首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.

Purpose  

With the predicted climate change, it is expected that the chances of river flooding increase. During flood events, sediments will resuspend and when sediments are polluted, contaminants can be transferred to the surrounding water. In this paper we discuss a numerical intraparticle diffusion model that simulates desorption of dieldrin from a suspension of contaminated porous sediment particles with a well-characterized particle size distribution. The objective of this study was to understand the desorption rate (flux) of dieldrin from a suspension of field-aged sediment at different hydraulic retention times (HRT) of the aqueous phase and to elaborate the effect of particle-size distribution on mass transfer.  相似文献   

2.

Purpose

Remobilization of polychlorobiphenyl (PCB)-contaminated sediments by anthropogenic activities (e.g. dredging) or natural flow conditions could lead to the release of PCBs into the water column and consequently increase the availability of PCBs to benthic organisms. The fate of the released PCBs following such events is not well understood and such knowledge is necessary for the management of contaminated sediments. The objective of this study was to understand the processes that control the fate of PCBs following remobilization of field-aged contaminated sediments.

Materials and methods

Sediments contaminated with PCBs collected from Lake Bourget (Savoie, France) were resuspended in a column experiment. The relationships between physical–chemical parameters—i.e. suspended particulate matter, pH, inorganic and organic carbon content, redox-sensitive species and the concentrations of dissolved PCBs both in the water column and in the interstitial water of the sediment—were investigated so as to determine the key processes controlling PCB fate.

Results and discussion

Following the simulated resuspension event (SRE), dissolved PCBs were found in much higher concentrations in the water column than under stationary conditions. Desorption of PCBs from the sediment depended on the degree of the hydrophobicity of the PCBs and the initial PCB content in the sediment. Principal component analysis showed that the variations in the concentrations of released PCBs over time and space closely followed those of suspended particulate matter (SPM) and not those of redox conditions. The partitioning behaviour of PCBs on SPM showed that equilibrium state was not attained within 40 days following the SRE. A particle size fractionation study, before and after remobilization of the sediment, showed the presence of PCBs in every fraction of the sediment, but with higher amounts in large particles with high organic matter content and in the finest fractions. Remobilization of contaminated sediment did not affect this distribution profoundly but a significant enrichment in PCBs of the clay-sized fraction was observed in the re-settled sediment.

Conclusions

Sediment resuspension induced non-equilibrium conditions in the water column for more than 5 weeks and led to the enrichment with PCBs of the newly formed surface bed sediment. This enrichment was due to the preferential re-sorption of PCBs on clay-sized particles during the SRE and to the physical segregation and accumulation of the less dense particles at the surface of the sediment column; such particles thought to be the principal carriers of contaminants. These changes concerned <0.05 % of the total PCB content.  相似文献   

3.

Purpose

This study addresses the feasibility of a flotation technique, using a lab-scale flotation cell, to simultaneously remove both metals and polyaromatic hydrocarbons (PAHs) from fine sediment fractions (<250 μm) that are potentially contaminated with copper (Cu).

Materials and methods

A multiple flotation process with three consecutive flotation stages was performed on three sediments (13S, 14B, and 24A) with different particle size distributions, Cu and PAH concentrations, and organic matter contents.

Results and discussion

Flotations performed under selected conditions allowed for significant removal of both Cu (61–70 %) and PAHs (75–83 %) with acceptable froth recoveries of approximately 23–29 %. Removal rates for arsenic, lead, and zinc were 48–61, 40–48, and 32–36 %, respectively. Flotation selectivity of Cu was greatly influenced by the contents of fine particles and organic matter of the sediments. The maximum flotation selectivity was obtained for the 53–125-μm size fraction. The high flotation selectivity of Cu (2.5–3.2) and PAHs (3.0–3.6) demonstrated the feasibility of flotation to treat soils or sediments containing both organic and inorganic pollutants.

Conclusions

Overall, the flotation results showed a high selectivity for both Cu and PAHs and demonstrated the feasibility of flotation to treat media contaminated with organic and inorganic contaminants.  相似文献   

4.

Purpose

A multi-compartment monitoring study was performed to characterize the effect of environmental variables, such as temperature and water flow as well as sediment characteristics, on the distribution and transport of persistent organic pollutants (POPs) in a dynamic river system during 1 year in an industrial region in central Europe.

Materials and methods

Waterborne polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were assessed over a period of 1 year at five sampling sites in the Morava River in the Czech Republic. Contaminants were measured monthly in riverbed sediments, freshly deposited sediments, water samples and passive samplers.

