首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The proteolytic processing of amyloid precursor protein (APP) by β-secretase (BACE1) and γ-secretase releases amyloid-β peptide (Aβ), which deposits in amyloid plaques and contributes to the initial causative events of Alzheimer’s disease (AD). In the present study, the regulatory mechanism of APP processing of three phlorotannins was elucidated in Swedish mutant APP overexpressed N2a (SweAPP N2a) cells. Among the tested compounds, dieckol exhibited the highest inhibitory effect on both intra- and extracellular Aβ accumulation. In addition, dieckol regulated the APP processing enzymes, such as α-secretase (ADAM10), β-secretase, and γ-secretase, presenilin-1 (PS1), and their proteolytic products, sAPPα and sAPPβ, implying that the compound acts on both the amyloidogenic and non-amyloidogenic pathways. In addition, dieckol increased the phosphorylation of protein kinase B (Akt) at Ser473 and GSK-3β at Ser9, suggesting dieckol induced the activation of Akt, which phosphorylated GSK-3β. The specific phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 triggered GSK-3β activation and Aβ expression. In addition, co-treatment with LY294002 noticeably blocked the effect of dieckol on Aβ production, demonstrating that dieckol promoted the PI3K/Akt signaling pathway, which in turn inactivated GSK-3β, resulting in the reduction in Aβ levels.  相似文献   

3.
α-conotoxin AuIB is the only one of the 4/6 type α-conotoxins (α-CTxs) that inhibits the γ-aminobutyric acid receptor B (GABABR)-coupled N-type calcium channel (CaV2.2). To improve its inhibitory activity, a series of variants were synthesized and evaluated according to the structure–activity relationships of 4/7 type α-CTxs targeting GABABR-coupled CaV2.2. Surprisingly, only the substitution of Pro7 with Arg results in a 2–3-fold increase in the inhibition of GABABR-coupled CaV2.2 (IC50 is 0.74 nM); substitutions of position 9–12 with basic or hydrophobic amino acid and the addition of hydrophobic amino acid Leu or Ile at the second loop to mimic 4/7 type α-CTxs all failed to improve the inhibitory activity of AuIB against GABABR-coupled CaV2.2. Interestingly, the most potent form of AuIB[P7R] has disulfide bridges of “1–4, 2–3” (ribbon), which differs from the “1–3, 2–4” (globular) in the isoforms of wildtype AuIB. In addition, AuIB[P7R](globular) displays potent analgesic activity in the acetic acid writhing model and the partial sciatic nerve injury (PNL) model. Our study demonstrated that 4/6 type α-CTxs, with the disulfide bridge connectivity “1–4, 2–3,” are also potent inhibitors for GABABR-coupled CaV2.2, exhibiting potent analgesic activity.  相似文献   

4.
We investigated the effect of Ecklonia cava (E. cava)-derived dieckol on movement behavior and the expression of migration-related genes in MCF-7 human breast cancer cell. Phlorotannins (e.g., dieckol, 6,6′-biecko, and 2,7″-phloroglucinol-6,6′-bieckol) were purified from E. cava by using centrifugal partition chromatography. Among the phlorotannins, we found that dieckol inhibited breast cancer cell the most and was selected for further study. Radius™-well was used to assess cell migration, and dieckol (1–100 µM) was found to suppress breast cancer cell movement. Metastasis-related gene expressions were evaluated by RT-PCR and Western blot analysis. In addition, dieckol inhibited the expression of migration-related genes such as matrix metalloproteinase (MMP)-9 and vascular endothelial growth factor (VEGF). On the other hand, it stimulated the expression of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. These results suggest that dieckol exerts anti-breast cancer activity via the regulation of the expressions of metastasis-related genes, and this is the first report on the anti-breast cancer effect of dieckol.  相似文献   

