首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
水稻颖花突变体的最新研究进展   总被引:1,自引:0,他引:1  
水稻颖花发育的模式及机理,一直是植物学领域研究的焦点和热点,而水稻颖花发育相关突变体又是研究其遗传发育机理的重要材料。本文先就水稻颖花的结构、发育机理及发育相关基因克隆等方面进行了概述,接着详细介绍了水稻颖花突变体的来源、形态表现及基因定位等方面的研究进展。最后,针对当前水稻颖花发育研究中存在的问题做了系统的分析,同时就进一步深入研究其发育机理进行了分析和展望。我们期望通过本文为今后深入开展水稻颖花发育的相关研究提供一定的思路和借鉴。  相似文献   

2.
何永明  张芳 《作物学报》2023,(6):1690-1698
颖花开放由浆片膨大所启动,对水稻授粉受精具有直接影响。生长素是调节花药开裂、花粉育性和种子起始等生殖发育过程的重要激素。为阐明生长素在水稻颖花开放中的调控作用,本研究以粳稻品种中花11为试验材料,调查了外源生长素及其抑制剂对颖花开放的影响,以及内源生长素水平和生长素信号通路基因表达的动态变化。结果表明, IAA (10~20 mmol L–1)、NAA (0.05~0.50 mmol L–1)浸穗处理将推迟水稻颖花开放,其中高浓度(0.5 mmol L–1)NAA能使颖花开放推迟3 d,并表现出颖花张开时间延长和结实率下降的现象。IAA极性运输抑制剂TIBA及其作用抑制剂PCIB也抑制颖花开放。NAA预处理后,增施茉莉酸甲酯(MeJA)能有效恢复颖花开放。水稻颖花中IAA含量在自然开放前2 h迅速下降,比开颖前1 d、2 d分别降低了65.85%、74.27%。与IAA水平变化相对应,颖花开放时浆片IAA生物合成基因(OsTAR2、OsYUCCA3/4/8)表达下调,而催化IAA结合失活的酶基因(OsGH3.2、OsGH3.8)、IAA输出载体基因(OsPIN1、OsPIN1a)以及I...  相似文献   

3.
水稻颖花自然开放过程中茉莉酸(JA)生物合成的变化   总被引:1,自引:0,他引:1  
何永明  林拥军  曾晓春 《作物学报》2012,38(10):1891-1899
外源茉莉酸(JA)及其甲酯(MeJA)对水稻、小麦、黑麦和高粱等禾本科植物颖花开放具有强烈的诱导效应,然而内源JA是否参与颖花开放的调控目前还缺乏充分的证据。本研究应用高效液相色谱-串联质谱(HPLC-MS/MS)系统检测了粳稻武运粳7号和籼稻明恢63颖花自然开放过程中JA水平变化,并以实时定量反转录PCR (real-time RT-PCR)技术分析了武运粳7号颖花开放过程中JA生物合成途径关键基因表达变化。结果发现,水稻颖花JA水平的变化与开颖进程相一致。JA水平在上午颖花开颖前较平稳,开颖时急剧上升至峰值,闭颖后又下降。开颖时JA水平的峰值比开颖前1 h提高4~5倍。与JA水平变化相对应,催化JA生物合成途径关键步骤同工酶的编码基因OsDAD1-3、OsLOX-RCI1、OsAOS1、OsAOC和OsOPR7的表达在开颖时会有不同程度的上调,闭颖后又下调。同一稻穗上正在开放的颖花JA含量及上述JA生物合成途径基因的表达水平也比已开放和未开放的颖花高。颖花开放时JA水平及其生物合成基因表达的上升和闭颖后的下降有力地表明内源JA参与水稻颖花开放的调控。  相似文献   

4.
在对釉稻缙恢10进行EMS(ethyl methane sulfonate)处理后的群体中,发现一个花器官突变体,主要表现为内稃扭曲并呈现外稃化特征,浆片数目增加且呈现稃状特征,雄蕊数目减少至1-4个,部分雄蕊的花丝呈现浆片化特征,暂将其命名为水稻颖壳扭曲突变体palea distortion 1(pdl).遗传分析表明该突变性状受一个隐形单基因控制.利用群体分离分析法(bulked segregation analysis,BSA),将PD1基因定位在第2染色体的RM 13693和RM13936之间,遗传距离分别为3.25 cM和3.90 cM.该研究结果为PD1基因的图位克隆奠定了基础.  相似文献   