Results and discussion

Sediments are the main carrier of POPs in the river. Distinguishable patterns of PAHs, OCPs and PCBs in sediment indicate that their origin is from distinct sources and different transport pathways. The PAHs were identified as the dominant contaminant group of compounds with a mean concentration in sediment of 5,900 μg kg?1. Such concentrations are up to 10 times higher than in the Danube River, into which Morava drains. In contrast, mean concentrations of PCBs, hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethane and its breakdown products (DDTs) and hexachlorobenzene (HCB) of 6.0, 0.4, 4.2 and 6.0 μg kg1, respectively, are similar to those in the Danube. With some exceptions, no significant difference in composition of surficial riverbed sediments and those collected using sediment traps was observed. Despite the presence of potential local pollutant sources, the differences in contaminant concentrations between sites in the region were in most cases not significant. Variations in POP concentrations in sediments are mainly induced by high flow events, whereas seasonal variability was not observed.

Conclusions

The changes in contaminant concentrations in Morava River sediments are induced by episodic high flow events that cause erosion of contaminant-containing particles and their deposition at suitable downstream sites.  相似文献   

5.

Purpose

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and persistent contaminants in aquatic bed sediments. A better understanding of their in-bed fate and transport is therefore key in minimising the risk to the environment over time through various remediation and monitoring strategies. Since ecological effects and risks are related to contaminant concentrations, this study developed CoReTranS, a predictive model that simulates one-dimensional organic contaminant reaction and transport in bed sediments.

Materials and methods

CoReTranS was benchmarked against analytical solutions of simplified reactive transport models and validated using a published study of marsh sediments contaminated with petroleum-derived hydrocarbons from Wild Harbour, West Falmouth, MA, USA.

Results and discussion

The CoReTranS model effectively predicted the vertical distribution of PAHs in the Wild Harbour sediments as confirmed by the modelling results from the published study. The CoReTranS model was also used to interpret results from a published study of PAH-contaminated fjord sediments from Kitimat Arm in British Columbia, Canada. Specific insights into the post-depositional fate and transport of selected PAHs in the Kitimat fjord sediments were obtained by comparing the measured concentration-depth profiles with the numerical results from the CoReTranS model. Key parameters such as effective diffusivity of contaminants and burial velocities of sediment particles were shown to possibly account for the predicted concentrations-depth profiles in the Kitimat fjord sediments.

Conclusions

As demonstrated, CoReTranS can simulate reactive transport models in order to predict PAH concentration profiles in porewater under site-specific conditions. The information derived from the use of the CoReTranS model highlighted practical application of such information by engineers to site-specific risk assessment and remediation.  相似文献   

6.
Specific stability of organic matter in a stormwater infiltration basin   总被引:1,自引:0,他引:1  

Purpose

In stormwater infiltration basins, sediments accumulate at the soil surface and cause a gradual filling up of soil pores. These sediments are composed of a mixture of natural and anthropogenic (as oil products) organic matters (OMs). The degradation kinetics of these sediment OMs and their biological stability has been neglected. This study aimed to characterize sediments OMs to assess their evolution and their capacity to degrade.

Materials and methods

To characterize OMs from the sediment layer, we measured at several places in the infiltration basin, total OM and carbon (C) contents, C distribution and biochemical fractions of the OM in the different size fractions, the sediment’s C mineralization potential, soil microbial biomass, and organic pollutants (polycyclic aromatic hydrocarbons (PAHs)) in the sediment layer.

Results and discussion

OM contents were high and varied from 66 to 193 g?kg?1 from the inlet to the outlet of basin. Depending on rainfall intensity and volume, organic particles were deposited at varying distances in the basin by decantation; this was confirmed by analysis of sediment C distribution in the different size fractions. Despite high amounts of OM, organic C had a low biodegradability. Mineralization potentials were low compared to natural soil (i.e., from 0.3 to 1.1 g CO2–C kg?1 total organic carbon). Biochemical fractionation of the organic fractions indicated that they were mainly composed of a soluble fraction, which contributed to reducing OM biodegradability. The activity of the sediment microbial biomass was low. PAH contents seemed to be partly responsible for the high biostability of OMs.

Conclusions

There was limited capacity for biodegradation of sediment OMs probably due to inhibitory effects of soluble PAHs and consequently low microbial activity.  相似文献   

7.

Purpose

This study investigated desorption of potassium (K) and phosphorus (P) from soil and river suspended sediments sampled during a storm event in a Brazilian watershed traditionally used for tobacco plantations.