5.
One of the well-known causes of hearing loss is noise. Approximately 31.1% of Americans between the ages of 20 and 69 years (61.1 million people) have high-frequency hearing loss associated with noise exposure. In addition, recurrent noise exposure can accelerate age-related hearing loss. Phlorofucofuroeckol A (PFF-A) and dieckol, polyphenols extracted from the brown alga Ecklonia cava, are potent antioxidant agents. In this study, we investigated the effect of PFF-A and dieckol on the consequences of noise exposure in mice. In 1,1-diphenyl-2-picrylhydrazyl assay, dieckol and PFF-A both showed significant radical-scavenging activity. The mice were exposed to 115 dB SPL of noise one single time for 2 h. Auditory brainstem response(ABR) threshold shifts 4 h after 4 kHz noise exposure in mice that received dieckol were significantly lower than those in the saline with noise group. The high-PFF-A group showed a lower threshold shift at click and 16 kHz 1 day after noise exposure than the control group. The high-PFF-A group also showed higher hair cell survival than in the control at 3 days after exposure in the apical turn. These results suggest that noise-induced hair cell damage in cochlear and the ABR threshold shift can be alleviated by dieckol and PFF-A in the mouse. Derivatives of these compounds may be applied to individuals who are inevitably exposed to noise, contributing to the prevention of noise-induced hearing loss with a low probability of adverse effects.  相似文献   

6.
Tobacco smoking has become a prominent health problem faced around the world. The α3β4 nicotinic acetylcholine receptor (nAChR) is strongly associated with nicotine reward and withdrawal symptom. α-Conotoxin TxID, cloned from Conus textile, is a strong α3β4 nAChR antagonist, which has weak inhibition activity of α6/α3β4 nAChR. Meanwhile, its analogue [S9K]TxID only inhibits α3β4 nAChR (IC50 = 6.9 nM), and has no inhibitory activity to other nAChRs. The present experiment investigates the effect of α3β4 nAChR antagonists (TxID and [S9K]TxID) on the expression and reinstatement of nicotine-induced conditioned place preference (CPP) and explores the behaviors of acute nicotine in mice. The animal experimental results showed that TxID and [S9K] TxID could inhibit the expression and reinstatement of CPP, respectively. Moreover, both had no effect in acute nicotine experiment and the locomotor activity in mice. Therefore, these findings reveal that the α3β4 nAChR may be a potential target for anti-nicotine addiction treatment. [S9K]TxID, α3β4 nAChR antagonist, exhibit a superior effect for anti-nicotine addiction, which is promising to develop a novel smoking cessation drug.  相似文献   

7.
Microwave-assisted extraction (MAE) was carried out to maximize the extraction of phlorotannins from Fucus vesiculosus using a hydroethanolic mixture as a solvent, as an alternative to the conventional method with a hydroacetonic mixture. Optimal MAE conditions were set as ethanol concentration of 57% (v/v), temperature of 75 °C, and time of 5 min, which allowed a similar recovery of phlorotannins from the macroalgae compared to the conventional extraction. While the phlorotannins richness of the conventional extract was slightly superior to that of MAE (11.1 ± 1.3 vs. 9.8 ± 1.8 mg PGE/g DWextract), both extracts presented identical phlorotannins constituents, which included, among others, tetrafucol, pentafucol, hexafucol, and heptafucol structures. In addition, MAE showed a moderate capacity to scavenge ABTS•+ (IC50 of 96.0 ± 3.4 µg/mL) and to inhibit the activity of xanthine oxidase (IC50 of 23.1 ± 3.4 µg/mL) and a superior ability to control the activity of the key metabolic enzyme α-glucosidase compared to the pharmaceutical drug acarbose.  相似文献   

8.
Melanin synthesis is a defense mechanism that prevents skin damage, but excessive accumulation of melanin occurs in the skin in various reactions such as pigmentation, lentigines, and freckles. Although anti-melanogenic effects have been demonstrated for various naturally occurring marine products that inhibit and control tyrosinase activity, most studies have not been extended to in vivo applications. Phlorofucofuroeckol-A (PFF-A, 12.5–100 µM) isolated from Ecklonia cava has previously been shown to have tyrosinase-mitigative effects in B16F10 cells, but it has not been evaluated in an in vivo model, and its underlying mechanism for anti-melanogenic effects has not been studied. In the present study, we evaluated the safety and efficacy of PFF-A for anti-melanogenic effects in an in vivo model. We selected low doses of PFF-A (1.5–15 nM) and investigated their mitigative effects on pigmentation stimulated by α-MSH in vivo and their related-mechanism in an in vitro model. The findings suggest that low-dose PFF-A derived from E. cava suppresses pigmentation in vivo and melanogenesis in vitro. Therefore, this study presents the possibility that PFF-A could be utilized as a new anti-melanogenic agent in the cosmeceutical industries.  相似文献   

