和10h达到吸附平衡,理论平衡吸附量分别可达214.16mg/g和133.99mg/g。秸秆热裂解炭对铅离子吸附符合准一级动力学模型和Freundlich等温吸附模型,表明其吸附反应为多分子层吸附过程;而秸秆水热炭对铅离子吸附符合准二级动力学模型和Langmuir等温吸附模型,表明其吸附反应为单分子层吸附过程。结合两种生物质炭的结构特征可知,热裂解炭主要依靠铅离子在其孔隙内的扩散运动进行物理吸附,其中大尺寸中孔的存在更有利于铅离子克服空间障碍进入孔隙,但吸附能力相对较弱,且容易脱附。络合反应是水热炭脱除水中铅离子主要机制,即含氧官能团与铅离子结合形成络合物的化学吸附,其吸附能力较强,且不容易脱附。  相似文献   

3.
稻壳炭对铵态氮的吸附机理研究   总被引:4,自引:0,他引:4  
研究了500℃连续热解制备的稻壳炭对水溶液中NH+4-N的吸附特性和稻壳炭用量、颗粒粒径、NH+4-N初始质量浓度、p H值、振荡时间等因素对NH+4-N吸附特性的影响。结果表明,随着NH+4-N溶液初始质量浓度、p H值的不断升高,稻壳炭对NH+4-N的平衡吸附量不断增加,而随着振荡时间的推移,平衡时稻壳炭对NH+4-N的单位吸附量不断增加,60 min内吸附较快,在吸附90 min左右时保持不变,这说明稻壳炭对NH+4-N的吸附在1.5 h左右基本达到平衡,对于初始质量浓度为3 mg/L和5 mg/L的NH+4-N溶液,稻壳炭对NH+4-N的最大吸附量分别为31.26、81.14 mg/kg。稻壳炭的颗粒粒径越小,单位吸附量越高,0.25 mm以下的稻壳炭对NH+4-N的吸附容量较大。从热力学和动力学角度探究了吸附机理,结果表明,稻壳炭对NH+4-N的等温吸附过程符合Freundlich模型,表明稻壳炭对水溶液中的NH+4-N吸附为不均一的多分子层吸附;准二级吸附模型能较好地描述吸附的全过程,稻壳炭吸附NH+4-N主要包含液膜扩散、表面吸附、颗粒内部扩散过程,主要以物理吸附为主。  相似文献   

4.
生物炭吸附去除溶液中硝态氮研究综述   总被引:1,自引:0,他引:1  
近年来,生物炭对减少水体环境中的硝酸盐污染、土壤氮素淋溶损失等问题的研究正日益受到国内外研究者的关注。通过对目前国内外生物炭对NO-3-N的吸附研究文献进行总结分析,得出了生物炭对NO-3-N的吸附机理及其影响吸附效果的因素等,指出生物炭对吸附NO-3-N的可行性,并提出未来该研究领域中尚存的薄弱环节包括吸附机理的模型建立、工业水处理的应用研究、提高吸附效率的改性方法、生物炭吸附材料的解吸及再生利用、对土壤理化性质的影响及其作用机理等。  相似文献   

5.
生物炭吸附水体中重金属机理与工艺研究进展   总被引:4,自引:0,他引:4  
生物炭因其良好的表面特性和孔隙结构,广泛的原料来源和广阔的产业化发展前景,已成为当今环境、农业和能源等领域的研究热点。针对生物炭对水体重金属的吸附研究,本文基于生物炭原料和制备工艺的多样性,综合分析了国内外生物炭重金属吸附机理的研究成果,详细阐述、分析了5种吸附作用机制(物理吸附、静电作用、离子交换、络合反应和化学沉淀)及其相关表征手段;同时评述了吸附工艺条件和重金属种类对生物炭吸附重金属的影响;指出生物炭重金属吸附领域未来的研究中,应开展针对重金属吸附的生物炭原料特性及吸附产物的多维、微纳尺度表征方法研究。  相似文献   

6.
生物炭对鸡粪好氧堆肥主要氮素形态含量影响与保氮机制   总被引:12,自引:0,他引:12  
生物炭对鸡粪好氧堆肥过程氮素形态含量影响及保氮机制的研究对有害气体减排、氮素减损控制以及好氧堆肥工艺的深度优化具有重要意义。以鸡粪和麦秸为主要原料,通过添加适量生物炭,利用实验室智能型好氧堆肥反应器系统进行了好氧堆肥试验。基于获取的主要理化、生物学指标以及氮素存在形态动态数据,结合扫描电镜和主要种类微生物数量动态变化分析,研究了好氧堆肥过程主要氮素形态含量变化并初步阐释了生物炭保氮机制。研究结果表明:添加生物炭有利于鸡粪好氧堆肥过程氨气减排和减少氮素损失;堆肥过程氨气排放量与铵态氮浓度和硝态氮浓度分别呈显著正相关关系(r=0.783,p=0.0370.05)和高度显著负相关关系(r=-0.941,p=0.0170.05)。生物炭多孔结构能有效吸附铵态氮和氨气等氮素物质,降低堆体铵态氮浓度,进而减少氨气挥发;生物炭能为硝化细菌等微生物群落提供适宜的环境,有利于促进硝化反应并抑制氨气挥发。  相似文献   

