首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响   总被引:8,自引:0,他引:8  
针对当前关中平原冬小麦生产中氮肥投入过量、灌溉水资源不足的问题,研究节水减氮栽培模式下冬小麦籽粒产量、水氮利用及硝态氮淋失情况,能为确定冬小麦节水减肥环保增效的生产模式提供理论依据。于2017—2019年在陕西杨凌开展冬小麦节水减氮田间栽培试验,采用二因素裂区设计,施氮量为主处理,灌水量为副处理,设施氮量处理N300 (300 kg hm~(–2))、N225 (225 kg hm~(–2))、N150 (150 kg hm~(–2))、N75 (75 kg hm~(–2))、N0 (不施氮)和灌水量处理W2 (1200 m~3 hm~(–2))、W1 (600 m~3 hm~(–2))、W0 (0),分析小麦产量、水氮利用效率及土壤硝态氮淋失情况。结果表明,2017—2018年和2018—2019年小麦季灌水处理较不灌水处理分别增产14.88%~15.01%和4.11~4.16倍,但处理间差异不显著,而越冬期灌水600 m~3 hm~(–2)土壤硝态氮淋失风险显著降低。在越冬期灌水600 m~3 hm~(–2)处理下, 2017—2018年施氮量150 kg hm~(–2)处理产量最高, 2018—2019年则是施氮量225 kg hm~(–2)处理产量最高,但2018—2019年施氮量150 kg hm~(–2)处理在较高产量基础上获得较高的氮肥利用效率,土壤硝态氮淋失量也较施氮量225 kg hm~(–2)处理2个年度分别降低了15.87%和10.20%。因此,施氮量150 kg hm~(–2)配合越冬期灌水600 m~3 hm~(–2),能够在保障产量的基础上,提高水氮利用效率,降低硝态氮淋失风险,实现关中平原冬小麦生产节水减肥环保增效的目标。  相似文献   

2.
水氮耦合对固定道垄作栽培春小麦根长密度和产量的影响   总被引:2,自引:0,他引:2  
马忠明  陈娟  吕晓东  刘婷婷 《作物学报》2017,43(11):1705-1714
固定道垄作(PRB)是在农田中设固定的机械行走道的一种垄作和沟灌栽培模式,是河西灌区春小麦取代传统平作和大水漫灌种植方式的一种新技术。为了明确PRB种植模式下合理的施氮水平和灌水量,2014—2015年连续2年采用二因素裂区设计,以3种灌溉定额(1200、2400和3600 m3 hm–2)为主区,以4种施氮水平(0、90、180和270kg hm–2)为副区,研究水氮耦合对小麦不同生育期的根长密度及最终产量的影响。随灌水量和施氮量的增加,根长密度呈现先增后降的变化趋势,且灌水量的效应大于施氮水平的效应;开花、灌浆和成熟期的根长密度与籽粒产量呈正相关。回归分析显示,根长密度最大值的水氮耦合条件是灌水量约2850 m3 hm–2、施氮量196~207 kg hm–2。中等灌水量(2400 m3 hm–2)条件下,小麦主要生育期根长密度显著增加,提高了根长密度在40~80 cm土层的分配比例,增加了水分利用效率和氮肥农学利用效率。综合评价小麦籽粒产量、水分利用率和氮肥农学利用效率,中等灌水量与中氮水平(180 kg hm–2)是所有处理中的最佳水氮耦合模式,可用于河西灌区春小麦PRB栽培模式。当加大灌水至3600m3 hm–2时,产量没有显著增加,水分利用效率和氮肥农学利用效率显著下降,其原因可能是高灌水量使小麦主要生育期的根长密度降低,且根长密度在0~40 cm土层的比例升高,在40~80 cm土层的比例下降。  相似文献   