9.
Two novel phlorotannins with a molecular weight of 974, temporarily named 974-A and 974-B, were isolated from the polyphenol powder prepared from the edible marine brown alga Ecklonia kurome Okamura, and their chemical structures were determined by spectroscopic method. The isolated yield of the total of 974-A and 974-B was approximately 4% (w/w) from the polyphenol powder. In 974-A, the carbon at the C2′ position in the A ring of phlorofucofuroeckol-A forms a C–C bond with the carbon at the C2″ position of the C ring of triphloretol-B, while in 974-B, phlorofucofuroeckol-B and triphloretol-B form a C–C bond in the same manner as in 974-A. These structures were supported by high resolution-MS/MS data. To evaluate the antioxidant activities, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and intracellular radical scavenging assay, using 2′,7′-dichlorofluorescin diacetate (DCFH-DA), were performed for 974-A, 974-B, and four known phlorotannins. The results of the DPPH assay showed that the IC50 values of 974-A, 974-B, phlorofucofuroeckol-A, and dieckol were significantly smaller than those of phlorofucofuroeckol-B, phloroglucinol, α-tocopherol, and ascorbic acid. Furthermore, the DCFH-DA assay suggested that 974-A, 974-B, and dieckol reduce intracellular reactive oxygen species most strongly among the tested compounds.  相似文献   

10.
Global incidence of type 2 diabetes has escalated over the past few decades, necessitating a continued search for natural sources of enzyme inhibitors to offset postprandial hyperglycemia. The objective of this study was to evaluate coastal Alaskan seaweed inhibition of α-glucosidase and α-amylase, two carbolytic enzymes involved in serum glucose regulation. Of the six species initially screened, the brown seaweeds Fucus distichus and Alaria marginata possessed the strongest inhibitory effects. F. distichus fractions were potent mixed-mode inhibitors of α-glucosidase and α-amylase, with IC50 values of 0.89 and 13.9 μg/mL, respectively; significantly more efficacious than the pharmaceutical acarbose (IC50 of 112.0 and 137.8 μg/mL, respectively). The activity of F. distichus fractions was associated with phlorotannin oligomers. Normal-phase liquid chromatography-mass spectrometry (NPLC-MS) was employed to characterize individual oligomers. Accurate masses and fragmentation patterns confirmed the presence of fucophloroethol structures with degrees of polymerization from 3 to 18 monomer units. These findings suggest that coastal Alaskan seaweeds are sources of α-glucosidase and α-amylase inhibitory phlorotannins, and thus have potential to limit the release of sugar from carbohydrates and thus alleviate postprandial hyperglycemia.  相似文献   

11.
The α4β2 nAChR is implicated in a range of diseases and disorders including nicotine addiction, epilepsy and Parkinson’s and Alzheimer’s diseases. Designing α4β2 nAChR selective inhibitors could help define the role of the α4β2 nAChR in such disease states. In this study, we aimed to modify globular and ribbon α-conotoxin GID to selectively target the α4β2 nAChR through competitive inhibition of the α4(+)β2(−) or α4(+)α4(−) interfaces. The binding modes of the globular α-conotoxin [γ4E]GID with rat α3β2, α4β2 and α7 nAChRs were deduced using computational methods and were validated using published experimental data. The binding mode of globular [γ4E]GID at α4β2 nAChR can explain the experimental mutagenesis data, suggesting that it could be used to design GID variants. The predicted mutational energy results showed that globular [γ4E]GID is optimal for binding to α4β2 nAChR and its activity could not likely be further improved through amino-acid substitutions. The binding mode of ribbon GID with the (α4)3(β2)2 nAChR was deduced using the information from the cryo-electron structure of (α4)3(β2)2 nAChR and the binding mode of ribbon AuIB. The program FoldX predicted the mutational energies of ribbon [γ4E]GID at the α4(+)α4(−) interface, and several ribbon[γ4E]GID mutants were suggested to have desirable properties to inhibit (α4)3(β2)2 nAChR.  相似文献   