Material and methods

Suspended sediment samples were collected automatically at the outlet of the watershed and were grouped into three phases: beginning (phase a), middle (phase b) and final stages (phase c) of the storm event. Granulometric and mineralogical characterisation of soils (0 to 0.20 m depth) and suspended sediments was determined, and K and P extractions were performed using a cation and anion exchange resin (CAER) membrane. A kinetic modelling approach was used to estimate the amount of K and P desorbed.

Results and discussion

Clay-sized (<2 μm) content of the soils were all <21 %. Kaolinite, smectite (partially with hydroxy-Al interlayer) and a small amount of illite were found in the clay fraction of the different soils. The clay-sized fractions in sediments of phases a, b and c of the storm event were 49, 52 and 72 %, respectively. Smectite (>90 %) and kaolinite (<10 %) were the dominant clay minerals in the suspended sediments. The values of labile P and potentially available P of suspended sediments were higher than those for soils. In sediments, the highest values of labile P (325 mg kg?1) and labile K (4,458 mg kg?1) were found in phase c and in phase a, respectively.

Conclusions

Particle size distribution and clay mineralogy of soils differed from those of suspended sediments collected during the storm event. By comparison with the watershed soils, suspended sediments collected during the storm event were enriched in fine particles composed mainly of smectite, and this may explain their P and K desorption behaviour. This suggests particle size and clay species selectivity processes during the transfer of sediment particles from soils to aquatic systems. The amounts of P and K desorbed from the suspended sediments in the three phases of the storm event were much larger than those desorbed from soils. This indicates that rainfall promoted the transfer of these nutrients to the watercourses.  相似文献   

8.

Purpose

Suspended particulate sediment (SPS) concentration has a great impact on the sediment to water partitioning coefficients (K p) of hydrophobic organic compounds (HOCs), which is called the particle concentration effect (PCE). However, the mechanisms regarding the PCE are not yet well understood, and there is little direct experimental evidence for these mechanisms. The aim of this study was to investigate the PCE of polycyclic aromatic hydrocarbon (PAH) sorption on sediment by analyzing the freely dissolved concentrations of PAHs.

Materials and methods

Sediments were collected from the Yellow River and the Haihe River in China. Pyrene was selected as a model PAH to investigate the sorption of PAH on sediments. In addition to the total dissolved concentration (C TW) of pyrene, the freely dissolved concentration (C FW) measured by polyethylene devices was used to investigate the PCE of pyrene in the presence and absence of phenanthrene and chrysene.

Results and discussion

For both the Haihe River and Yellow River sediments, in the presence and absence of other PAHs, the K p value of pyrene with C FW as the equilibrium concentration in the water phase was approximately two times higher than that with C TW as the equilibrium concentration. With either C TW or C FW as the equilibrium concentration in the water phase, the K p value of pyrene decreased with increasing SPS concentration as a power function. In addition, the K p value with C TW as the equilibrium concentration decreased faster than that with C FW. This inferred that, apart from a third phase including dissolved organic carbon (DOC) and colloids, particle–particle, or particle–DOC interactions were important for the PCE. The contribution of the third phase to the PCE for the Haihe River sediment (72.5?±?26.4 %) was greater than the contribution for the Yellow River sediment (48.4?±?16.2 %), which had a larger particle size and lower total organic carbon and black carbon contents.

Conclusions

The PCE of PAH sorption onto sediments was attributed to both the third phase and to particle–particle or particle–DOC interactions. The contribution of the third phase to the PCE depended on both the TOC content and the particle size of sediment. As high SPS and DOC concentrations exist in many rivers, their effects on the sorption of HOCs should be considered when conducting bioavailability and ecological risk assessment.  相似文献   

9.

Purpose

There is a strong affinity between organic compounds and black carbon (BC) in sediments, but the release of adsorbed organic compounds from BC may vary with the duration of contaminant–sediment contact (i.e., aging). The objective of this paper was to evaluate the effect of the application of rice straw carbon (RC) on the control of hydrophobic ionizable organic compounds (HIOCs) pollution and investigate whether aging affects the release of adsorbed pentachlorophenol (PCP) in RC-amended sediment.

Materials and methods

Two experiments were conducted in this study: Tenax-mediated desorption kinetics experiment and PCP’s distribution experiment over aging time. The Tenax-mediated desorption kinetics data were fit with a modified two-domain model. PCP’s distribution pools in sediment involves water soluble (F 1), 48 h desorption (F 2), 432 h desorption minus 48 h desorption (F 3), strongly complexed (F 4), and nonextractable fractions (F 5).