3.
小麦水氮耦合效应与水肥高效利用研究   总被引:2,自引:0,他引:2  
为了研究不同水氮耦合在小麦灌浆期的光合特征参数、水分利用效率及产量和耗水量等方面的效应,探索小麦高产高效水氮最佳组合。以半冬性小麦品种周麦22号为试验材料,通过防雨棚下子母盆栽的方法,在返青至拔节期土壤相对含水量55%的基础上,设置拔节至成熟期土壤相对含水量55%(H1)、65%(H2)、70%(H3)、75%(H4)、85%(H5) 5个水分水平;设置不施氮(0 kg/hm~2,N0)、施中氮(195 kg/hm~2,N1)和施高氮(270 kg/hm~2,N2) 3个氮素水平。结果表明,氮肥对产量、耗水系数和肥料利用效率的影响达极显著水平,水氮之间的交互效应达极显著水平。在施中氮和土壤相对含水量65%~70%的条件下,小麦整个灌浆时期的净光合速率、蒸腾速率显著高于其他处理,其中,花后10 d蒸腾速率超过11mmol/(m~2·s),灌浆速率提升15%~64%以上,水分利用效率高于1. 7 g/kg,氮肥偏生产力和氮肥农学利用率分别高于15. 1,7. 5 kg/kg,是小麦获得较高水肥利用效率、最大灌浆速率及产量的最优组合。因此认为,施氮量195 kg/hm~2,拔节至成熟期土壤相对含水量65%~70%的条件下,小麦获得高产的同时能够兼顾水肥高效利用。  相似文献   

4.
秸秆还田配施氮肥对东北春玉米光合性能和产量的影响   总被引:5,自引:0,他引:5  
秸秆还田配施氮肥是解决旱作农田"耕层变浅"、"土壤紧实"、"有效耕层土壤减少"问题的重要措施之一,在旱作农业生产中具有重要意义。为探明秸秆深翻还田配施氮肥对东北春玉米光合性能和产量的影响,本研究于2014—2015年在辽宁铁岭设置S0F0(秸秆0 kg hm~(–2)+纯NPK 0 kg hm~(–2))、SN0(秸秆9000 kg hm~(–2)+纯N 0 kg hm~(–2)+纯P 112.5 kg hm~(–2)+纯K 90 kg hm~(–2))、SN1(秸秆9000 kg hm~(–2)+纯N 112.5 kg hm~(–2)+纯P 112.5 kg hm~(–2)+纯K 90 kg hm~(–2))、S0N2(秸秆0 kg hm~(–2)+纯N 225 kg hm~(–2)+纯P 112.5 kg hm~(–2)+纯K 90 kg hm~(–2),当地传统种植方式,CK)、SN2(秸秆9000kg hm~(–2)+纯N 225 kg hm~(–2)+纯P 112.5 kg hm~(–2)+纯K 90 kg hm~(–2))、SN3(秸秆9000 kg hm~(–2)+纯N 337.5 kg hm~(–2)+纯P 112.5kg hm~(–2)+纯K 90 kg hm~(–2))6个处理开展了研究。结果表明,秸秆还田配施氮肥对春玉米籽粒产量和生物产量影响显著,秸秆还田9000 kg hm~(–2)和配施氮肥225 kg hm~(–2)处理的籽粒产量最高,比秸秆不还田和施氮量225 kg hm~(–2)处理(CK)2年平均增产6.33%,增产的主要原因是百粒重和行粒数的显著提高和秃尖的显著降低;玉米籽粒产量并未随着施氮量的增加而持续增加;相同施氮量条件下,秸秆还田比秸秆不还田2年平均群体生物产量增加2.95%。秸秆还田配施氮肥能够增加春玉米株高、茎粗、叶面积,提高叶绿素含量和光合作用,相同施氮量条件下,秸秆还田比秸秆不还田处理2年平均灌浆期叶面积增加2.71%,光合速率提高4.80%。综合分析认为,秸秆还田9000 kg hm~(–2)和配施氮肥225kg hm~(–2)是辽北棕壤区春玉米生产比较理想的还田和施肥模式,在该区域农业发展中具有一定的应用价值。  相似文献   

