首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
4种白蚁防治药剂在土壤中室内外降解试验表明,药剂在土壤中的降解受土壤微生物影响较大。除了土壤微生物以外,农药在土壤中的降解还受土壤理化性质的影响。4种农药在3种灭菌土壤中的降解快慢趋势是一致的,药剂在不灭菌土壤中的降解快于灭菌土壤。毒死蜱在室内降解试验中的半衰期在131.5245.1 d,而在室外降解试验中,其半衰期约为398.0 d;联苯菊酯在室内降解试验中的半衰期在131.8245.1 d,而在室外降解试验中,其半衰期约为398.0 d;联苯菊酯在室内降解试验中的半衰期在131.8257.2 d,而在室外降解试验中,其半衰期约为894.0 d;氯菊酯在室内降解试验中半衰期在121.6257.2 d,而在室外降解试验中,其半衰期约为894.0 d;氯菊酯在室内降解试验中半衰期在121.6217.9 d,而在室外降解试验中,其半衰期约561.0 d;吡虫啉在室内降解试验中的半衰期在111.2217.9 d,而在室外降解试验中,其半衰期约561.0 d;吡虫啉在室内降解试验中的半衰期在111.2172.2 d,而在室外降解试验中,其半衰期约为443.0 d。  相似文献   

2.
二甲戊乐灵在土壤中的吸附及微生物降解   总被引:10,自引:3,他引:10  
通过振荡平衡法和室内培养法分别研究了二甲戊乐灵在土壤中的吸附和降解规律。结果表明,二甲戊乐灵在棕壤中容易被吸附,且解吸困难,其吸附属于物理性吸附。二甲戊乐灵在土壤中的降解主要是土壤微生物的作用,其在灭菌土壤中降解速率很慢。土壤含水量的多少对其降解速率有一定影响。30%FC下二甲戊乐灵在灭菌及未灭菌土壤中的半衰期分别为182.4d和162.2d;75%FC下的灭菌土壤中半衰期为97.63d,是其在未灭菌土壤中半衰期35.36d的2.76倍;在120%FC下灭菌土壤中的半衰期为87.74d,是其在未灭菌土壤中半衰期31.80d的2.76倍。  相似文献   

3.
采用HPLC在室内条件下对红黄泥、潮沙泥和紫泥田3种不同类型水稻土中双草醚的残留消解动态进行了研究。结果表明,双草醚在3种水稻土中的降解符合一级动力学方程C=C0e-kt。未灭菌土壤中双草醚的平均降解半衰期分别为9.02、19.52、26.91d。分析认为,土壤微生物和pH值是影响双草醚降解的主要因素。土壤灭菌处理大大降低了双草醚的降解速率,且灭菌土中双草醚的滞留性还受农药浓度的影响,处理浓度高则半衰期长。  相似文献   

4.
典型土壤中除草剂甲基磺草酮降解特性研究   总被引:1,自引:0,他引:1  
农产品质量和安全是一项重要的民生问题,环境介质中农药的迁移、转化与降解行为已成为环境科学的重要议题。以除草剂甲基磺草酮为研究对象,进行了甲基磺草酮在3种典型土壤中的室内模拟降解试验和自然光照降解研究,以灭菌土壤为对照,详细分析了甲基磺草酮在土壤中降解和大自然光照降解的主要影响因素。结果表明,甲基磺草酮在3种供试土壤中的光照降解速率依次为宜兴水稻土淮南水稻土盐城盐碱土,其不灭菌降解半衰期分别为12.16、27.73、34.68 d,灭菌降解半衰期分别为38.51、86.64、138.63 d,光照半衰期为8.56、18.73、25.67 d,所有降解均遵循一级动力学方程。与灭菌对比,非灭菌土壤明显具有较快的降解速率,说明土壤中微生物是甲基磺草酮降解的重要影响因素之一;同时,自然光照对甲基磺草酮的降解有一定的促进作用。土壤理化性质一定程度上影响了土壤微生物活性和群落结构,最终影响除草剂在土壤中的降解行为。  相似文献   

5.
苯醚甲环唑在土壤中的降解动力学及其影响因子   总被引:3,自引:1,他引:2  
研究了苯醚甲环唑在北京、萧县、杭州及长沙4个地区土壤中的降解动力学,并探讨了土壤微生物、温度、含水量及药剂质量分数对其降解的影响.结果表明:苯醚甲环唑在4个地区土壤中的降解半衰期为11.63~21.77 d.土壤微生物对苯醚甲环唑降解起主导作用,灭菌土壤降解半衰期是非灭菌条件下的6.09倍;15~40℃范围内,温度升高,土壤中苯醚甲环唑降解加快,15~25℃降解速率增加幅度较大;士壤含水量过高(150%)和过低(25%)都不利于苯醚甲环唑降解,而土壤中药剂质量分数的增大对苯醚甲环唑降解则起阻碍作用.  相似文献   