7.
以玉米秸秆为原料,采用不同质量分数(10%和30%)的硝酸溶液在水热炭化前、后对样品进行改性处理,结合理化结构表征以及等温吸附模型、吸附动力学模型的拟合结果,探究了硝酸改性秸秆水热炭对铅离子的吸附机制。结果表明,经硝酸改性处理的秸秆水热炭均会形成丰富的含氧基团,水热炭化前,经HNO3改性的秸秆炭(10%N-JG和30%N-JG)呈现粗糙多孔的表面形貌和发达的中孔结构,并形成了三维无序的大尺寸微晶结构;水热炭化后,经HNO3改性的秸秆炭(JG-10%N和JG-30%N)产生了大量分布均匀、尺寸相近的微孔,并形成了三维有序的小尺寸微晶结构。通过对比发现,10%N-JG和30%N-JG对铅离子吸附效果最优,分别在3.5h和3h达到吸附平衡,理论最大吸附量可达247.51mg/g和280.09mg/g。10%N-JG和30%N-JG均符合准一级、准二级动力学模型以及Freundlich等温吸附模型,说明物理扩散和化学吸附在铅离子吸附过程中的作用同等重要。研究发现,秸秆水热炭主要依靠含氧官能团的化学吸附作用脱除水中的铅离子,其发达的中孔结构更有利于铅离子进入颗粒内部,增大了内部孔道上含氧基团对铅离子的捕捉机率,从而保证了水热炭对铅离子的高效吸附。  相似文献   

8.
以芦苇秸秆为原料制备生物炭,对生物炭进行超声共沉淀混合改性,优化制备改性炭的条件,探究改性炭对水体中磷酸盐吸附特性。结果表明:氯氧化锆和氯化铁混合溶液改性芦苇生物炭吸附性能最好,最优改性条件为锆铁质量比1∶1,锆铁总浓度为0.03 mol/L。溶液pH对该材料吸附磷有比较大的影响,随着溶液pH的增大吸附量随之降低。在磷溶液浓度为10 mg/L和投加量为0.8 g/L时,去除率达90%以上,剩余磷浓度达到《城镇污水处理厂污染物排放标准》一级B排放标准。溶液中阴离子对磷的吸附有所影响,抑制作用顺序为HCO_3~-NO_3~-SO_4~(2-)Cl~-F~-。不同温度的吸附等温线拟合更符合Freundlich模型,温度升高有利于吸附。动力学实验数据拟合更符合准二级方程。  相似文献   

9.
【目的】探究施用生物炭对节水灌溉条件下稻田土壤养分的影响,为提升稻田土壤肥力、制定稻田水碳调控策略提供技术指导。【方法】在控制灌溉条件下,设置0、10、20、40t/hm2共4个生物炭施用水平,分别记为CK、CL、CM、CH处理,分析不同生物炭施用水平对节水灌溉条件下稻田土壤养分特征的影响。【结果】施用生物炭后,各处理稻田土壤有机质、有机碳量由大到小依次为:CH处理>CM处理>CL处理>CK。2018年,CH、CM、CL处理下的水稻生育期土壤平均铵态氮量分别比CK增加1.52、0.61、0.39 g/kg,2019年分别比CK处理减少2.01、1.71、0.99g/kg;施用分蘖肥后,CK条件下的稻田土壤铵态氮量上升速率最高,CH、CM、CL处理下的稻田土壤铵态氮量变化速率差异较小;施用穗肥后,2018年各处理土壤铵态氮量上升速率较为接近,2019年上升速率为CK>CL处理>CM处理>CH处理。综合2 a试验结果,CH、CM、CL处理下的稻田土壤硝态氮量的平均值比CK降低了32.34%、19.45%、9.21%。【结论】施用生物...  相似文献   