Results and discussion

A good fit of the desorption kinetics data was obtained with the modified two-domain model, and R 2 ranged from 0.979 to 0.999. The presence of RC in the sediment reduced the rapid and slow desorption fractions (F rap and F slow) as well as the rapid and slow rates of desorption of PCP (k rap and k slow) from the sediment, and the RC also increased the desorption-resistant fraction (F r ). F rap and F slow both increased, while F r decreased after aging. The PCP content of F 1, F 2, and F 3 increased but decreased in F 4 and F 5 with contact time. Furthermore, the segregation of PCP varied less with aging time in sediments with 2.0 % RC than in sediments with 0.5 % RC.

Conclusions

RC played a dominant role in hindering PCP mass transfer and reducing PCP availability in sediments. After the RC-amended sediment was aged for 98 days, the PCP was released more easily and became more readily available, which was attributed primarily to the RC–sediment aging rather than of the PCP–sediment aging. Furthermore, 0.5 % RC is not sufficient to control PCP release from sediments, and 2.0 % RC is needed to fix PCP in sediments over long periods of time.  相似文献   

10.

Purpose

Fine sediments are usually collected in situ and air-dried for adsorption experiments, which may lead to particle aggregation and thus have a significant effect on phosphorus (P) adsorption under dynamic conditions. The main purpose of this study was to investigate the changes of aggregates due to drying with shear stress and the effects on the adsorption of P onto air-dried sediments under different shear rates after re-wetting.

Materials and methods

Sediment samples were collected from an alluvial river. Fine wet sediments (<31 μm) were wet-sieved and air-dried, and some air-dried sediments were further sonicated and served as the control. The grain size distribution of the three sediment samples (wet, dried, and sonicated) was measured to evaluate the particle aggregation level. The P sorption capacity of wet and dried sediments was determined by batch equilibrium experiments. The change of aggregate size with shear stress was investigated for dried and sonicated sediments. Sorption equilibrium experiments were performed to investigate the effect of shear stress on the P sorption with and without change of particle aggregation level, respectively.

Results and discussion

Fine particles agglomerated into larger aggregates during the drying process, resulting in a significant increase in the aggregate size. The sorption capacity was lower in aggregated sediment than in original wet sediment. Aggregate size in dried sediment decreased with the increase of shear rate, leading to an increase in the surface area and available adsorption sites, whereas the particle size of sonicated sediment was hardly affected. Accordingly, the P sorption amount of dried sediment increased with increasing shear rate, whereas that of sonicated sediment showed no significant change with shear rate after all sediments were suspended. There was a significant curvilinear correlation between aggregate size and P sorption amount for dried sediments, thus indicating that the P sorption amount increased significantly with decreasing aggregate size.

Conclusions

Sediment aggregation is an important factor affecting P adsorption besides the amount of suspended sediments and the exchange between suspended and bed sediments under dynamic conditions. The P equilibrium adsorption amount increases with shear stress for air-dried sediment. The effect of particle aggregation on the amount of P sorbed onto sediments should not be ignored, and thus, more attention should be paid to the pretreatment of sediment samples in the sorption experiments under dynamic conditions.
  相似文献   

11.
Urban sediment particle size and pollutants in Southern Brazil   总被引:1,自引:1,他引:0  

Background, aim and scope

Studies of particulate-associated pollutants, or PAPs, in urban areas have become necessary due to their potentially deleterious effects on the environment. However, it is not just the sediments themselves which are problematic but also their particle size composition, which has a great influence on their capacity to adsorb and transport pollutants. This paper presents the particle size distributions and concentrations of five metals (Cr, Cu, Ni, Pb and Zn) of urban sediments collected from paved streets and gully pots from 20 cities in southern Brazil. The cities have different characteristics and hence sources of PAPs associated with differing geologies, soil types and type of urbanisation. Studies of this nature enable elucidation of the relationship between diffuse sources such as streets and gully pots and the likelihood of PAPs to subsequently pollute the urban aquatic environment.

Materials and methods

Sediment samples were taken at random from paved streets and gully pots in 20 cities in Rio Grande do Sul state, southern Brazil by means of a portable vacuum cleaner to avoid loss of finer particles. The particle sizes of the samples were measured using a Cilas® 1180 laser particle analyzer, and the concentrations of five metals (Cr, Cu, Ni, Pb and Zn) were determined by wet acid digestion (HCl–HF–HClO4–HNO3) followed by inductively coupled plasma atomic emission spectroscopy on the <63-µm fraction.