6.
乙草胺在土壤环境中的降解及其影响因子的研究   总被引:19,自引:1,他引:19  
采用实验室模拟方法研究了乙草胺在不同土壤中的降解动态。结果表明,在未灭菌的土壤中,乙草胺3种添加浓度(1.25、2.5和5.0mg·kg-1)处理的半衰期为2.8~5.1d,远远小于在灭菌土壤中3种添加浓度处理的半衰期(20.0~25.1d);乙草胺在偏碱的华北褐土中降解较快,2.5mg·kg-1处理的半衰期为4.2d,而在偏酸的东北黑土和湖南红土中降解较慢,半衰期为6.5~10.7d;土壤相对含水量由13%增至27%,乙草胺降解半衰期由7.3d缩短至3.0d;随着环境温度增高(20℃上升至30℃),乙草胺降解速度加快(半衰期由5.7d缩短至3.3d);乙草胺在黑暗条件下降解半衰期为3.8d,而在光照条件下的半衰期为5.2~6.5d。可见,5种试验因子对土壤中乙草胺的降解均有不同程度的影响。其中土壤微生物是影响乙草胺降解的主要因素,有利于土壤中微生物生长的环境因素,如偏碱的土壤、较高的环境温度和土壤湿度等,对土壤中乙草胺的降解有促进作用。  相似文献   

7.
细交链孢菌酮酸是病原真菌链格孢菌(A lternaria sp.)产生的主要毒素之一,在霉变的粮食、感病的植物和腐烂的水果中都能检测到,其具有较强的动物毒性,给食品安全带来一定的隐患。分别在实验室和大田条件下对链格孢菌毒素细交链孢菌酮酸在土壤中的降解动态进行了观察。结果表明,在实验室条件下,微生物对细交链孢菌酮酸在土壤中的降解影响较大,光照的影响较弱,不灭菌条件下,其半衰期小于10d,加药10d时,其降解率就大于50%;灭菌条件下,其半衰期大于30d,加药40d时,其降解率才超过50%。土壤含水量的增加和土壤温度在一定范围内的升高可促进其降解,土壤含水量为12.5%-50%,其半衰期为11.38-5.14d,加药10d时其降解率为38.98%-62.14%,温度为20—40℃时,其半衰期为14.26-5.11d,加药10d时其降解率为36.94%-62.45%。田间研究表明.细交链孢菌酮酸在自然条件下降解的半衰期约为3.22d,20d后就可完全降解。可认为细交链孢菌酮酸属于易降解类物质。  相似文献   

8.
刘玥垠  李明 《广东农业科学》2012,39(24):177-180
在室内模拟条件下,采用气相色谱法研究了稻瘟灵在贵州不同地区土壤中的降解规律.结果表明:稻瘟灵在土壤中的降解过程均符合一级动力学,其降解速率与土壤性质、环境因子及其浓度有关;稻瘟灵在灭菌土壤中的降解半衰期大于未灭菌土壤,即土壤微生物是影响稻瘟灵降解的主要因素;土壤中稻瘟灵的降解速率随着稻瘟灵浓度的升高而逐渐变慢,当浓度达到一定剂量时,其降解半衰期趋于稳定;稻瘟灵在不同类型土壤中的降解速率随着pH值的降低而加快,pH值和田间持水量对稻瘟灵的降解有较大影响.对土壤中微生物生长有利的环境因子,对稻瘟灵的降解有促进作用.  相似文献   

9.
采用室内培养法和土柱法,研究了2-羟基-1,4-萘醌在土壤中的降解作用和淋溶行为。结果表明,2-羟基-1,4-萘醌在灭菌和非灭菌土壤中的降解半衰期分别为3.47~6.98d和0.42~0.53d,且随着2-羟基-1,4-萘醌浓度增加,其降解半衰期延长。说明微生物对其降解过程起主导作用。参考POPs国际公约关于化学品持久性的定义,2-羟基-1,4-萘醌在土壤中属于易降解有机物。通过2-羟基-1,4-萘醌在土壤中的淋溶研究发现:当其添加浓度为5mg·kg-1和10mg·kg-1时,各处理土层中均未检出2-羟基-1,4-萘醌;当添加浓度为20mg·kg-1时,仅在0~10cm土层样品中检测到2-羟基-1,4-萘醌。与未老化土壤相比,2-羟基-1,4-萘醌在老化土壤中的淋溶作用减弱。  相似文献   