10.
针对再生水灌溉镉污染问题,研发新型低成本高效重金属吸附材料。以农业废弃小麦秸秆和小麦秸秆生物质炭为研究对象,研究了麦秆和小麦秸秆生物质炭对低质量浓度Cd~(2+)的吸附性能及影响因素。结果表明,麦秆和小麦秸秆生物质炭对Cd~(2+)的吸附特性符合Langmuir方程,且吸附作用主要发生在吸附开始的10 min,试验条件下,生物质炭对Cd~(2+)去除率达90%以上,麦秆对Cd~(2+)去除率为70%左右;pH值对麦秆吸附Cd~(2+)影响显著,对生物质炭吸附Cd~(2+)影响极显著,pH值为3~6时生物质炭对Cd~(2+)的吸附效果较好。温度显著影响麦秆对Cd~(2+)的吸附,温度对生物质炭吸附Cd~(2+)无显著影响,当吸附材料投加量大于0.5 g/L即固液比大于0.45 g/mg时,增大二者投加量对其吸附Cd~(2+)没有显著影响。  相似文献   

11.
全蛋液营养全面,含有人体所需的蛋白质、脂类、糖类和维生素等多种成分。基于肾病患者低磷饮食的需求,采用水滑石(Layered double hydroxide,LDH)吸附法减少全蛋液中磷的含量,开发一款低磷型液蛋制品,为肾病患者提供专用型饮食。实验研究了不同吸附温度下,吸附时间、磷初始质量浓度及LDH添加量对LDH磷吸附量及蛋白质溶解度的影响,并对其动力学模型进行分析;同时探究了解吸液体积、解吸时间对LDH解吸特性的影响以及LDH重复利用情况。实验结果表明:在1~7 h内,吸附量与吸附时间成正比;各温度下(20~45℃)吸附量和溶解度均随磷初始质量浓度的增加而升高;当LDH添加量为10 g/L时,各温度下吸附效果均较好。在模型分析中,Langmuir等温式和准二级动力学模型拟合度较高,尤其吸附温度在25℃和30℃时拟合效果最佳。解吸实验中,最佳条件为解吸时间5 h,液料比1. 00 L/g,且循环利用前2次可维持较好吸附效果。脱磷后必需氨基酸占总氨基酸的质量分数大于40%,必需氨基酸与非必需氨基酸的质量百分比大于60%,对蛋白质营养性的影响较小。综上可知,LDH是一种适于去除全蛋液中磷的吸附材料,可用于专用型液蛋制品的开发。  相似文献   

12.
为探究杨木炭对东北黑土吸附猪粪沼液氮素特性的影响,明晰其吸附机理,选取杨木炭和壤质、砂质两种黑土,以活性炭作为标准比较炭,系统研究活性炭、杨木炭的粒径及添加比例、初始质量浓度、振荡时间、温度对黑土吸附、解吸猪粪沼液中氨态氮、硝态氮特性的影响规律,并拟合等温吸附模型和吸附动力学模型。结果表明:黑土对猪粪沼液氮素的吸附能力随着活性炭和杨木炭粒径的减小、添加比例的增加而显著增加;当粒径为0. 25 mm、添加比例10%时,添加杨木炭的黑壤土和黑砂土的氨态氮、硝态氮的吸附量为224. 8、107 mg/kg和212. 4、104 mg/kg,比空白纯黑壤土和黑砂土提高388. 7%、296. 3%和453. 13%、333. 33%,比添加活性炭的黑壤土和黑砂土降低19. 71%、10. 08%和12. 38%、7. 14%,但添加杨木炭比添加活性炭对吸附平衡后沼液中氨态氮、硝态氮浓度变化影响的差异均不超过2. 5%;添加活性炭黑土、杨木炭黑土、空白纯黑土和纯炭对猪粪沼液中氨态氮的吸附过程为吸热反应,而对硝态氮的吸附过程为放热反应,且所有吸附过程均经历快速、缓慢、趋于平衡3个阶段,硝态氮快速吸附的时间更短; Freundlich、Langmuir模型和准二级模型均能较好描述其等温吸附过程和吸附动力学过程,Freundlich模型比Langmuir模型相对更优,吸附反应过程同时存在不均匀的多分子层表面物理吸附和均匀的单分子层化学吸附;添加活性炭、杨木炭黑土对沼液中氨态氮、硝态氮的吸附量越大,解吸率也越大,但解吸量远小于有效吸附量,添加杨木炭的黑壤土和黑砂土对氨态氮、硝态氮的有效吸附量比添加活性炭的黑壤土和黑砂土减少14. 57%、9. 19%和5. 34%、5. 74%。杨木炭在提高黑土对猪粪沼液氮素的吸附能力、减少猪粪沼液氮素损失方面的效果优良,可为杨木炭和猪粪沼液在东北黑土改良方面的深入研究提供理论依据。  相似文献   