5.
不同密度下施氮量对夏玉米产量和氮肥利用效率的影响   总被引:2,自引:0,他引:2  
为明确施氮量对不同密度夏玉米的产量和氮肥利用效率的调控效应,以京农科728(JNK728)为材料,设置密度和施氮量的二因素随机区组试验。结果表明:施氮量增加显著提高JNK728叶片叶绿素含量(SPAD值);与N180相比,N300和N360叶面积指数(LAI)和单株干物质积累量(DM)显著增加。增加密度显著降低同等施氮水平下JNK728吐丝后穗位叶SPAD值和DM,但显著提高V12-R1+20阶段的LAI。增加施氮量和增加密度均可显著提高JNK728的产量,低密度下施氮量超过240 kg/hm~2显著增加穗行数和千粒质量而提高产量,高密度下施氮量超过300 kg/hm~2显著增加行粒数,增加密度通过增加穗数提高产量。施氮量增加氮肥偏生产力降低31.2%~72.3%,氮肥农学利用效率提高12.5%~52.6%,增加密度后氮肥偏生产力和氮肥农学利用效率均显著提高。总之,在本研究条件下,耐密抗倒夏玉米在7.5×104株/hm~2时,施氮量宜低于300 kg/hm~2,产量可达9.5×10~3 kg/hm~2;增加密度至9.0×10~4株/hm~2时施氮量在300~360 kg/hm~2为宜,产量可达12.0×10~3 kg/hm~2。总之,在本研究条件下,耐密抗倒夏玉米选择耐密抗倒品种在中密度(7.5×10~4株/hm~2)时,施氮量宜低于300 kg/hm~2,产量可实现9.5×10~3 kg/hm~2,增加密度至9.0×10~4株/hm~2,施氮量在300~360 kg/hm~2为宜,产量可以达到12.0×10~3 kg/hm~2。  相似文献   

6.
旨在探讨施氮量对籼粳杂交稻甬优1540产量和氮肥利用效率的影响及其相关生理基础。本研究以浙江省大面积推广应用的籼粳杂交稻品种甬优1540为材料,设置4个施氮量,即全生育期不施用氮肥(N0)、全生育期施用纯氮80 kg hm–2 (N1)、160 kg hm–2 (N2)以及240 kg hm–2 (N3)。研究结果表明,(1)施氮量对水稻产量与氮肥利用效率影响显著。在0~160kghm–2范围内,水稻产量随施氮量的增加而增加,产量的增加主要得益于总颖花量的增加;超过此范围产量则不再增加,主要是由于结实率降低,且氮收获指数与氮肥利用效率(氮肥农学利用率、氮肥吸收利用率、氮肥偏生产力以及产谷利用率)也显著降低。(2)施氮量对水稻地上部生长发育影响显著。在0~240 kg hm–2范围内,随着施氮量的增加,拔节期、齐穗期以及成熟期水稻地上部干物重显著增加,但收获指数则显著降低;在0~160kg hm–2范围内,灌浆中、后期水稻剑叶净光合速率、剑叶中Z+ZR含量以...  相似文献   

7.
为探明华北地区山前平原水肥一体化条件下小麦合理的氮肥运筹。于2013-2015年2个小麦生长季,设置4个滴灌施氮量(N0-不施氮、N1-120 kg/hm~2、N2-240 kg/hm~2、N3-360 kg/hm~2)处理,研究滴灌水肥一体化下施氮量对小麦氮素吸收积累和土壤硝态氮含量的影响。结果表明:施氮量N1、N2和N3处理的小麦干质量及产量较处理N0显著增加,N1、N2和N3处理间无显著差异;施氮量对小麦茎秆的氮含量影响较大,但对籽粒氮含量的影响差异不显著;处理N3的小麦总吸氮量分别显著高于处理N0、N1和N2,但处理N1和N2之间无显著差异;氮肥收获指数以N2处理最高,氮肥当季回收利用率、氮肥农学效率、氮肥生产效率和氮肥利用效率均表现出随施氮量增加而降低的趋势;施氮量超过240 kg/hm~2,土壤硝态氮含量增加,且随种植年限的延长更加明显。采用一元二次方程拟合,获得小麦最高产量的施氮量为238.46~250.78 kg/hm~2,经济施氮量为174.28~207.18 kg/hm~2。综合考虑经济效益和生态效益,该条件下小麦滴灌经济施氮量以174~207 kg/hm~2为宜。  相似文献   