5.
利用EMS诱变籼型水稻恢复系缙恢10号,获得一个稳定遗传的矮化脆性突变体dbc1,苗期即表现矮化、叶片变脆,一直保持到成熟。与原始亲本相比,突变体的各节间均显著缩短,株高仅58.93 cm,略有包穗,属于dn型矮化变异,对赤霉素的敏感性显著下降,有效穗、千粒重和结实率无明显变化,穗长、穗粒数和实粒数则极显著下降。进一步分析发现,dbc1的茎秆和叶片的载荷强度极显著下降,纤维素含量无变化,木质素含量则略有下降,差异达显著水平。遗传分析表明该性状受1对隐性核基因调控,利用886株西农1A/dbc1的F2变异单株,最终把DBC1基因定位在第2染色体SSR标记RM13943和RM13952之间,物理距离仅197 kb,含有52个注释基因。这为下一步调控基因的克隆和dbc1材料的育种应用奠定了基础。  相似文献   

6.
在对籼稻缙恢10进行EMS(ethyl methane sulfonate)处理后的群体中,发现一个花器官突变体,主要表现为内稃扭曲并呈现外稃化特征,浆片数目增加且呈现稃状特征,雄蕊数目减少至1~4个,部分雄蕊的花丝呈现浆片化特征,暂将其命名为水稻颖壳扭曲突变体palea distortion 1(pd1)。遗传分析表明该突变性状受一个隐形单基因控制。利用群体分离分析法(bulked segregation analysis,BSA),将PD1基因定位在第2染色体的RM13693和RM13936之间,遗传距离分别为3.25cM和3.90cM。该研究结果为PD1基因的图位克隆奠定了基础。  相似文献   

7.
水稻粒形与产量和营养品质密切相关,挖掘水稻粒形发育相关基因并解析其分子机制,对提高水稻产量、改善籽粒营养品质具有重要意义。利用甲基磺酸乙酯(ethylmethanesulfonate,EMS)处理籼稻品种西大1B,获得了1个水稻粒形突变体,命名为long grain and degenerated palea (lgdp)。lgdp表现出外稃伸长,从而导致籽粒长度增加的特征,进一步扫描电镜分析发现, lgdp籽粒变长主要原因是其外稃细胞数目极显著增加。遗传分析表明该性状受1对隐性基因调控;利用lgdp与ZH11杂交构建的F2分离群体,通过BSA法将目标基因定位在3号染色体分子标记ZLN43和ZLN-1之间,物理距离大约810kb。通过转录测序和PCR分析初步确认LGDP候选基因编码一个MADS-box基因。qPCR分析表明,LGDP可能通过负向调控GW7/GL7、GS3、TGW6等水稻粒长正向调控因子的表达,从而影响了颖壳细胞数目的增殖,进而影响籽粒长度。本研究结果为应用LGDP基因改良水稻粒形提供了新的资源。  相似文献   

8.
研究水稻花发育基因对于水稻相关性状的分子育种具有十分重要的意义。本研究报道一个水稻颖壳和浆片异常突变体ahl (abnormal hull and lodicule),来源于优良恢复系缙恢10号的EMS诱变群体。该突变体内外稃变小并发生严重扭曲,浆片顶端伸长。内外稃异常导致灌浆后米粒变小、畸形,千粒重下降。该性状遗传稳定,受一对隐性基因控制,利用群体分离分析法(bulked segregation analysis,BSA)将AHL基因定位在第2染色体上的SSR标记RM14153与RM14167之间,遗传距离分别为1.19 cM和1.34 cM,物理距离为226 kb。研究结果为AHL基因的图位克隆和功能研究奠定了基础。  相似文献   

9.
自然衰老提高了植物对环境的适应性,是其生长发育的重要生命历程,但在农业生产中,叶片一旦早衰,将极大影响作物的产量和品质。为探索水稻叶片衰老的分子机理,我们对EMS诱变获得的一个早衰突变体esl6进行了研究。田间种植情况下,四叶期之前,esl6与野生型无明显差异,之后心叶发育成完整叶后叶尖黄化,叶基部保持正常绿色,一直持续到开花期;在灌浆期,esl6的所有叶片均不同程度地黄化早衰,且叶片上部的衰老程度明显严重于叶片基部。衰老部位细胞结构异常,主要表现为细胞膜破裂、液泡变大和细胞器不完整等,叶绿体中基质类囊体破裂,含有较多的淀粉粒。与野生型相比,esl6叶尖衰老部位的SOD、CAT和POD活性以及超氧阴离子O2?、H2O2和羟自由基·OH含量均极显著升高。早衰不仅导致esl6叶片光合色素含量和净光合速率极显著降低,还引起esl6的植株变矮和叶片变短,倒一和倒二节间极显著变短是导致esl6植株矮化的主要原因。遗传分析表明该性状受一对隐性核基因调控,利用西大1A/esl6的F2分离群体,最终将调控基因定位在第9染色体203 kb的物理范围内,为下一步基因的克隆和功能研究奠定了基础,有利于水稻叶片衰老分子机理的阐释。  相似文献   