13.
为探究棉秆生物炭(棉秆炭)对重金属Zn(Ⅱ)的去除作用,利用水平管式炉分别在400℃、500℃、600℃热解温度下制备棉秆炭,进行Zn(Ⅱ)的吸附试验。对比棉秆炭、木质和煤质活性炭对不同浓度溶液中Zn(Ⅱ)的去除效果。分析棉秆炭的元素含量和官能团变化等性质,以揭示吸附机理。结果表明,棉秆的DTG曲线在327℃出现最大值,温度高于600℃时,DTG曲线趋于稳定,棉秆的热解基本完成。随热解温度的升高,炭产率、H/C和O/C元素比均下降,说明棉秆炭芳香化程度和碱性增强,含氧极性官能团数量减少,红外分析印证了以上结论。去除率上,棉秆炭与Zn(Ⅱ)初始浓度和热解温度负相关,木质活性炭与Zn(Ⅱ)初始浓度正相关;吸附量上,棉秆炭、木质和煤质活性炭与Zn(Ⅱ)初始浓度正相关,棉秆炭与热解温度负相关。当Zn(Ⅱ)溶液浓度为2 mg/L时,棉秆炭的吸附性能优于木质和煤质活性炭,当Zn(Ⅱ)溶液浓度为10 mg/L、50 mg/L时,木质活性炭的吸附性能优于棉秆炭和煤质活性炭。棉秆炭吸附Zn(Ⅱ)的机理包含配位反应和离子交换。  相似文献   

14.
为了合理利用微咸水资源并结合生物炭改良剂,在节水基础上探究施用生物炭微咸水矿化度对盐碱土水盐运移规律影响.以黄三角中度盐碱土为研究对象,在室内进行一维垂直入渗试验,包括对照共设置8个处理:CK,W1,W2,W3,C1,W1C,W2C,W3C.结果表明:相同入渗时间下,累积入渗量和湿润锋运移深度随微咸水矿化度增加先增加后降低;低矿化度条件下,掺生物炭的土壤入渗性能优于未掺生物炭的,提升幅度2.16%~8.54%,且处理W2C效果最优,W1C略小于W2C,Kostiakov模型能够更好地描述微咸水矿化度对生物炭作用下盐碱土的土壤水分入渗过程.相同土壤条件下,各处理0~20 cm土层土壤含水率随着微咸水矿化度增加先增加后降低,掺生物炭的土壤含水率比未掺生物炭高2.53%~3.95%,且处理W2C增幅显著,W1C略小于W2C.各处理的土壤含盐量随着微咸水矿化度增加而增加,生物炭处理的脱盐效果略小于未掺生物炭的,其中2 g/L微咸水处理的脱盐效果最优,脱盐率高达47.4%.综合考虑,对黄河三角洲地区中度盐碱土,建议掺加生物炭并采用2 g/L微咸水进行灌溉.  相似文献   

15.
利用铁改性生物炭从富营养化水体中捕集磷,将其回用于农田,是高效利用生物质、促进磷资源高效利用的有效途径之一。然而,铁改性生物炭对磷的吸附效率受制备方式和水环境的影响极大。为促进富营养化水体磷的捕集效率和再利用,本文总结了国内外铁改性生物炭(Fe-B)的制备方法及其对水体中磷酸盐的吸附性能,阐述了Fe-B对磷的吸附机制,分析了pH值、共存离子、生物炭用量和温度对Fe-B吸附磷酸盐性能的影响,分析了富营养化水体中磷的农田资源化再利用潜力。本研究结果可为富营养化水体磷捕集与资源化再利用提供理论参考。  相似文献   

16.
为探究不同种类生物炭与其施量对新复垦区土壤水分入渗过程的影响,设置2个生物炭种类(玉米秸秆生物炭A、水稻稻壳生物炭B)和3个施量梯度(2%、4%和8%)以及不施加生物炭(CK)共7个处理,进行垂直一维积水入渗试验。结果表明:除低施量水稻稻壳生物炭处理(B2)外,添加生物炭延缓了新复垦区土壤水分入渗过程,玉米秸秆生物炭优于水稻稻壳生物炭。添加2%、4%和8%玉米秸秆生物炭处理(A2、A4、A8)随施量增加,入渗时间逐渐延长,与CK相比,入渗时间分别延长35.0%、46.0%和59.1%;而水稻稻壳生物炭组中仅4%施量处理(B4)延缓了水分入渗,入渗时间较CK增加28.5%。同时,添加生物炭降低了土壤初始入渗率及相同入渗时间内的湿润锋运移距离和累积入渗量,生物炭种类及其施量对这3项指标的影响与对入渗时间的影响规律相似。添加生物炭均提高了土壤表层含水率,增幅2.2%~20.3%,且两种生物炭在高施量处理条件下土壤保水能力明显优于中、低施量。湿润锋运移距离与时间符合幂函数关系,Philip模型能较好地模拟不同种类及施量生物炭处理下新复垦土壤的水分入渗过程。总体来讲,添加8%玉米秸秆生物炭处理有利于改善新复垦区土壤水分下渗快、保水能力弱的问题。  相似文献   