8.
为明确不同施氮量下糜子生长规律、产量表现以及氮素利用效率,分析糜子形态特征与产量和氮素利用的关系,同时确定宁夏引黄灌区麦后复种糜子的适宜施氮量,本研究于2019年和2020年以宁糜9号为材料, 2019年设0 (N0)、90 (N1)、120 (N2)和150 kg hm–2 (N3)纯氮水平, 2020年增设180 (N4)和210 kg hm–2 (N5)纯氮水平,以不施氮肥(N0)为对照在宁夏引黄灌区进行大田试验。结果表明,施氮显著促进糜子各生育时期株高、茎粗、叶面积、根系的生长和干物质的积累,但当施氮量超过150kghm–2时,除茎粗和叶面积外,其余各生长指标出现下降趋势;根冠比随施氮量的增加呈先降低后升高再略微下降趋势,多数生育时期在N2处理根冠比达最小值,拔节期、抽穗期、灌浆期和成熟期分别为0.119、0.087、0.054和0.052。施氮显著促进糜子产量、千粒重和穗粒数增加,并且随施氮量的增加呈先增加后略微下降趋势,N2、N3处理促进效果最佳;N2、N3处理糜子产量分别为2979.41kghm–2、3084.67 kg hm–...  相似文献   

9.
秸秆还田配施氮肥对春玉米水氮利用效率的影响   总被引:2,自引:0,他引:2  
为了探明秸秆还田配施氮肥对春玉米水氮利用效率的影响,2014-2015年在辽宁铁岭设置了秸秆0.0 kg/hm~2+纯NPK 0.0 kg/hm~2(S0F0)、秸秆9 000 kg/hm~2+纯N 0.0 kg/hm~2+纯P 112.5 kg/hm~2+纯K 90.0kg/hm~2(SN0)、秸秆9 000 kg/hm~2+纯N 112.5 kg/hm~2+纯P 112.5 kg/hm~2+纯K 90.0 kg/hm~2(SN1),秸秆0.0 kg/hm~2+纯N 225.0 kg/hm~2+纯P 112.5 kg/hm~2+纯K 90.0 kg/hm~2(S0N2)(CK),秸秆9 000 kg/hm~2+纯N225.0 kg/hm~2+纯P 112.5 kg/hm~2+纯K 90.0 kg/hm~2(SN2),秸秆9 000 kg/hm~2+纯N 337.5 kg/hm~2+纯P 112.5kg/hm~2+纯K 90.0 kg/hm~2(SN3)6个处理开展了研究。结果表明,秸秆还田配施氮肥对春玉米产量、氮肥农学利用率影响明显。全量还田9 000 kg/hm~2和配施氮肥225.0 kg/hm~2产量最高,相同施氮条件下,2年秸秆还田比秸秆不还田增产1.10%~11.56%,增加的主要原因是百粒质量和行粒数的显著提高和秃尖的显著降低,但产量并未随着施氮量的增加而持续增加;秸秆还田配施氮肥春玉米干物质最大生长速率(Cm)和干物质最大积累量(Wm)均随着施氮量的增加而增加,秸秆未还田和不施氮肥春玉米干物质最大生长速率时间(tm)出现延后,这在一定程度上导致了干物质积累量的减少;秸秆还田配施氮肥对土壤水库起到了扩蓄增容作用,提高春玉米水分利用效率,相同施氮量条件下,秸秆还田比秸秆不还田有一定程度的提高,但并未达到显著差异(P0.05);秸秆还田配施氮肥能够提高氮肥农学利用率,提高土壤有机质含量,但速效养分增加并不明显。秸秆还田量9 000 kg/hm~2和配施氮肥225.0 kg/hm~2是辽北棕壤区比较理想的还田方式,在该区域农业发展中具有一定的应用价值。  相似文献   