10.
适度矮化有利于提高水稻的抗倒伏性, 进而影响产量和品质, 是水稻育种中重要的选择性状之一, 因此研究矮秆形成的分子机制具有重要的意义。为鉴定新的矮秆资源, 探讨株高形成的分子调控机制, 我们对籼型恢复系缙恢10号的EMS (甲基磺酸乙酯)诱变体库进行了鉴定, 从中筛选到1个植株半矮化且籽粒变大的突变体sdb1。本文对其进行了形态鉴定、细胞学观察、遗传分析和基因定位等研究。田间种植条件下, 全生育期sdb1的株高都明显矮于野生型, 成熟期仅76.66 cm, 与野生型的117.43 cm相比, 下降了34.72%, 差异达极显著水平, 进一步分析发现sdb1的穗和各节间长均显著变短。在茎秆石蜡切片中发现, 纵向细胞的长度与野生型相比无显著变化, 横向细胞面积极显著变小、数量则极显著增加, 纵向细胞变少是导致sdb1植株半矮化的主要原因。除植株变矮外, sdb1的另一典型特征是籽粒变大, 千粒重由野生型的24.83 g变为突变体的29.00 g, 差异达极显著水平; 颖壳中薄壁细胞数量增加了22.05%, 致使籽粒的长、宽、厚均极显著变大, 从而提高了sdb1的粒重。此外, sdb1叶肉细胞层数增多, 导致其光合色素含量极显著高于野生型, 叶片呈现深绿色。遗传分析发现, sdb1的突变表型受单隐性核基因调控, 利用中花11/sdb1杂交组合的F2隐性植株, 最终将调控基因定位在第4染色体SSR标记RM16632和Indel标记J50-7之间约406 kb的物理范围内。这为SDB1的克隆和功能研究奠定了基础, 也有助于水稻株高发育分子机制的进一步阐释。  相似文献   

11.
水稻(Oryza sativaL.)花器官的发育直接影响其产量和品质。本研究报道了一个水稻颖壳退化突变体,来源于恢复系缙恢10号的ethyl methane sulfonate (EMS)诱变群体,命名为degenerated hull 3 (dh3)。该突变体表现为内外稃退化变窄,且不能正常闭合。在一些突变严重的小花中,外稃甚至退化成芒状,内稃边缘和浆片退化变窄且融合。遗传分析表明该性状受1对隐性基因调控。利用不育系西农1A与dh3杂交构建的356株F2突变群体,将DH3基因精细定位在第12染色体的SSR标记RM27706和RM27709之间,物理距离为44.72 kb,该区段内未见已知功能基因的报道。本研究的结果为以后DH3基因的图位克隆与功能分析打下基础。  相似文献   

12.
叶片是光合作用的主要器官,适度卷曲有利于改善群体光照,提高光能利用率,因此,发掘和研究叶片发育相关基因是改良株型和植物生长发育研究的重要基础工作。本研究报道了一个新的水稻稳定遗传卷叶突变体rolled leaf 28(rl28),与野生型相比,rl28从拔节期起叶片开始沿中轴脉向内侧卷曲,叶片的卷曲度均极显著高于野生型,且叶夹角也不同程度小于野生型。扫描电镜及石蜡切片观察表明,rl28叶片单位面积气孔数、气孔导度显著高于野生型,蒸腾速率极显著高于野生型,rl28中脉增大及临近的2个泡状细胞数量减少。遗传分析表明该突变性状受1对隐性核基因控制,RL28基因被定位在第5染色体标记5-43和5-34之间,物理距离为90 kb。本研究将为RL28基因的图位克隆及功能研究奠定基础。  相似文献   

13.
转绿型叶色突变体是研究植物叶绿体分化与发育的基础材料。grc2是利用60Co-γ射线诱变籼型三系保持系T98B后获得的单叶独立转绿型黄化突变体。grc2植株上任一叶片刚抽出时为黄色,在生长10 d左右后变绿,具有单叶不依赖于植株特定发育阶段而独立转绿的特性。与野生型T98B相比,grc2黄化叶片的总叶绿素和叶绿素b含量显著降低,叶绿体滞留在黄化质体阶段,表明grc2可能在叶片早期发育中起关键作用。遗传分析表明,grc2受1对隐性核基因独立控制;利用源于grc2/Nipponbare的F2群体的960个突变单株,将grc2基因定位在STS标记S254与S258之间约31 kb的范围内,该区域含有5个未报道过的注释基因。这些结果为grc2的克隆及功能研究提供了重要信息。  相似文献   