12.
Dieckol, a phlorotannin from Ecklonia cava, has shown potential for use as an anticancer agent that selectively kills cancer cells. However, it is necessary to amplify its potency without damaging its inherent safety in order to develop it as a competitive chemotherapeutic. Here, we explored the controlled O-acylations of dieckol. Acyl groups could be consistently introduced to the 6-O position of dieckol with a high regioselectivity, which was confirmed by NOESY, HMBC and HSQC spectroscopies. In cytotoxicity studies on the newly synthesized 6-O-acetyl, 6-O-benzoyl dieckols and previously synthesized 6-O-alkyl dieckols against A549 vs. normal cells, all of the derivatives showed low cytotoxicity in normal cells with an IC50 of 481–719 μM, and highly structure-dependent cytotoxicity in A549 cells with an IC50 of 7.02 (acetyl)−842.26 (benzyl) μM. The selectivity index also showed a large structure dependency in the range of 0.67 (benzyl)–68.58 (acetyl). An analysis of the structure–activity relationship indicated that the activity was dramatically reduced in the presence of a benzene ring and was highly increased in the presence of small polar substituents. Conclusions: Controlled mono-O-modifications of dieckol could be a powerful tool to enhance the anticancer activity of dieckol, thus contributing to the development strategy for dieckol-based chemotherapeutics.  相似文献   

13.
Alpha6beta2 nicotinic acetylcholine receptors (nAChRs) are potential therapeutic targets for the treatment of several neuropsychiatric diseases, including addiction and Parkinson’s disease. Alpha-conotoxin (α-CTx) TxIB is a uniquely selective ligand, which blocks α6/α3β2β3 nAChRs only, but does not block the other subtypes. Therefore, α-CTx TxIB is a valuable therapeutic candidate peptide. Synthesizing enough α-CTx TxIB with high yield production is required for conducting wide-range testing of its potential medicinal applications. The current study optimized the cleavage of synthesized α-CTx TxIB resin-bounded peptide and folding of the cleaved linear peptide. Key parameters influencing cleavage and oxidative folding of α-CTx TxIB were examined, such as buffer, redox agents, pH, salt, co-solvent and temperature. Twelve conditions were used for cleavage optimization. Fifty-four kinds of one-step oxidative solution were used to assess their effects on each α-CTx TxIB isomers’ yield. The result indicated that co-solvent choices were particularly important. Completely oxidative folding of globular isomer was achieved when the NH4HCO3 or Tris-HCl folding buffer at 4 °C contained 40% of co-solvent DMSO, and GSH:GSSG (2:1) or GSH only with pH 8~8.7.  相似文献   

14.
Marine fungi represent an important and sustainable resource, from which the search for novel biological substances for application in the pharmacy or food industry offers great potential. In our research, novel polysaccharide (AUM-1) was obtained from marine Aureobasidium melanogenum SCAU-266 were obtained and the molecular weight of AUM-1 was determined to be 8000 Da with 97.30% of glucose, 1.9% of mannose, and 0.08% galactose, owing to a potential backbone of α-D-Glcp-(1→2)-α-D-Manp-(1→4)-α-D-Glcp-(1→6)-(SO3)-4-α-D-Glcp-(1→6)-1-β-D-Glcp-1→2)-α-D-Glcp-(1→6)-β-D-Glcp-1→6)-α-D-Glcp-1→4)-α-D-Glcp-6→1)-[α-D-Glcp-4]26→1)-α-D-Glcp and two side chains that consisted of α-D-Glcp-1 and α-D-Glcp-(1→6)-α-D-Glcp residues. The immunomodulatory effect of AUM-1 was identified. Then, the potential molecular mechanism by which AUM-1 may be connected to ferroptosis was indicated by metabonomics, and the expression of COX2, SLC7A11, GPX4, ACSL4, FTH1, and ROS were further verified. Thus, we first speculated that AUM-1 has a potential effect on the ferroptosis-related immunomodulatory property in RAW 264.7 cells by adjusting the expression of GPX4, regulated glutathione (oxidative), directly causing lipid peroxidation owing to the higher ROS level through the glutamate metabolism and TCA cycle. Thus, the ferroptosis related immunomodulatory effect of AUM-1 was obtained.  相似文献   