10.
为研究伴生麦与普通小麦在形态、产量和品质性状间的差异,以普通小麦品种矮抗58和3个伴生麦品种W14、W15、W18为供试材料进行研究。设置水分处理(主区)和施氮量(副区)的裂区试验,其中水分处理设正常水分和渍水2个水平,施氮量设置不施氮(N_0)、正常施氮(225 kg/hm~2,即N_(225))和过量施氮(300 kg/hm~2,即N_(300))3个水平,结果表明,正常水肥管理下,伴生麦的分蘖数较多且茎粗较小,其株高是普通小麦的1.5~2.4倍,而产量却不足普通小麦的1/2,此外,伴生麦品种W14、W15、W18的籽粒蛋白质含量、湿面筋含量和吸水量等品质指标均高于普通小麦。施氮可提高普通小麦及伴生麦的穗粒数、产量、籽粒蛋白质含量、湿面筋含量、吸水量、形成时间、稳定时间、出粉率、拉伸能量、恒定变形拉伸阻力、延伸度和最大拉伸阻力,正常施氮(225 kg/hm~2)使普通小麦和伴生麦千粒质量、产量、容重和硬度达到最高。水分对普通小麦和伴生麦的形态及产量影响较小,但对籽粒品质影响显著。综上所述,水分、品种及氮素对普通小麦和伴生麦的籽粒品质具有显著影响,是决定普通小麦及伴生麦籽粒品质的关键因素。  相似文献   

11.
The aim of the present work was to evaluate the effect of soil water availability and nitrogen fertilization on yield, water use efficiency and agronomic nitrogen use efficiency of giant reed (Arundo donax L.) over four-year field experiment.After the year of establishment, three levels for each factor were studied in the following three years: I0 (irrigation only during the year of establishment), I1 (50% ETm restitution) and I2 (100% ETm restitution); N0 (0 kg N ha−1), N1 (60 kg N ha−1) and N2 (120 kg N ha−1).Irrigation and nitrogen effects resulted significant for stem height and leaf area index (LAI) before senescence, while no differences were observed for stem density and LAI at harvest.Aboveground biomass dry matter (DM) yield increased following the year of establishment in all irrigation and N fertilization treatments. It was always the highest in I2N2 (18.3, 28.8 and 28.9 t DM ha−1 at second, third and fourth year growing season, respectively). The lowest values were observed in I0N0 (11.0, 13.4 and 12.9 t DM ha−1, respectively).Water use efficiency (WUE) was significantly higher in the most stressed irrigation treatment (I0), decreasing in the intermediate (I1) and further in the highest irrigation treatment (I2). N fertilization lead to greater values of WUE in all irrigation treatment.The effect of N fertilization on agronomic nitrogen use efficiency (NUE) was significant only at the first and second growing season.Giant reed was able to uptake water at 160–180 cm soil depth when irrigation was applied, while up to 140–160 cm under water stress condition.Giant reed appeared to be particularly suited to semi-arid Mediterranean environments, showing high yields even in absence of agro-input supply.  相似文献   

12.
壮秆剂及用量对水稻产量和抗倒伏能力的影响   总被引:1,自引:0,他引:1  
以籼粳杂交稻品种甬优2640、超级稻南粳9108为供试材料,设置壮秆剂A(壮秧剂∶速效硅∶生物炭=1.0∶0.5∶1.0)5个处理(A-1:18.75 kg hm~(–2)、A-2:37.5 kg hm~(–2)、A-3:56.25 kg hm~(–2)、A-4:75 kg hm~(–2)、A-5:93.75 kg hm~(–2)),壮秆剂B("杰伟"牌水稻生长调节剂)5个处理(B-1:7.5 kg hm~(–2)、B-2:15 kg hm~(–2)、B-3:22.5 kg hm~(–2)、B-4:30 kg hm~(–2)、B-5:37.5 kg hm~(–2))。在齐穗后30 d观测水稻基部第1节间(N1)、第2节间(N2)、第3节间(N3)、第4节间(N4)抗倒伏能力和主要物理性状,比较研究壮秆剂不同用量对水稻产量及抗倒伏能力的影响。两年试验结果表明,壮秆剂A对水稻产量及抗倒伏能力的影响要优于壮秆剂B,随着壮秆剂用量的增加水稻产量呈先增后减的趋势,其中A-3处理产量最高,其原因在于每穗粒数、结实率、千粒重均有所增加,壮秆剂B中B-3产量最高,壮秆剂A增产效果优于B的原因在于千粒重的增加。随着壮秆剂用量的增加,各节间倒伏指数呈现先减后增趋势,其中A-3、A-4处理的N_2、N_3倒伏指数显著小于对照。进一步分析壮秆剂A与B抗倒伏能力增强的原因在于抗折力的增加,壮秆剂A主要是通过增加N_1、N_2、N_3节间茎秆粗度、茎壁厚度和节间充实度增强了抗倒伏能力,壮秆剂B主要是增加N_1、N_2、N_3节间茎壁厚度来增强抗倒伏能力,两者比较壮秆剂A效果更明显。  相似文献   