10.
王俊 《安徽农业科学》2009,37(24):11703-11704
[目的]研究房屋白蚁预防药剂毒死蜱和联苯菊酯在合肥地区土壤中的降解动态。[方法]以毒死蜱和联苯菊酯为供试药剂,研究白蚁预防药剂在土壤中的残留降解性.[结果]添加浓度为50mg/kg时,毒死蜱和联苯菊酯的回收率分别为96.90%和93.25%,变异系数分剐为2.76%和4.02%、毒死蜱在土壤中的降解可以分为先快后慢2个阶段,而联苯菊酯在土壤中的降解符合一级动力学方程,、2种药剂的降解速度都较快,但联苯菊酯的降解速度比毒死蜱慢,毒死蜱的半衰期为79.68d,联苯菊酯的半衰期为94.96d。由2种药剂的降解方程计算得联苯菊酯的有效期为911d,毒死蜱的有效期为478d。[结论]该研究为白蚁防治药剂在房屋白蚁预防工程中的合理应用、安全性评价以及制定行业质量标准提供了理论依据。  相似文献   

11.
采用室内模拟方法,以海南沙土和壤土为代表土壤,研究了拟除虫菊酯农药功夫菊酯、高效氯氰菊酯和联苯菊酯在土壤中的降解动态。结果表明:3种拟除虫菊酯农药在土壤中的降解均符合一级动力学方程。好氧条件下,3种农药在沙土中的降解半衰期分别为115.52,115.52,99.02 d,壤土中分别为99.02,49.51,99.02 d。厌氧条件下,沙土中降解半衰期为49.51,49.51,57.76 d,壤土中分别为30.13,34.66,57.76 d。3种拟除虫菊酯农药在沙土中的降解较壤土慢,且厌氧条件下降解速度显著快于好氧条件。  相似文献   

12.
研究了土壤中Cu、Zn等重金属元素存在的条件下,氰戊菊酯的降解情况。结果表明,氰戊菊酯在供试土壤中的半衰期为19.4 d,降解速率常数为0.035 7;而在灭菌后的土壤中,氰戊菊酯降解明显减缓,半衰期延长至92.8 d,由此可见,氰戊菊酯在土壤中主要是靠微生物降解。重金属元素存在的情况下,会对氰戊菊酯的降解产生较大的影响,当Cu2 、Zn2 浓度≥200 mg/kg时,氰戊菊酯降解速度减慢,半衰期随离子浓度的升高而延长;离子浓度较低时,对其降解有轻微的促进作用。另外,从两种重金属的毒性来看,Cu>Zn,即相同浓度下,Cu对氰戊菊酯降解的抑制更为明显。  相似文献   

13.
采用室外小区试验及室内气相色谱分析测定方法,对杀菌剂氟硅唑在黄瓜及土壤内的残留动态及最终残留进行了研究,试验结果表明,氟硅唑在土壤内的半衰期约为11—13d,在黄瓜上的半衰期约为2—3d。  相似文献   

14.
微生物对腐霉利在土壤中降解的影响研究   总被引:1,自引:0,他引:1  
为了进一步加强腐霉利自然降解机制的研究,在实验室条件下,研究了微生物对土壤中腐霉利降解的影响。结果表明:在施用56 d后,腐霉利在土壤中的消解率均在90%以上。腐霉利在土壤中的降解动态规律符合一级动力学模型。腐霉利在灭菌和未灭菌土壤中的半衰期分别为14.1、9.4 d。微生物的参与有利于腐霉利在土壤中的降解。  相似文献   

15.
2种农药在丹参根内与土壤中的降解过程及规律的研究   总被引:2,自引:0,他引:2  
通过对辛硫磷和氧化乐果2种农药在丹参根内和土壤中的降解过程和残留进行分析,结果表明:2种农药在丹参根内的降解过程都呈单峰曲线,即灌药后1~5d,丹参根逐步吸收农药,表现为根内农药含量呈上升趋势;氧化乐果在灌根后第5天丹参根内的含量达到高峰(6.11mg/kg),随后开始降解,而辛硫磷则在灌根后第10天达到高峰(9.49mg/kg);丹参对这2种农药的吸收量和吸收速度不同。辛硫磷在丹参根内的半衰期为9.2075d,明显高于苹果上使用辛硫磷的半衰期,说明辛硫磷在防治地下害虫时残效期长;氧化乐果在丹参根内的半衰期为4.4d。辛硫磷、氧化乐果在土壤中的降解过程都为明显的衰减曲线,辛硫磷在土壤中的半衰期为16.3709d,比在丹参根内降解的速度慢,而氧化乐果的半衰期为3.4675d,比在丹参根内的降解速度稍快。由此可知,在丹参生产过程中使用辛硫磷是安全的,且可提高地下害虫的防治效果。  相似文献   