Results

It was found that in comparison to sediments collected from the streets, gully pot sediments were more heterogeneous in terms of particle size and also that sediment samples from the gully pots were predominantly coarser than those originating on the streets. From the gully pot results, analysis of the modal particle diameter enabled the cities to be divided into three categories. The concentrations of metals in the street sediments were similar across all 20 cities, with all concentrations above background values.

Discussion

The fact that concentrations of metals in the street sediments were above statutory guideline values and that the coarser material was deposited in the gully pots suggests that the finer, more polluted sediment is not retained in the gully pots but is transported to the nearest local receiving watercourse. This finding has implications for management strategies for reducing pollution in urban environments.

Conclusions

High concentrations of Cr, Cu, Ni, Pb and Zn in the <63-µm fraction of street sediments, in combination with coarse material retained in the gully pots, indicate that metals could be transferred quite rapidly from the diffuse source of pollutants, on impermeable street surfaces, to receiving watercourses.

Recommendations and perspectives

Studies of urban sediment particle size and geochemistry enable predictions to be made of sediment behaviour in urban environments. This will inform management strategies such as the possibility of including sustainable urban drainage systems in future management plans, in which it is useful to know how efficient the drainage system is from the point of view of sediment deposition in the urban aquatic environment and the potential for pollution of receiving waters.  相似文献   

12.

Purpose

Sediment contamination in US waterways is an expensive and complicated issue, and as acceptance of nontraditional sediment remediation strategies broadens, novel and efficient methods to assess and monitor the bioavailability of hydrophobic organic contaminants (HOCs) in contaminated sediments will play an important role.

Materials and methods

In this project, solid phase microextraction (SPME) fibers inside perforated steel tubes were used as in situ passive samplers to measure polycyclic aromatic hydrocarbon (PAH) concentrations in sediment before and after treatment with activated carbon (AC). Two modes of waterjet amendment injection were used to apply the AC. In the first treatment, a single 2-min injection was shot into the center of a test vessel, and in the second treatment, multiple 7-s injections in a grid were placed in sediment.

Results and discussion

In the single injection, no treatment was observed 5 cm away from the injection, while at 2.5 cm, >90 % decrease of PAH pore water concentration was observed, indicating a similar bioavailability decrease. In the multiple injection experiment, >90 % PAH pore water level reductions were observed throughout the test vessel. Highly contaminated and less contaminated sediments were mixed with 0–5 % AC by weight to develop AC treatment curves. Over 99 % reduction in PAH pore water concentrations and bioavailability was observed in the less contaminated sediment at 3 % AC, while 99 % reduction was never reached even at 5 % AC addition in the highly contaminated sediment. Different treatment curves were observed for the different contaminated sediments. In situ equilibration times were 120, 215, and 250 h for phenanthrene, pyrene, and benzo(a)anthracene, respectively.

Conclusions

The results show that in situ SPME is a viable method to observe AC treatment and evaluate reductions in pore water concentrations and bioavailability.  相似文献   

13.

Purpose

The aim of this study was to assess the applicability of ionic liquids (ILs) in the extraction of organic contaminants from sediments and in passive sampling as a receiving phase material.

Materials and methods

Solutions of two water-soluble ionic liquids (WSILs)—1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIm]BF4) and N-butyl-3-methyl pyridinium tetrafluoroborate ([BMPy]BF4)—were used for the extraction of endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), 17β-estradiol (E2), and nonylphenol (NP), from different sediments. Furthermore, a hydrophobic IL (1-hexadecyl-3-methyl imidazolium hexafluorophosphate) was filled in a polyethylene (PE) membrane tubing to build an IL-PE passive sampler for sediment pore water. Uptake kinetics were studied by exposing samplers to sediments artificially contaminated by EDCs and identified by exposing samplers to field-contaminated sediments.

Results and discussion

EDCs were efficiently extracted by WSIL solutions from the two artificially contaminated sediments, with maximum extraction efficiencies of 84.2–104.6 % by the [BMIm]BF4 solution and 74.9–103.7 % by the [BMPy]BF4 solution. However, WSIL solutions are not suitable for EDC extraction from sediment with very low organic carbon contents. EDCs in sediment pore water can be efficiently taken up by the IL-PE sampler, with uptake rate constants of 2.08?×?10?2?l?g?1?day?1 (BPA), 5.74?×?10?2?l?g?1?day?1 (E2), and 2.10 l?g?1?day?1(NP).

Conclusion

BPA, E2, and NP can be extracted efficiently by IL water solution from most of the artificially and field-contaminated sediments used in this study. The IL ([HDMIm]PF6)-PE passive sampler can be used to monitor EDCs in the pore water of sediments. A good match between the calculated and measured concentrations of BPA and E2 in pore water of field-contaminated sediments was observed.  相似文献   

14.