13.
水氮互作对水稻氮磷钾吸收、转运及分配的影响   总被引:24,自引:3,他引:24  
以杂交稻冈优527为材料,设"淹水灌溉"(W1)、"前期湿润灌溉+孕穗期浅水灌溉+抽穗至成熟期干湿交替灌溉"(W2)和"旱种"(W3)3种灌水及不同的施氮量处理,研究对水稻氮、磷、钾吸收、转运及分配的影响,并探讨各养分间及其与产量间的关系。结果表明,水与氮对水稻主要生育期氮、磷、钾的累积、转运、分配及产量均存在显著的互作作用,水氮互作下各生育期氮、磷、钾吸收、转运及其与产量间均有显著或极显著的正相关,且抽穗前期氮、磷的累积以及分蘖盛期对钾的吸收状况与产量呈极显著正相关。结合产量与稻株氮、磷、钾吸收及转运关系间的表现,W2灌溉方式与施氮量为180kghm-2组合是本试验最佳的水氮耦合运筹方式,淹灌条件下,施氮量以180kghm-2为宜,旱种条件下,施氮量可适当降至90~180kghm-2。  相似文献   

14.
Increasing production of wheat from a limited water supply can result from efficient irrigation and nutrient management. A 3‐year field experiment was conducted at the Indian Institute of Soil Science, Bhopal, to study the growth, yield, seasonal evapotranspiration (ET) and water use efficiency (WUE), and the water–yield relationship of wheat in a soybean–wheat cropping system on vertisols. Three levels of irrigation, viz. I0, no post‐sowing irrigation; I1, two irrigations [crown root initiation (CRI) and flowering stage]; and I2, three irrigations (CRI, maximum tillering and flowering stage) and three nutrient management treatments, viz. F0, control (without fertilizer/manure); F1, 100 % NPK (100–21.5–24.9 kg ha?1); and F2, 100 % NPK + farmyard manure (FYM‐10 t ha?1) were tested in a split‐plot design with three replication. It has been established (through anova ) that the year effect was rather negligible and the interaction effects of irrigation and nutrient management on the growth parameters, ET, yield components, yield and WUE were significant. Plant height, progressive leaf area index, dry matter accumulation and crop growth rate were higher in I2F2, and I2F1 and I1F2 were statistically at par. The seasonal ET increased significantly with the increase in water supply in every nutrient treatment and it was highest in I2F2 and lowest in I0F0. The highest grain yield was obtained in I2F2; and a similar yield was recorded in I3F1 and I2F2. This shows a strong interaction effect between irrigation and nutrients. Yield components, viz. number of ears m?2, number of grains ear?1 and 1000‐grain weight were significant. The higher number of ears m?2 containing greater number of grains with relatively heavier weights appeared to have contributed to the higher yield in I1F2, I2F1 and I2F2. The highest WUE obtained in I0F2 did not correspond to the highest yield and maximum ET, but a WUE of 10.43 kg ha?1 mm?1 in the I2F2 combination corresponded with the highest yield and the seasonal ET requirement was 391.8, which was 137 % greater than the water use at maximum WUE. The ET–grain yield relationship was linear, with a lowest regression slope (i.e. marginal WUE) and elasticity of water production (Ewp) in F0 and a considerably higher slope and Ewp in F1 and F2. As the Ewp is positive and close to one in 100 % NPK treatment, the scope of improving WUE and yield with only inorganic fertilizer is very little, and relatively greater scope exists in the integrated management of organic manure and inorganic fertilizer. The results suggest that integrated nutrient management (100 % NPK + FYM) in conjunction with three irrigations maximized yield of wheat with concomitant improvement in ET and WUE under limited water availability.  相似文献   

