首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of elevated atmospheric CO2 on grain quality of wheat   总被引:1,自引:2,他引:1  
Wheat (Triticum aestivum L.) is one of the most important agricultural crops worldwide. Due to its high content of starch and unique gluten proteins, wheat grain is used for many food and non-food applications. Although grain quality is an important topic for food and feed as well as industrial processing, the consequences of future increases in atmospheric carbon dioxide (CO2) concentrations on quality parameters such as nutritional and bread-making rheological properties are still unclear. Wheat productivity increases under CO2 enrichment. Concomitantly, the chemical composition of vegetative plant parts is often changed and grain quality is altered. In particular, the decrease in grain protein concentration and changes in protein composition may have serious economic and health implications. Additionally, CO2 enrichment affects amino acid composition and the concentrations of macro- and micro-elements. However, experimental results are often inconsistent. The present review summarises the results from numerous CO2 enrichment experiments using different exposure techniques in order to quantify the potential impacts of projected atmospheric CO2 levels on wheat grain yield and on aspects of grain composition relevant to processing and human nutrition.  相似文献   

2.
The present study focused on the quality traits of durum wheat grains (protein and content, gluten content, yellow pigment content), semolina (gluten index and yellow index) and pasta (firmness, yellow index, cooking time) obtained from 12 durum wheat genotypes grown under elevated atmospheric CO2 concentration in an open field Free Air CO2 Enrichment (FACE) experiment. The aims were to evaluate the impact of elevated CO2 on durum wheat pasta making related traits as well as investigate genetic differences existing in a panel of old and modern cultivars. The protein content showed a not significant decrease (7%), the GC decreased significantly (13.3%), while the GI showed an increasing significant tendency (14%). The overall pasta quality (firmness and weight) worsened in ELE. Correlation between all traits and pasta firmness demonstrated that the decrease in pasta firmness under ELE was correlated with GPC and GC while it was not with the GI. All varieties, although to different extent, showed lower pasta firmness values compared to the ambient condition. Among the varieties tested, some were more sensitive than others to the increased atmospheric CO2 concentration, a finding that can be exploited by breeding for designing novel genotypes with lower sensitivity to increased atmospheric CO2.  相似文献   

3.
ABSTRACT

The effects of elevated carbon dioxide concentration on the morphology of leaf blades in two Chinese yam lines under different temperature conditions were determined. Plants were grown under two [CO2] levels, ambient (about 400 µmol mol?1) and elevated (ambient + 200 µmol mol?1) in the daytime, and two mean air temperature regimes, approximately ambient temperature (22.2°C) and high temperature (25.6°C). The palisade layer was thicker under elevated [CO2] than under ambient [CO2] in both temperature regimes, and the whole yam leaf blade was thicker under elevated [CO2] than under ambient [CO2] in the approximately ambient temperature regime. The numbers of chloroplasts per palisade cell and spongy cell as well as per unit profile area of palisade cell, number of starch grains per chloroplast, profile area of the starch grain, and starch-to-chloroplast area ratio in both palisade and spongy cells were higher under elevated [CO2] than under ambient [CO2] in both temperature regimes. Furthermore, the stomatal density on the abaxial side of the leaf blade in Chinese yam was greater under elevated [CO2] than under ambient [CO2] under both temperature regimes, and stomatal-pore length was higher under elevated [CO2] than under ambient [CO2] in the approximately ambient temperature regime. These results indicate that elevated [CO2] positively affects the photosynthetic apparatus. The results of this study provide information for understanding the response characteristics of the leaf blade under elevated [CO2] and a possible explanation for the positive photosynthetic responses of Chinese yam to elevated [CO2] in our previous study.

List of Abbreviations:[CO2]: carbon dioxide concentration  相似文献   

4.
We investigated wheat (Triticum aestivum) grain quality under Free Air CO2 Enrichment (FACE) of 550 ± 10% CO2 μmol mol−1. In each of two full growing seasons (2008 and 2009), two times of sowing were compared, with late sowing designed to mimic high temperature during grain filling. Grain samples were subjected to a range of physical, nutritional and rheological quality assessments. Elevated CO2 increased thousand grain weight (8%) and grain diameter (5%). Flour protein concentration was reduced by 11% at e[CO2], with the highest reduction being observed at the late time of sowing in 2009, (15%). Most of the grain mineral concentrations decreased under e[CO2] - Ca (11%), Mg (7%), P (11%) and S (7%), Fe (10%), Zn (17%), Na (19%), while total uptake of these nutrients per unit ground area increased. Rheological properties of the flour were altered by e[CO2] and bread volume reduced by 7%. Phytate concentration in grains tended to decrease (17%) at e[CO2] while grain fructan concentration remained unchanged. The data suggest that rising atmospheric [CO2] will reduce the nutritional and rheological quality of wheat grain, but at high temperature, e[CO2] effects may be moderated. Reduced phytate concentrations at e[CO2] may improve bioavailability of Fe and Zn in wheat grain.  相似文献   