Purpose

The aim of this study was to quantify the release of the hydrophobic contaminant emamectin (EMA) from marine sediments in response to inputs of organic material (OM) and/or oil, in the presence or absence of two different bioturbating species. Specifically, it was designed to test whether oil would decrease the release of EMA and whether OM and/or the presence of bioturbating macrofauna would increase the release of EMA from sediment.

Materials and methods

Experimental sediments were spiked with EMA (5 μg kg?1 wet sediment). The different treatments were prepared by the addition of OM (310 g algae m?2) and/or an aliphatic oil (29.6 g oil m?2). In addition, two bioturbating species, Brissopsis lyrifera or Ennucula tenuis, were added in some aquaria, resulting in a total of 12 treatments with four replicates each. Water samples for analyses of silicate and EMA and sediment samples for analyses of total organic carbon (TOC) were taken at the start and end of the experimental exposure. In addition, oxygen was measured during the experimental period of 8 days. Fluxes were calculated and compared between treatments using generalised linear models (GLMs).

Results and discussion

The EMA release flux was significantly increased in treatments with added OM, possibly reflecting the presence of soluble complexes formed between EMA and dissolved OM. The presence of B. lyrifera caused a small, but statistically significant, increase in EMA release from sediment. This species would be expected to have a stronger effect on bioirrigation and particle mixing than E. tenuis, particularly when the population density of the latter species is low (as in the present experiment). There were no consistent effects of oil in this experiment, but the presence of oil decreased the EMA release flux when co-occurring with added OM and/or B. lyrifera. Increased retention of hydrophobic contaminants in the presence of oil is consistent with the existing literature on contaminant fate.

Conclusions

The results from this study highlight the need to consider both the infauna present in polluted areas and the level of organic enrichment of the sediment when modelling the environmental fate of hydrophobic contaminants. It also highlights that labile OM and refractory oil appear to differ in their effects on the remobilisation of hydrophobic organic contaminants, by reducing and increasing release, respectively.  相似文献   

15.

Purpose

Laboratory experiments were conducted to examine the potential for metal (Cu, Ni and Zn) and herbicide (simazine, atrazine and diuron) release from agricultural soil and dredged sediment in managed realignment sites following tidal inundation.

Materials and methods

Column microcosm and batch sorption experiments were carried out at low (5?practical salinity units, psu) and high (20?psu) salinity to evaluate the changes in the partitioning of metals and herbicides between the soil/sediment and the aqueous phase, and the release of metals and herbicides from soil/sediment to the overlying water column.

Results and discussion

For both the metals and herbicides, the highest contaminant loads were released from the sediment within the first 24?h of inundation suggesting that any negative impacts to overlying water quality in a managed realignment scheme will be relatively short term following tidal inundation of soil and sediment. The release of metals was found to be dependent on a combination of salinity effects and the strength of binding of the metals to the soil and sediment. In the case of the herbicides, salinity impacted on their release. Particulate organic carbon was found to control the binding and release of the herbicides, highlighting the importance of assessing soil and sediment organic matter content when planning managed realignment sites.

Conclusions

Our research demonstrates that metals and herbicides may be released from contaminated sediments and agricultural soils during initial periods of flooding by seawater in managed realignment sites.  相似文献   

16.

Purpose

Enhancing desorption of hydrophobic organic contaminants from soils is a promising approach for the effective remediation of soils contaminated with organic compounds. The desorption efficiency of chemical reagent, such as surfactant, should be evaluated. In this study, the effect of mixed anionic–nonionic surfactants sodium dodecylbenzene sulfonate (SDBS)–Tween 80 on the distribution of polycyclic aromatic hydrocarbons in soil–water system was evaluated.

Materials and methods

Batch desorption experiments were employed to evaluate the distribution of polycyclic aromatic hydrocarbons (PAHs) and surfactants in soil–water system. PAHs and SDBS were determined by high-performance liquid chromatography, Tween 80 by spectrophotometry, and total organic carbon with a carbon analyzer.

Results and discussion

Sorption of PAHs to soil was increased at low surfactant concentration due to the effective partition phase on soil formed by sorbed surfactants. The mixture of anionic and nonionic surfactants decreased the sorption of surfactants to soil, increasing the effective surfactant concentration in solution and thus decreasing the sorption of PAHs on soil. Anionic–nonionic mixed surfactant showed better performance on desorption of PAHs from soil than single surfactant. The greatest desorption efficiency was achieved with low proportions of SDBS (SDBS/Tween80?=?1:9).