15.
氮肥后移对玉米间作豌豆耗水特性的调控效应   总被引:3,自引:0,他引:3  
针对水资源不足严重制约干旱灌区间作发展,间作中以氮调水理论研究的薄弱,生产实践中缺乏氮肥运筹同步提高间作产量和水分利用效率的措施等问题。2012-2013年,以河西走廊规模化应用的玉米间作豌豆为研究对象,在总施氮量相同且基肥和孕穗肥分别占10%和50%条件下,设氮肥后移30% (N1,拔节肥0+花粒肥40%)、氮肥后移15% (N2,拔节肥15%+花粒肥25%)、传统制度(N3,拔节肥30%+花粒肥10%) 3个施氮处理,探讨氮肥后移对间作产量和水分利用效率(WUE)的影响,以期为禾豆间作优化施氮制度、提高产量和水分利用效率提供理论依据。结果表明,氮肥后移对玉米间作豌豆总耗水量(ET)影响不显著,但降低了棵间蒸发量(E)和棵间蒸发量占总耗水量的比例(E/ET);与传统施氮处理相比,氮肥后移15%使玉米间作豌豆的E和E/ET降低6%和4%,氮肥后移30%使玉米间作豌豆的E和E/ET均降低2%。在间作系统中,豌豆带、玉米带的棵间蒸发量分别为329 mm、232 mm,表明豌豆带的无效耗水显著高于玉米带。氮肥后移15%间作的混合籽粒产量、WUE较传统施氮间作分别高出6%、5%,氮肥后移30%间作混合籽粒产量、WUE较传统施氮间作分别提高3%、2%。因此,玉米间作豌豆结合氮肥后移15%,即豌豆开花结荚期(玉米拔节期)追施氮肥67.5 kg hm-2、玉米大喇叭口期追施氮肥225 kg hm-2、玉米花后15 d追施氮肥112.5 kg hm-2,可作为绿洲灌区玉米间作豌豆增产和提高WUE的农艺措施之一。  相似文献   

16.
Irrigation frequency is one of the most important factors in drip irrigation scheduling that affects the soil water regime, the water and fertilization use efficiency and the crop yield, although the same quantity of water is applied. Therefore, field experiments were conducted for 2 years in the summer season of 2005 and 2006 on sandy soils to investigate the effects of irrigation frequency and their interaction with nitrogen fertilization on water distribution, grain yield, yield components and water use efficiency (WUE) of two white grain maize hybrids (Zea mays L.). The experiment was conducted by using a randomized complete block split‐split plot design, with four irrigation frequencies (once every 2, 3, 4 and 5 days), two nitrogen levels (190 and 380 kg N ha?1), and two maize hybrids (three‐way cross 310 and single cross 10) as the main‐plot, split‐plot, and split‐split plot treatments respectively. The results indicate that drip irrigation frequency did affect soil water content and retained soil water, depending on soil depth. Grain yield with the application of 190 kg N ha?1 was not statistically different from that at 380 kg N ha?1 at the irrigation frequency once every 5 days. However, the application of 190 kg N ha?1 resulted in a significant yield reduction of 25 %, 18 % and 9 % in 2005 and 20 %, 13 % and 6 % in 2006 compared with 380 kg N ha?1 at the irrigation frequencies once every 2, 3 and 4 days respectively. The response function between yield components and irrigation frequency treatments was quadratic in both growing seasons except for 100‐grain weight, where the function was linear. WUE increased with increasing irrigation frequency and nitrogen levels, and reached the maximum values at once every 2 and 3 days and at 380 kg N ha?1. In order to improve the WUE and grain yield for drip‐irrigated maize in sandy soils, it is recommended that irrigation frequency should be once every 2 or 3 days at the investigated nitrogen levels of 380 kg N ha?1 regardless of maize varieties. However, further optimization with a reduced nitrogen application rate should be aimed at and will have to be investigated.  相似文献   