15.
α-Conotoxin TxIB, a selective antagonist of α6/α3β2β3 nicotinic acetylcholine receptor, could be a potential therapeutic agent for addiction and Parkinson’s disease. As a peptide with a complex pharmacophoric conformation, it is important and difficult to find a modifiable site which can be modified effectively and efficiently without activity loss. In this study, three xylene scaffolds were individually reacted with one pair of the cysteine residues ([1,3] or [2,4]), and iodine oxidation was used to form a disulfide bond between the other pair. Overall, six analogs were synthesized with moderate isolated yields from 55% to 65%, which is four times higher than the traditional two-step oxidation with orthogonal protection on cysteines. The cysteine [2,4] modified analogs, with higher stability in human serum than native TxIB, showed obvious inhibitory effect and selectivity on α6/α3β2β3 nicotinic acetylcholine receptors (nAChRs), which was 100 times more than the cysteine [1,3] modified ones. This result demonstrated that the cysteine [2,4] disulfide bond is a new modifiable site of TxIB, and further modification can be a simple and feasible strategy for the exploitation and utilization of α-Conotoxin TxIB in drug discovery.  相似文献   

16.
Nicotinic acetylcholine receptor (nAChR) subtypes are key drug targets, but it is challenging to pharmacologically differentiate between them because of their highly similar sequence identities. Furthermore, α-conotoxins (α-CTXs) are naturally selective and competitive antagonists for nAChRs and hold great potential for treating nAChR disorders. Identifying selectivity-enhancing mutations is the chief aim of most α-CTX mutagenesis studies, although doing so with traditional docking methods is difficult due to the lack of α-CTX/nAChR crystal structures. Here, we use homology modeling to predict the structures of α-CTXs bound to two nearly identical nAChR subtypes, α3β2 and α3β4, and use free-energy perturbation (FEP) to re-predict the relative potency and selectivity of α-CTX mutants at these subtypes. First, we use three available crystal structures of the nAChR homologue, acetylcholine-binding protein (AChBP), and re-predict the relative affinities of twenty point mutations made to the α-CTXs LvIA, LsIA, and GIC, with an overall root mean square error (RMSE) of 1.08 ± 0.15 kcal/mol and an R2 of 0.62, equivalent to experimental uncertainty. We then use AChBP as a template for α3β2 and α3β4 nAChR homology models bound to the α-CTX LvIA and re-predict the potencies of eleven point mutations at both subtypes, with an overall RMSE of 0.85 ± 0.08 kcal/mol and an R2 of 0.49. This is significantly better than the widely used molecular mechanics—generalized born/surface area (MM-GB/SA) method, which gives an RMSE of 1.96 ± 0.24 kcal/mol and an R2 of 0.06 on the same test set. Next, we demonstrate that FEP accurately classifies α3β2 nAChR selective LvIA mutants while MM-GB/SA does not. Finally, we use FEP to perform an exhaustive amino acid mutational scan of LvIA and predict fifty-two mutations of LvIA to have greater than 100X selectivity for the α3β2 nAChR. Our results demonstrate the FEP is well-suited to accurately predict potency- and selectivity-enhancing mutations of α-CTXs for nAChRs and to identify alternative strategies for developing selective α-CTXs.  相似文献   

17.
Bin Wu  Xiaodan Wu  Min Sun  Minhui Li 《Marine drugs》2013,11(8):2713-2721
Two new sesquiterpenes, 1β,5α,6α,14-tetraacetoxy-9α-benzoyloxy-7βH-eudesman-2β,11-diol (1) and 4α,5α-diacetoxy-9α-benzoyloxy-7βH-eudesman-1β,2β,11,14-tetraol (2), were produced as stress metabolites in the cultured mycelia of Pestalotiopsis sp. Z233 isolated from the algae Sargassum horneri in response to abiotic stress elicitation by CuCl2. Their structures were established by spectroscopic means. New compounds 1 and 2 showed tyrosinase inhibitory activities with IC50 value of 14.8 µM and 22.3 µM.  相似文献   