Conclusions

SDBS–Tween 80 mixed surfactant showed the highest desorption rate with low proportion of SDBS, which indicated that the addition of relative low amount of anionic surfactant could significantly promote the desorption efficiency of PAHs by nonionic surfactants. Results obtained from this study did provide useful information in surfactant-enhanced remediation of soil and subsurface contaminated by hydrophobic organic compounds.  相似文献   

17.
Goal, Scope and Background   Numerous xenobiotics released into surface waters are transferred to suspended particulate matter and finally attached to sediments. Aquatic organisms may be exposed to them by direct particle feeding, by physical contact with contaminated surfaces as an exposure route, and by the uptake of dissolved contaminants after equilibration via the free water phase. In order to assess potential sediment toxicity, each of these exposure routes has to be addressed. This paper presents a newly developed particle contact assay that uses the fermentation performance of a specific Saccharomyces cerevisiae strain for the assessment of toxic effects in sediments. The test procedure is based on the characteristic feature of growing yeast cells to attach to sediment particles, which are also relevant for the accumulation of contaminants. The physical contact with lipophilic contaminants mirrors an exposition pathway for the direct uptake into the cells. In order to quantitatively characterize the toxic effects of particle attached pollutants on the fermentation performance, unpolluted native reference sediment was spiked with representatives for widely distributed anthropogenic contaminants. Methods   Saccharomyces cerevisiae was established as sensitive eukaryotic microorganism for the ecotoxicological assessment of particle attached anthropogenic contaminants in freshwater sediments. For this purpose, yeast cells were cultivated in sediment samples and the resulting fermentation performance was continuously measured. Sediments artifically spiked with HCB, PCB, g-HCH, DDT, and benzo(a)pyrene and solutions of each contaminant were comparatively investigated by means of their adverse effects on yeast fermentation performance. Additionally, four native river sediments characterized by increasing levels of pollution were assessed by the yeast particle contact assay, and simultaneously by standard aquatic tests with algae, daphniae, and luminescent bacteria using pore water and elutriates. Results of the bioassays were related to specific sediment contamination with respect to metals and organic priority pollutants. Results and Discussion   In sediments spiked with PCB and benzo(a)pyrene fermentation, performance was affected extensively below concentrations inhibiting fermentation in contaminant solutions. This suggests a high efficiency of the exposure route by physical contact. The fermentation performance was only slightly affected by single lipophilic pollutants, whereas mixtures of individually spiked sediments caused critically reduced fermentation performance suggesting additive synergistic effects. Native river sediments modestly to critically polluted by hazardous organic compounds lead to a slightly to dangerously reduced fermentation performance in the yeast contact assay. These inhibitory effects were much less pronounced in the standard bioassays conducted with algae, daphniae and luminescent bacteria, applying pore waters and elutriates as sample matrices. Using pore water, inhibition was measured only in the most polluted sediment, elutriates lead to a slight inhibition of the algal growth in the undiluted sample only. These results indicate an improved sensitivity of the yeast particle contact assay compared to the standard assays, due to uptake and physical cell contact as additional routes of exposure. Conclusion   The yeast particle contact assay is a valuable tool for the assessment of ecotoxicological potential in freshwater sediments. Since the assay addresses physical contact as an exposure route, it indicates bioavailability of lipophilic compounds in sediments. Outlook   The sensitive indication of bioavailable contaminants associated to sediment particles by the newly developed yeast particle contact assay recommends it as a complementary microbial bioassay in a test battery for assessing major pathways of contaminants in whole sediments.  相似文献   

18.

Background, aim, and scope

Restoration of lakes and reservoirs with extensive cyanobacterial water bloom often requires evaluation of the sediment quality. Next to the chemical analysis of known pollutants, sediment bioassays should be employed to assess toxicity of the present contaminants and to make predictions of associated risk. Brno reservoir in the Czech Republic is a typical example of water bodies with long-term problems concerning cyanobacterial water blooms. Comprehensive assessment of reservoir sediment quality was conducted since successful reservoir restoration might require sediment removal. An important part of this survey focused on an examination of the utility of Tubifex tubifex and its sublethal biochemical markers for the assessment of direct sediment toxicity.

Materials and methods

This complex study included chemical analysis of contaminants (heavy metals, organic pollutants), ecotoxicity testing of sediment elutriates (tests with Daphnia magna, Pseudomonas putida, Sinapis alba, Scenedesmus subspicatus), and other parameters. We have tested in more detail the applicability of T. tubifex as a test organism for direct evaluation of contact sediment toxicity. Survival tests after 14 days of exposure were complemented by an assessment of parameters serving as biomarkers for sublethal effects [such as total glutathione content (GSH), activities of the enzymes glutathione transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GR)]. The data matrix was subjected to multivariate analysis to interpret relationships between different parameters and possible differences among locations.