17.
An experiment was conducted to investigate the influence of different levels of water deficit on yield and crop water requirement of soya beans in a sub‐humid environment (Southern Marmara region, Bursa, Turkey) in 2005 and 2006. One full‐irrigated treatment (T1), one non‐irrigated treatment (T5) and three different deficit irrigation (T2 = 25 % water deficit, T3 = 50 % water deficit, T4 = 75 % water deficit) treatments were applied to ‘Nova’ soya bean planted on a clay soil. Non‐irrigated and all deficit irrigation treatments significantly reduced biomass and seed yield and yield components. The full‐irrigated (T1) treatment had the highest yield (3760 kg ha?1), while the non‐irrigated (T5) treatment had the lowest yield (2069 kg ha?1), a 45.0 % seed yield reduction. T2, T3 and T4 deficit irrigation treatments produced 11.7–27.4 % less seed yield than the T1 treatment. Harvest index showed less and irregular variation among irrigation treatments. Both leaf area per plant and leaf area index were significantly reduced at all growth stages as amount of irrigation water was decreased. Evapotranspiration increased with increased amounts of irrigation water supplied. Our results indicate that higher amounts of irrigation resulted in higher seed yield, whereas water use efficiency and irrigation water use efficiency values decreased when irrigation amount increased.  相似文献   

18.
张玉娇  李军  郭正  岳志芳 《作物学报》2015,41(11):1726-1739
为探索不同肥力水平对渭北旱塬连作冬小麦田在长周期免耕/深松轮耕措施下土壤蓄水保墒和作物增产效应的影响,在模拟精度验证基础上,应用Win EPIC模型长周期定量模拟研究了1980–2009年渭北旱塬免耕/深松轮耕连作麦田5个不同施肥水平下(T1,N 75 kg hm–2+P2O5 60 kg hm–2;T2,N 120 kg hm–2+P2O5 90 kg hm–2;T3,N 150 kg hm–2+P2O5 120 kg hm–2;T4,N 180 kg hm–2+P2O5 150 kg hm–2;T5,N 255 kg hm–2+P2O5 90 kg hm–2)冬小麦产量和土壤水分效应。在30年模拟期间,各处理的冬小麦产量、年度耗水量和水分利用效率均呈波动下降趋势,下降幅度表现为T5T4T3T2T1。0~5 m土层土壤有效含水量呈季节性波动降低趋势,且随施肥水平的升高而降低,5个处理的麦田平均干燥化速率依次为每年13.5、17.1、17.4、20.1和23.9 mm。0~1.5 m土层土壤湿度随季节降水波动;各处理在不同深度形成稳定的土壤干层,其中T1在1.5~2.0 m,T2和T3在1.5~3.0 m,T4和T5在1.5~4.0 m。上述结果表明,随着肥力水平的增加,旱作冬小麦产量和耗水量也增加,土壤干层加厚。综合考虑认为,在渭北旱塬免耕/深松轮耕长期连作小麦田适宜的施肥量为纯氮150 kg hm–2+P2O5 120 kg hm–2。  相似文献   

19.
为了缓解长江中下游双季稻区机插双季稻生育期不配套的矛盾,2014—2015年早晚两季均以常规早稻品种中嘉早17为材料,在大田栽培条件下研究机插密度(36.4、28.6、19.0穴m–2)与施氮量(0、110~140、176~189 kg N hm–2)对机插双季稻产量及氮肥利用率的影响。结果表明:采用"早晚兼用"机插双季稻栽培模式有利于早、晚2季周年高产,以"高密+高氮"处理产量最高,2年分别达到16.94 t hm–2和16.99 t hm–2,但与"高密+低氮"处理的产量差异不显著;氮肥利用率随氮肥用量增加而下降,随栽插密度增加而提高,以"高密+低氮"处理最高,2年4季分别为62.77%、55.75%、65.82%、64.37%,比"高密+高氮"处理分别提高12.11%、9.01%、8.49%、2.14%;"高密+低氮"处理与"低密+高氮"处理相比,群体干物质积累量及辐射利用率均有一定的优势。由此可见,在此模式下适当增加机插密度,减少氮肥用量,既可实现高产,又能显著提高氮素利用率。采用"早晚兼用"品种搭配模式,低氮、密植栽培可作为长江中下游双季稻区机插双季稻生产的关键技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号