5.
We test the hypothesis that reduction in grain N concentration under elevated CO2 concentration (e[CO2]) is associated with N types (NH4+ and NO3) and their ratios. Wheat (Triticum aestivum L. cv. H45) was grown in a glasshouse under two CO2 concentrations (389 μmol mol−1 and 700 μmol mol−1), supplied with equal amount of N with different ratios of NH4+ and NO3: (i) 100% NO3–N; (ii) 50% NO3–N and 50% NH4+–N; and (iii) 25% NO3–N and 75% NH4+–N. Plant growth, N uptake and partitioning were measured during plant development. Plant biomass and grain yield was increased at e[CO2] when N was supplied as an equal proportion of NO3 and NH4+. Despite the yield increment, grain N concentration was not affected by e[CO2], in 50% NO3–N treatment. In contrast, grain N concentration decreased in 100% NO3–N and 25% NO3–N treatments. In 50% NO3–N treatment, N uptake during post-anthesis stage (from 69 to 141 days after planting) was significantly stimulated under e[CO2] compared to 100% NO3–N and 25% NO3–N treatments. We concluded that supplement of N in an equal proportion of NO3 and NH4+ which increases post-anthesis N uptake, avoid the reduction of grain N concentration under e[CO2].  相似文献   

6.
7.
《Field Crops Research》2004,88(1):57-67
Increasing atmospheric CO2 concentration has led to concerns about global changes to the environment. One area of global change that has not been fully addressed is the effect of elevated atmospheric CO2 on agriculture production inputs. Elevated CO2 concentration alterations of plant growth and C:N ratios may modify C and N cycling in soil and N fertility. This study was conducted to examine the effects of legume, soybean (Glycine max (L.) Merr.), and non-legume, grain sorghum (Sorghum bicolor (L.) Moench.) carbon dioxide-enriched agro-ecosystems on N soil fertility in a Blanton loamy sand (loamy siliceous, thermic, Grossarenic Paleudults). The study was a split-plot design replicated three times with crop species (soybean and grain sorghum) as the main plots and CO2 concentration (ambient and twice ambient) as subplots using open top field chambers. Fertilizer application was made with 15N-depleted NH4NO3 to act as a fertilizer tracer. Elevated CO2 increased total biomass production in all 3 years of both grain sorghum (average 30%) and soybean (average 40%). With soybean, while no impact on the plant C:N ratio was observed, the total N content was greatly increased (average 29%) due to increased atmospheric N2 fixation with elevated CO2 concentration. With grain sorghum, the total N uptake was not affected, but the C:N ratio was markedly increased (average 31%) by elevated CO2. No impact of elevated CO2 level was observed for fertilizer N in grain sorghum. The results from this study indicated that while elevated CO2 may enhance crop production and change N status in plant tissue, changes to soil N fertilizer application practices may not be needed.  相似文献   

