共查询到5条相似文献,搜索用时 15 毫秒
1.
The uptake of oxolinic acid by the rotifer Brachionus plicatilis, Artemia franciscana nauplii and metanauplii was studied as a function of its concentration in the enrichment medium and the duration of the enrichment period. An emulsion containing 5, 10, 20 or 30% (w/w) oxolinic acid was administered and the enrichment period lasted 4, 8, 12 or 36 h. Highest incorporation of oxolinic acid was achieved using a 20% emulsion and a 12 h enrichment for rotifers (205.05 ± 17.1 μg g?1 dry weight), a 24 h enrichment for nauplii (2528.8 ± 254.6 μg g?1 dry weight), and an 8 h enrichment for metanauplii (1236.58 ± 22.9 μg g?1 dry weight). Higher concentrations of oxolinic acid in the enrichment emulsion or longer enrichment times resulted in decreased survival. Two hours post enrichment the contents of the drug appeared significantly decreased. The concentration data of oxolinic acid were best fit to a two phase exponential elimination model, the first phase elimination half‐life (t1/2α) being 1.86, 1.08 and 1.74 and the terminal phase elimination half‐life (t1/2β) 26.83, 29.67 and 17.48 in rotifers, nauplii and metanauplii correspondingly. Enrichment with an emulsion containing 20% oxolinic acid is recommended employing a duration of 12, 24, or 8 h enrichment for rotifers, nauplii and metanauplii respectively, while enriched carriers should be used shortly after enrichment. 相似文献
2.
The pharmacokinetics and tissue distribution of oxolinic acid following an intravascular administration (15 mg kg?1 fish) were determined in sea bass, Dicentrarchus labrax L. (110 g), at 13 °C and 22 °C water temperature. The kinetic profile of the drug was found to be temperature dependent, with increased temperature having a greater effect on distribution after equilibrium and the elimination phase than on the distribution process. The distibution half‐life of oxolinic acid was 1.15 and 2.76 h at 22 °C and 13 °C respectively, whereas the elimination half‐life of the drug was 55 h at 22 °C and 315 h at 13 °C. The values of the apparent volume of distribution (1.44 L kg?1 at 22 °C and 3.31 L kg?1 at 13 °C) and the volume of distribution at steady state (5.2 and 14.7 L kg?1 at the high and low temperature respectively) were considerably different between the two tested temperatures. The total body clearance of the antibiotic was found to be low (1.47 L kg?1 day?1 at 22 °C and 0.80 L kg?1 day?1 at 13 °C). Lower rates of elimination were found for the liver compared with muscle, the difference increasing with increasing temperature, while elimination rates from the serum were higher than those of other tissues, especially at the high temperature. 相似文献
3.
The objectives of this study were to evaluate the effects of 2‐phenoxyethanol (2‐PE), which is an anaesthetic, on survival rates of normal juveniles and malformed juveniles having lordosis or nonfunctional swim bladders of European sea bass (Dicentrarchus labrax L., 1758) and to establish the LC50 (the concentration lethal to 50% of test animals at concentrations of 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 and 4.5 mL L−1) and LT50 (the time lethal to 50% of test animals after 10‐, 20‐, 30‐, 40‐, 50‐ and 60‐min time periods) of 2‐PE at 19±0.5°C, salinity 38 g L−1, pH 7.4–7.8 and dissolved oxygen >8 mg L−1. Between concentrations of 0.05 and 0.25 mL L−1, 2‐PE did not cause any mortality or toxicity on normal, lordosis and nonfunctional swimbladder juveniles of sea bass during the 60‐min exposure period. On the other hand, significance in each group fish in their mortality rates between concentrations of 0.30 and 0.45 mL L−1 was observed (P<0.05). The nonfunctional swimbladder juveniles showed lower LC50 than normal and lordosis juveniles respectively. Also, nonfunctional swimbladders juveniles showed lower LT50 than normal and lordosis juveniles respectively. At concentrations of 0.30, 0.35, 0.40 and 0.45 mL L−1, induction times were found to be significantly different among the three groups (P<0.05). Recovery times were not found to be significantly different in two groups at concentrations of 0.30 and 0.40 mL L−1 (P>0.05). The toxic effect of 2‐PE on sea bass juveniles increased depending on the exposure times (P<0.05). The most suitable concentrations of 2‐PE were 0.30–0.35 mL L−1 between minutes 10 and 30, although the normal juveniles can resist to 0.45 mL L−1 of 2‐PE concentration for 20 min. The 2‐PE showed toxicity in relation to the concentrations and exposure time combinations among the three groups in the order; nonfunctional swimbladder fish >lordosis fish >normal fish. 相似文献
4.
Eyad Atalah Carmen María Hernández‐Cruz Eneko Ganuza Tibiabin Benítez‐Santana Rachid Ganga Javier Roo Daniel Montero Marisol Izquierdo 《Aquaculture Research》2011,42(9):1261-1268
Together with docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), arachidonic acid (ARA) is being considered to be an essential fatty acid in marine fish larval diets. The objective of the present study was to determine the importance of dietary ARA levels for larval European sea bass performance, when EPA and DHA are also present in the diet. Eighteen‐day‐old larvae were fed, for 14 days, gelatine‐based microdiets containing the following ARA levels: 0.3%, 0.6% or 1.2%. Elevation of dietary ARA up to 1.2% showed a positive correlation with larval survival and a significant improvement in the specific growth rates, body weight and total length. Arachidonic acid was efficiently incorporated into larval lipids, even at a higher proportion than that in the diets. Increased accumulation of ARA did not affect the incorporation of DHA or EPA from the diet into larval total lipids. A significant positive correlation was found between dietary ARA levels and survival after handling stress, indicating the importance of this fatty acid in sea bass larvae response to acute stressors. The results show the importance of ARA for sea bass larvae, but higher dietary levels should be tested to determine whether there is a negative effect of ARA in sea bass as reported for other species. 相似文献
5.
Sitjà-Bobadilla A Diamant A Palenzuela O Alvarez-Pellitero P 《Journal of fish diseases》2007,30(4):243-250