16.
氯氰菊酯在苹果园土壤中的降解行为研究   总被引:1,自引:0,他引:1  
为了评价氯氰菊酯在苹果园使用的生态环境行为和效应,采用室内模拟方法,借助气相色谱分析技术,研究了氯氰菊酯在3种苹果园土壤中的降解半衰期与土壤理化性质和环境条件的关系.结果表明:氯氰菊酯在土壤中的降解行为主要是微生物降解,非生物降解作用较小,降解规律符合一级动力学模型,25℃的降解半衰期为19.8~24.9 d;氯氰菊酯在苹果园土壤中降解的半衰期与土壤有机质含量和土壤pH值高度负相关,常温下相关系数在0.9;综合微生物降解和非生物降解因素,苹果园土壤中甲氰菊酯降解的适宜温度是30~35℃.  相似文献   

17.
为了评价甲氰菊酯在苹果园使用后的生态环境行为和效应,采用室内模拟方法,借助气相色谱分析技术,研究了甲氰菊酯在3种苹果园土壤中的降解半衰期与土壤理化性质和环境条件的关系.结果表明,甲氰菊酯在土壤中的降解主要是微生物降解,非生物降解所占比例较小,降解规律符合一级动力学模型,在25℃时降解半衰期为27.5~30.4d;甲氰菊酯在苹果园土壤中降解的半衰期与土壤有机质含量和土壤pH值呈显著高度负相关,常温下相关系数为0.9;综合微生物降解和非生物降解因素,苹果园土壤中甲氰菊酯降解的适宜温度是30~35℃.  相似文献   

18.
采用室内模拟试验方法,研究了虱螨脲在3种土壤中的降解、吸附和移动特性.结果表明:25℃下,虱螨脲在江西红壤中的降解半衰期为101 d,属于中等降解农药;在太湖水稻土和东北黑土中的降解半衰期分别为74.5 d和55.5 d,属于较易降解农药.土壤有机质含量是影响虱螨脲降解速率的主要因素;3种土壤对虱螨脲具有较强的吸附性,且土壤有机质含量越高,对虱螨脲的吸附性越强;3种土壤对虱螨脲的吸附自由能变化均小于40kJ·mol-1,属于物理吸附;虱螨脲在土壤中不易移动,正常条件下不会造成地下水的污染.  相似文献   

19.
异丙威和啶虫脒是防治稻飞虱和叶蝉等害虫的常用药剂,为明确其在稻田土壤及水稻中的残留动态,建立一种同时测定稻田土壤和水稻中异丙威和啶虫脒残留量的气相色谱法,并采用该方法研究贵州开阳、黄平、桐梓等3地异丙威和啶虫脒的残留动态和其在土壤中消解的影响因子。结果表明,在0.50~20.00 mg/L范围内,异丙威和啶虫脒的峰面积与其质量浓度间呈良好的线性关系,相关系数分别为0.999 8、0.999 4。在添加水平为0.1~1.0 mg/kg范围内,稻田土壤中异丙威和啶虫脒中的平均添加回收率分别为88.35%~92.96%、86.82%~96.05%,相对标准偏差分别为1.26%~1.74%、0.52%~1.62%;水稻中异丙威和啶虫脒的平均添加回收率分别为93.66%~99.45%、91.94%~98.40%,相对标准偏差分别为1.02%~3.62%、0.52%~4.23%。在供试条件下,土壤微生物对异丙威和啶虫脒在土壤中的消解起着重要作用,2种药剂在灭菌土壤中的半衰期为未灭菌土壤的3.01、3.51倍;土壤温度和异丙威与啶虫脒混样浓度对其消解也有影响,土壤中异丙威和啶虫脒的消解速率随着土壤温度增加而加快,随着施药剂量的增加而减慢。田间试验结果表明,异丙威和啶虫脒在贵州开阳、黄平和桐梓等3地稻田土壤和水稻中的消解动态曲线均符合一级动力学方程;2种药剂在水稻植株中消解迅速,半衰期分别为2.08~2.29、2.58~4.24 d;在稻田土壤中的消解速率比植株中的慢,半衰期分别为4.13~5.83、3.64~4.13 d,属于易降解农药(t_(1/2)30 d)。  相似文献   

20.
采用室内模拟试验,研究植物杀虫活性成分杠柳新苷P在不同水体和不同类型土壤中的降解与移动特性,分析其对不同水体与不同类型土壤的污染风险性。结果表明:温度和pH对杠柳新苷P在水中的降解均有一定程度的影响。温度为50℃、pH=9时,降解速率最快,其水解半衰期为2.36d。土壤降解与土壤淋溶试验表明,杠柳新苷P在麦田土、果园土和菜园土中的降解半衰期分别为4.33、4.25和3.85d,降解速率依次为菜园土果园土麦田土;对比试验研究表明,在未灭菌的土壤中,杠柳新苷P的降解速率比灭菌的土壤中显著加快。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号