8.
9.
研究大气CO2浓度升高对非结构性碳水化合物分配积累的影响,可填补大豆气候变化生物学的部分空白,也又可为选育适应未来气候条件的大豆品种以及高产栽培策略提供理论支撑。本研究以大豆品种紫花4(ZH4)、小黄金(XHJ)、丰收10号(FS10)和嫩丰1号(NF1)为材料,利用开顶式气室模拟研究大气CO2浓度升高到550 μmol·mol-1对大豆鼓粒期(R5)和完熟期(R8)不同器官光合产物积累和分配的影响。结果表明:大气CO2浓度升高对不同器官C浓度的影响存在品种间差异。除了R5期XHJ叶片和R8期NF1根系,大豆不同器官C浓度表现出增加的趋势。大气CO2浓度升高显著增加R5期大豆叶片可溶性糖浓度(33.4%~90.0%);而蔗糖和淀粉浓度对大气CO2浓度升高的响应受到品种因素的影响,XHJ叶片蔗糖浓度和FS10叶片淀粉浓度分别降低9.7%和13%,其余品种叶片蔗糖和淀粉浓度显著增加。在R8期,大气CO2浓度升高后大豆籽粒可溶性糖、蔗糖和淀粉浓度均表现出增加的趋势,籽粒可溶性糖浓度平均增加22%。同R5期相比,R8期大豆营养器官的碳水化合物浓度显著下降,表明营养器官碳水化合物的再利用能力决定大豆产量的增幅。ZH4、XHJ和FS10的产量平均增加32.7%,而NF1产量增加不显著。大气CO2浓度升高显著提高了大豆植株C的同化能力,但不同品种间差异显著。“源端”叶片蔗糖转化能力强,“流端”茎秆装卸同化产物效率高,以及“库强”较大的大豆品种在未来大豆品种选育和生产中应该是重点关注对象。  相似文献   

10.
Spring wheat (Triticum aestivum L.) was grown in a free-air carbon dioxide (CO2) enrichment (FACE) field experiment. Grain and biomass yield and its components were determined at maturity and the grain metabolome was analysed by gas chromatography-mass spectrometry (GC–MS). Elevated CO2 (537 versus 409 μl l−1) increased biomass production except for leaves. In total, levels of 16 grain metabolites were decreased and four were increased. CO2 enrichment resulted in significant decreases of amino acids such as o-acetyl-L-homoserine, leucine, arginine, L-homoserine and the group of ornithine, arginine and citrulline and negative trends for norleucine, L-aspartate, proline, L-cysteine and tyrosine. The amines D/L-diaminopimelate and alpha-ketoaminobutyrate and the polyamine putrescine were significantly decreased. In contrast, the polyamine spermidine tended to increase under elevated CO2. Among sugars and sugar derivatives, ribose-5-P was significantly increased, while gluconate-6-P was decreased. There were also negative CO2-induced effects on sugar alcohols: significant for glycerol-2-P (P = 0.008) and almost significant for myo-inositol-P (P = 0.066). In contrast, organic acids such as pyruvate and glucuronic acid were significantly increased. Overall, the N-rich metabolites especially were reduced. CO2 enrichment can markedly affect the physiology and metabolome of mature grains which may in turn lead to changes in nutritional status.  相似文献   

11.
Plant Foods for Human Nutrition -  相似文献   

12.

Background

Heat-tolerant rice cultivars have been developed as a countermeasure to poor grain appearance quality under high temperatures. Recent studies showed that elevated CO2 concentrations (E-[CO2]) also reduce grain quality. To determine whether heat-tolerant cultivars also tolerate E-[CO2], we conducted a free-air CO2 enrichment (FACE) experiment with 12 rice cultivars differing in heat tolerance.

Results

The percentage of undamaged grains of five standard cultivars (Akitakomachi, Kinuhikari, Koshihikari, Matsuribare, Nipponbare) averaged 61.7% in the ambient [CO2] (AMB) plot and 51.7% in the FACE plot, whereas that of heat-tolerant cultivars (Eminokizuna, Wa2398, Kanto 257, Toyama 80, Mineharuka, Kanto 259, Saikai 290) averaged 73.5% in AMB and 71.3% in FACE. This resulted in a significant [CO2] by cultivar interaction. The percentage of white-base or white-back grains increased from 8.4% in AMB to 17.1% in FACE in the sensitive cultivars, but from only 2.1% in AMB to only 4.4% in FACE in the heat-tolerant cultivars.

Conclusion

Heat-tolerant cultivars retained their grain appearance quality at E-[CO2] under present air temperatures. Further improvements in appearance quality under present conditions will be needed to achieve improvements under E-[CO2], because E-[CO2] will likely lower the threshold temperature for heat stress.  相似文献   

13.
Abiotic stress caused by increasing temperature and drought is a major limiting factor for wheat productivity around the world. Wheat plays an important role in feeding the world, but climate change threatens its future harvest and nutritional quality. In this study, grain iron (Fe) and zinc (Zn) concentrations of 54 wheat varieties, including CIMMYT derived historic and modern wheat varieties grown in six different environmental conditions, were analyzed. The objective of the study was to evaluate the effect of water and heat stress on the nutritional value of wheat grains with a main emphasis on grain protein content, Zn and Fe concentrations. Significant effects of environment on protein content and grain micronutrients concentration were observed. The protein and Zn concentrations increased in the water and heat stressed environments, whereas Zn and Fe yield per unit area was higher in non-stress conditions. The results suggest that genetic gains in the yield potential of CIMMYT derived wheat varieties have tended to reduce grain Zn, in some instances; however, environmental variability might influence the extent to which this effect manifests itself.  相似文献   