18.
Inflammation is important in biomedical research, because it plays a key role in inflammatory diseases including rheumatoid arthritis and other forms of arthritis, diabetes, heart disease, irritable bowel syndrome, Alzheimer’s disease, Parkinson’s disease, allergies, asthma, and even cancer. In the present study, we describe the inhibitory effect of crude extracts and steroids isolated from the starfish Astropecten polyacanthus on pro-inflammatory cytokine (Interleukin-12 (IL-12) p40, interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α)) production in lipopolysaccharide (LPS)-stimulated bone marrow-derived dendritic cells (BMDCs). Among those tested, compounds 5 and 7 showed potent inhibitory effects on the production of all three pro-inflammatory cytokines with IC50 values ranging from 1.82 ± 0.11 to 7.00 ± 0.16 μM. Potent inhibitory activities were also observed for compound 1 on the production of IL-12 p40 and IL-6 with values of 3.96 ± 0.12 and 4.07 ± 0.13 μM, respectively, and for compounds 3 and 4 on the production of IL-12 p40 with values of 6.55 ± 0.18 and 5.06 ± 0.16 μM, respectively. Moreover, compounds 2 (IC50 = 34.86 ± 0.31 μM) and 6 (IC50 = 79.05 ± 2.05 μM) exhibited moderate inhibitory effects on the production of IL-12 p40, whereas compounds 3 (IC50 = 22.80 ± 0.21 μM) and 4 (IC50 = 16.73 ± 0.25 μM) moderately inhibited the production of TNF-α and IL-6, respectively.  相似文献   

19.
Algae accumulate large amounts of polysaccharides in their cell walls or intercellular regions. Polysaccharides from algae possess high potential as promising candidates for marine drug development. In this study, a sulfated polysaccharide, UCP, from the green alga Ulva conglobata Kjellman was obtained by water extraction, anion-exchange, and size-exclusion chromatography purification, and its structure was characterized by a combination of chemical and spectroscopic methods. UCP mainly consisted of →4)-α/β-l-Rhap-(1→, →4)-β-d-Xylp-(1→ and →4)-β-d-GlcAp-(1→ residues. Sulfate ester groups were substituted mainly at C-3 of →4)-l-Rhap-(1→ and C-2 of →4)-β-d-Xylp-(1→. Partial glycosylation was at C-2 of →4)-α-l-Rhap-(1→ residues. UCP possessed a potent immunomodulatory effect in vitro, evaluated by the assays of lymphocyte proliferation and macrophage phagocytosis. The immunomodulatory activity of UCP in vivo was further investigated using immunosuppressive mice induced by cyclophosphamide. The results showed that UCP markedly increased the spleen and thymus indexes and ameliorated the cyclophosphamide-induced damage to the spleen and thymus. UCP could increase the levels of white blood cells, lymphocytes, and platelets, and improve the hematopoietic inhibition caused by cyclophosphamide. Moreover, UCP significantly promoted the secretions of the immunoglobulin (Ig)G, IgE, and IgM. The data demonstrated that UCP is a novel sulfated polysaccharide and may be a promising immunomodulatory agent.  相似文献   

20.
Repetitive exposure to ultraviolet B (UVB) is one of the main causes of skin photoaging. We previously reported that dieckol isolated from Eisenia bicyclis extract has potential anti-photoaging effects in UVB-irradiated Hs68 cells. Here, we aimed to evaluate the anti-photoaging activity of dieckol in a UVB-irradiated hairless mouse model. In this study, hairless mice were exposed to UVB for eight weeks. At the same time, dieckol at two doses (5 or 10 mg/kg) was administered orally three times a week. We found that dieckol suppressed UVB-induced collagen degradation and matrix metalloproteinases (MMPs)-1, -3, and -9 expression by regulating transforming growth factor beta (TGF-β)/Smad2/3 and mitogen-activated protein kinases (MAPKs)/activator protein-1 (AP-1) signaling. In addition, dieckol rescued the production of hyaluronic acid (HA) and effectively restored the mRNA expression of hyaluronan synthase (HAS)-1/-2 and hyaluronidase (HYAL)-1/-2 in UVB-irradiated hairless mice. We observed a significant reduction in transepidermal water loss (TEWL), epidermal/dermal thickness, and wrinkle formation in hairless mice administered dieckol. Based on these results, we suggest that dieckol, due to its anti-photoaging role, may be used as a nutricosmetic ingredient for improving skin health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号