Results

The multivariate statistical techniques helped to clearly identify the more contaminated upstream sites and separate them from the less contaminated and reference samples. The data document closer relationships of the detected sediment contamination with results of direct sediment exposure in the T. tubifex test regarding mortality but namely regarding the sublethal endpoints rather than the results obtained with other test organisms exposed to sediment elutriates. Aside from the reduction in T. tubifex survival, the sediments with organic pollution caused an increase in glutathione content and increased activities of glutathione S-transferase and glutathione peroxidase in the exposed T. tubifex worms.

Discussion

Results of our study confirm the suitability of T. tubifex for toxicity testing of raw waters and sediments. This longer-lasting direct contact test has proven more sensitive and appropriate to reflect a lower level of pollution than do the elutriate tests. Sensitive biochemical changes in T. tubifex, including an elevation in GSH levels and GST activities, reflect a general stimulation of detoxification metabolisms in the presence of xenobiotics. The results also suggest an important role of glutathione and related enzymes in detoxification processes and possible involvement of oxidative stress in toxicity mechanisms in benthic sediment-dwelling worms such as T. tubifex.

Conclusions

The complex assessment has identified the more contaminated samples with locally increased concentration of organic pollutants and significant ecotoxicity. The direct sediment contact test with T. tubifex and especially the biochemical parameters corresponded better to the lower level of pollution than the other tests with sediment elutriates. Despite its greater time and cost demands, the direct sediment contact test can provide a more realistic picture of exposure.

Recommendations and perspectives

Sediment bioassays should always be included as an integral part of the sediment quality assessment. The direct contact tests also take into account the more hydrophobic pollutants that are not easily available for the water elution but can still be accessible to the organisms. The T. tubifex test is a suitable option for contact sediment toxicity tests also because these animals show measurable sublethal biochemical changes that can be associated with this exposure.  相似文献   

19.

Purpose  

Sediments can function as secondary source for water pollution of aerobically biodegradable non-halogenated organic compounds, which are persistent in anaerobic sediments. The mass transfer of compounds from sediment to bulk water depends on hydraulic conditions. In this study, desorption, mass transfer and biodegradation are investigated under settled and resuspended sediment conditions for branched nonylphenol (NP), which was used as model compound for aerobically biodegradable and anaerobic persistent compounds.  相似文献   

20.

Purpose

The highest concentrations of environmental contaminants are generally found in marine sediments, and there is a need for knowledge concerning how and whether they affect sediment-dwelling organisms. This study aimed to assess sublethal effects in Arenicola marina exposed to two sediments from a contaminated fjord and two reference locations with different sediment characteristics.

Materials and methods

Duplicate contaminated sediments were used to investigate the robustness of current protocols for sediment testing. The two reference sediments, with different grain sizes and total organic carbon, were collected from the outer Oslofjord and the two contaminated sediments from Frierfjord. Polychaetes were exposed in quadruplicate sediment microcosms and sampled after 1, 2, 4 and 8?weeks of exposure. Oxidative stress resistance (total oxyradical scavenging capacity, TOSC) and components comprising the energy budget (cellular energy allocation, CEA) were determined for individual polychaetes.

Results and discussion

Arenicola maintained and increased body weights over the initial 4?weeks of exposure in all groups, except in one reference sediment (Elle). There were no differences between treatments in the scavenging capacity (TOSC). The most striking difference in how polychaetes partitioned energy resources was a difference in lipid and carbohydrate allocations for Arenicola held in the contaminated sediments over the initial weeks. Cellular respiration appeared to increase in polychaetes held in the Elle sediment and decreased for polychaetes held in the two Frierfjord sediments by weeks?4 and 8. In the overall CEA, this was offset by increased energy per weight stored in the Elle group, which resulted in an overall positive CEA for polychaetes held in that sediment, whereas polychaetes in the other treatments were close to neutral. Although CEA would thus indicate that Elle polychaetes had good health status, their body weight also decreased significantly over the experimental period compared to other treatments, indicating an overall negative effect.

Conclusions

This study has shown the importance of sediment characteristics when evaluating toxicity and how resource allocation can differ dramatically over a short time span in polychaetes held in similarly contaminated sediments. There were no clear effects of sediment contamination on CEA or TOSC in the polychaete A. marina. The findings are relevant for the design of both short- and long-term sediment studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号