14.
矿质营养对玉米籽粒营养品质的影响   总被引:42,自引:2,他引:42  
李金洪  李伯航 《玉米科学》1995,3(3):054-058
本文介绍了氮、磷、钾、锌、锰、铜、硒及稀土对普通玉米、高赖玉米和甜玉米籽粒营养品质的影响,适量施肥可明显提高籽粒蛋白质、脂肪、氨基酸等成分的含量。单独施氮肥虽然能显著提高蛋白质含量,却降低了蛋白质的营养价值.氮、磷、钾配合使籽粒品质明县改善、普通玉米和高赖玉米籽粒品质对矿质养分的反应有差别.  相似文献   

15.
In order to investigate the intra-specific variation of wheat grain quality response to elevated atmospheric CO2 concentration (e[CO2]), eight wheat (Triticum aestivum L.)cultivars were grown at two CO2 concentrations ([CO2]) (current atmospheric, 389 CO2 μmol mol−1vs. e[CO2], FACE (Free-Air CO2 Enrichment), 550  ±  10% CO2 μmol mol−1), at two water levels (rain-fed vs. irrigated) and at two times of sowing (TOS1, vs. TOS2). The TOS treatment was mainly imposed to understand whether e[CO2] could modify the effects of timing of higher grain filling temperatures on grain quality. When plants were grown at TOS1, TKW (thousand kernel weight), grain test weight, hardness index, P, Ca, Na and phytate were not significantly changed under e[CO2]. On the other hand, e[CO2] increased TKW (16%), hardness index (9%), kernel diameter (6%), test weight (2%) but decreased grain protein (10%) and grain phytate (11%) at TOS2. In regard to grain Zn, Mn and Cu concentrations and some flour rheological properties, cultivar specific responses to e[CO2] were observed at both sowing times. Observed genetic variability in response to e[CO2] in terms of grain minerals and flour rheological properties could be easily incorporated into future wheat breeding programs to enable adaptation to climate change.  相似文献   

16.
Although common disturbances of grazing lands like plant defoliation are expected to affect their sensitivity to increasing atmospheric CO2 concentration, almost no research has been conducted to evaluate how important such effects might be on the direct responses of rangelands to CO2. This growth chamber experiment subjected intact plant–soil cylinders from a Wyoming, USA, prairie to a 3‐way factorial of CO2 (370 vs. 720 μL L?1), defoliation (non‐clipped vs. clipped) and soil nitrogen (control vs. 10 g m?2 added N) under simulated natural climatic conditions. Above‐ and below‐ground biomass and N dynamics of the functional groups C3 grasses, C4 grasses and forbs were investigated. CO2 and defoliation had independent influences on biomass and N parameters of these rangeland plants. Growth under CO2‐enriched conditions enhanced above‐ground biomass 50% in C3 grasses alone, while shoot N concentration declined 16% in both C3 and C4 grasses. Plant‐soil 15N uptake was unaffected by CO2 treatment. In contrast, defoliation had no effect on biomass, but increased tissue N concentration 29% across all functional groups. Without additional N, forage quality, which is in direct relation to N concentration, will decline under increasing atmospheric CO2. Increased dominance of C3 grasses plus reduced forage quality may necessitate changes in grazing management practices in mixed‐species rangelands.  相似文献   

17.
The impact of rising carbon dioxide concentration ([CO2]) in the atmosphere on wheat grain protein concentration and proteome was investigated in this study. Wheat genotypes (H45, SB003, SB062 and Yitpi) were grown in the Australian Grains Free-Air CO2 Enrichment (AGFACE) facility, Horsham, Victoria, Australia under ambient [CO2] (a[CO2], 391 μmol mol−1) and elevated [CO2] (e[CO2], 550 ± 20 μmol mol−1). Grain yield and grain protein concentration were measured. Global grain proteome comparison was carried out using stable isotope dimethyl labelling followed by liquid chromatography - mass spectrometry (LC-MS/MS). Grain yield was significantly increased at e[CO2], whereas protein concentration was significantly decreased and responses varied between genotypes. Proteome-wide analysis revealed that protein composition was also altered under e[CO2]. Grain protein concentration and composition of SB003 was very responsive to e[CO2]. Mainly storage proteins were decreased at e[CO2] and the responses varied between genotypes. These findings suggest that e[CO2] may have a major impact on grain protein quality and thus bread quality and human and animal nutrition. Further, these findings suggest that [CO2] insensitive cultivars can be identified for grain quality improvement under changing climate.  相似文献   