17.
为探究生物炭介导的鸡粪厌氧消化产甲烷最优工艺参数,在前期试验的基础上,以鸡粪添加量、生物炭添加量和碳氮比为参数,在(35±1)℃条件下进行了生物炭介导的鸡粪序批式三因素二次旋转组合厌氧消化试验。以单位挥发性固体(VS)累积产甲烷量为评价指标,通过响应面法获得单位VS累积产甲烷量随三因素变化的二次回归模型。结果表明:回归模型拟合性较好,能较好描述单位VS累积产甲烷量随鸡粪添加量、生物炭添加量和碳氮比变化的规律。通过对模型工艺参数寻优,得到最优工艺参数为鸡粪添加量14.35 g、生物炭添加量4.97%、碳氮比22.02,此条件下单位VS产甲烷量为283 m L/g,为生物炭介导的鸡粪厌氧消化工程应用提供了参考依据。  相似文献   

18.
通过静态和动态试验研究了6种阴离子交换树脂对植酸的吸附与解吸性能.结果表明,D201树脂对植酸的吸附交换作用较好,且在pH值为2.2时吸附能力最强,静态吸附量达到94.54 mg/g,1.5 mol/L的NaOH溶液利于植酸解吸;Freundlich吸附等温方程可以较好地描述D201树脂对植酸的等温吸附,表明吸附在常温下进行即可;D201树脂对植酸的吸附过程符合Lagergren一级速率方程,表观吸附速率常数k与植酸起始植酸浓度呈负相关关系,与温度呈正相关关系.在D201树脂对植酸的动态吸附与解吸过程中,层析柱管径、上样液浓度、上样液流速和洗脱剂流速对吸附与解吸效果影响较大.  相似文献   

19.
为解决渍水胁迫这一困扰南方避雨栽培区农业生产的障碍性问题,定量评估施加生物炭对缓解作物渍害的影响,以避雨栽培番茄为对象,借助土柱试验,系统分析不同地下水位及生物炭施加量对作物耗水规律、土壤氧化还原电位及产量的影响。结果表明,地下水位越浅,作物渍害胁迫越严重,导致耗水量越少;施用生物炭后,作物耗水量显著降低,生物炭保水作用随地下水位降低而有所削弱。地下水补给量随地下水埋深变大而减小,相同地下水位条件下,施用生物炭可显著增加地下水利用量。施用生物炭可使土壤氧化还原电位变大,改善土壤通气性能。地下水位在-80cm时,5%生物炭施加量可显著提高番茄产量和水分利用效率,其增幅分别达到38.7%、56.6%,地下水位对番茄产量影响显著,而地下水位和生物炭交互作用对产量及水分利用效率影响均不显著。  相似文献   

20.
土壤有机质低、保水能力差是阻碍黄土高原苹果产业良性发展的两大制约因素。本研究针对上述问题,选取生物炭、大分子保水剂、枯草芽孢杆菌和胶质芽孢杆菌作为改良剂开展了为期两年的大田试验。研究发现施加生物碳、大分子保水剂、枯草芽孢杆菌以及胶质芽孢杆菌较对照相比土壤全氮含量平均提升88.86%、49.38%、30.05%和25.35%,土壤硝态氮平均提升1.70、1.50、1.29和1.49倍,土壤铵态氮平均提升高达29.01、8.50、12.75和22.60倍;生物炭对土壤有机碳储量影响最显著,提升高达3.70倍以上。通过通径分析发现土壤pH、土壤导水率及硝态氮直接影响有机碳储量,土壤容重、铵态氮、速效钾及土壤团聚体通过影响土壤pH和土壤导水率间接影响土壤有机碳储量。土壤改良剂对果树新稍、果径、果树根系分布情况及产量均有一定影响,在0~20 cm土层深度,施加生物炭较对照处理果树根系密度提升了3.05倍。除施加生物炭外,其它改良剂对苹果产量影响不显著。通过经济效益评价分析,仅施加生物炭后改良经济效益为正,达到1 149.26元/hm2。建议将施用生物炭作为改良果园土壤、提高苹果产量的有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号