18.
Ozone is a powerful and highly reactive oxidizing agent, which has found increasing applications in the field of grain processing. However, in some cases, O3 can potentially promote oxidation and/or degradation of the chemical constituents of grains. Experiments were carried out to evaluate the specific effects of gaseous ozone on the molecular properties of wheat grain proteins and their consequences on the bread-making quality of the resulting flours.Ozonation causes a significant reduction in the SDS solubility of the wheat prolamins, which can reasonably be attributed to conjugate effects of an increase in molecular dimensions and an increase in the compactness of the protein polymers initially present. In fact, our results demonstrate that this general reinforcement of the aggregative status of prolamins due to ozonation of wheat grains results from (i) the formation of new intermolecular S-S bonds, (ii) to a lesser extent, the formation of other types of intermolecular covalent cross-links (dityrosine cross-links) and finally, (iii) significant changes in secondary structure. By significantly affecting the molecular properties of wheat grain prolamins, ozone leads to profound changes in the rheological properties (i.e. increase in the tenacity and a great limitation of the extensibility) of the flours and/or doughs obtained.  相似文献   

19.
Chinese yam (‘yam’) was grown at different carbon dioxide concentrations ([CO2]), namely, ambient and elevated (ambient + 200 μmol mol?1), under low- and high-temperature regimes in summer and autumn, separately. For comparison, rice was also grown under these conditions. Mean air temperatures in the low- and high-temperatures were respectively 24.1 and 29.1 °C in summer experiment and 20.2 and 24.9 °C in autumn experiment. In summer experiment, yam vine length, leaf area, leaf dry weight (DW), and total DW were significantly higher under elevated [CO2] than ambient [CO2] in both temperature regimes. Additionally, number of leaves, vine DW, and root DW were significantly higher under elevated [CO2] than under ambient [CO2] in the low-temperature regime. In autumn experiment, tuber DW was significantly higher under elevated [CO2] than under ambient [CO2] in the high-temperature regime. These results demonstrate that yam shows positive growth responses to elevated [CO2]. Analysis of variance revealed that significant effect of [CO2] × air temperature interaction on yam total DW was not detected. Elevated-to-ambient [CO2] ratios of all growth parameters in summer experiment were higher in yam than in rice. The results suggest that the contribution of elevated [CO2] is higher in yam than in rice under summer. Yam net photosynthetic rate was significantly higher under elevated [CO2] than under ambient [CO2] in both temperature regimes in summer. Elevated [CO2] significantly affected on the rate in yam but not in rice in both experiments. These findings indicate that photosynthesis responds more readily to elevated [CO2] in yam than in rice.  相似文献   

20.
We investigated wheat (Triticum aestivum) grain quality under Free Air CO2 Enrichment (FACE) of 550 ± 10% CO2 μmol mol−1. In each of two full growing seasons (2008 and 2009), two times of sowing were compared, with late sowing designed to mimic high temperature during grain filling. Grain samples were subjected to a range of physical, nutritional and rheological quality assessments. Elevated CO2 increased thousand grain weight (8%) and grain diameter (5%). Flour protein concentration was reduced by 11% at e[CO2], with the highest reduction being observed at the late time of sowing in 2009, (15%). Most of the grain mineral concentrations decreased under e[CO2] - Ca (11%), Mg (7%), P (11%) and S (7%), Fe (10%), Zn (17%), Na (19%), while total uptake of these nutrients per unit ground area increased. Rheological properties of the flour were altered by e[CO2] and bread volume reduced by 7%. Phytate concentration in grains tended to decrease (17%) at e[CO2] while grain fructan concentration remained unchanged. The data suggest that rising atmospheric [CO2] will reduce the nutritional and rheological quality of wheat grain, but at high temperature, e[CO2] effects may be moderated. Reduced phytate concentrations at e[CO2] may improve bioavailability of Fe and Zn in wheat grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号