14.
叶色突变体是研究高等植物光合作用、叶绿素代谢途径、叶绿体结构与功能分子机制的理想材料。本研究从EMS(ethyl methane sulfonate)处理的缙恢10号(Oryza sativa L.ssp.indica)诱变群体中发现了一个苗期呈现黄绿色、抽穗期渐变为淡绿色的叶色突变体,命名为yellow green leaf 9(ygl9)。与野生型相比,ygl9苗期和分蘖期光合色素极显著降低,抽穗期光合色素显著降低,气孔长度、气孔导度和蒸腾速率极显著增加,净光合速率无明显变化。透射电镜观察表明,ygl9的嗜锇小体增多、基粒模糊、基质片层减少且疏松,但叶绿体结构基本完整。遗传分析显示该突变性状受1对隐性核基因调控。利用西农1A/ygl9 F2群体中的759株隐性单株,最终将YGL9定位在第3染色体短臂SSR标记S03-1和In Del标记Ind03-19之间,遗传距离分别为0.13 c M和0.07 c M,物理距离为63 kb。本研究为YGL9基因的克隆和功能分析奠定了基础。  相似文献   

15.
一个水稻长护颖突变体的遗传分析和基因定位   总被引:1,自引:0,他引:1  
花器官发育异常突变体是研究植物花发育分子机理的重要材料。本研究在特种栽培稻品种"鸭血糯"中发现一个长护颖自然突变体,命名为Osleg(Oryza sativa long empty glumes)。组织细胞学分析表明,该突变体护颖的远轴表皮细胞凸凹不平,毛状体较多,许多瘤状体轴向平行排列,与外稃表皮细胞结构相似。遗传分析结果表明,该突变性状受一对隐性基因控制。将Osleg纯合体与籼稻品种9311杂交构建F2定位群体,利用已公布的水稻SSR标记和自行设计的STS标记对突变位点进行基因定位,最终将OsLEG定位在水稻7号染色体短臂上的LC15和LC25标记之间,物理距离约207kb,为进一步克隆OsLEG基因和研究禾本科植物花器官的分子调控机理提供了重要科学依据。  相似文献   

16.
植物叶色变化对叶绿体发育和叶绿素生物合成等光合系统结构和调控机制的研究有着重要的理论意义。水稻叶缘白化突变体mal (marginal albino leaf),来源于恢复系缙恢10号(Oryza sativa L.ssp. indica)的EMS诱变群体,经过多代自交,其突变性状遗传稳定。与野生型相比,mal突变体整个生育期叶片边缘白化且叶片变窄,抽穗期倒三叶叶片、倒二叶叶边缘以及倒三叶叶边缘的叶绿素含量极显著降低。透射电镜观察发现,mal突变体叶片绿色部位细胞与叶绿体发育完全,白化部分叶肉细胞大部分中空,无明显完整的细胞器,叶绿体内部完全降解。遗传分析表明该突变体受隐性核基因控制,MAL被定位在第8染色体上SSR标记M22和InDel标记ID27之间,物理距离为171 kb。本研究将为MAL基因的图位克隆及功能研究奠定基础。  相似文献   

17.
水稻早衰突变体esl5的鉴定及其基因精细定位   总被引:1,自引:0,他引:1  
叶片早衰直接影响作物产量和品质, 鉴定早衰突变体、图位克隆调控基因对于研究植物衰老机理具有重要的意义。以甲基磺酸乙酯诱变水稻籼型恢复系缙恢10号, 获得一个早衰突变体esl5 (early senescent leaf mutant 5), 本文对其进行了形态鉴定、细胞学观察、理化分析和基因定位等研究。结果表明, 与野生型相比, esl5的苗期叶片正常, 分蘖期呈黄绿色, 孕穗期开始叶片中上部逐渐黄化衰老; 衰老部位的细胞结构异常, 细胞膜降解, 叶绿体基质片层疏松、排列不规则, 光合色素含量和光合速率极显著下降。此外, esl5的·OH和H2O2含量极显著升高, SOD和CAT的活性则极显著降低。与野生型相比, esl5的生育期延长了20 d左右, 千粒重显著增加, 穗粒数、实粒数和结实率则显著降低。esl5受1对隐性核基因调控, 精细定位在第3染色体Indel标记Indel03-1和Indel03-2之间83.4 kb的物理范围内, 包含11个注释基因, 这为ESL5的克隆和功能研究奠定了基础, 也有利于水稻品种的遗传改良。  相似文献   

18.
从恢复系育种材料[R128//(R318/R1025)F1]F6中获得一个新的斑马叶突变体zebra1349,突变体秧苗期如果不移栽,与野生型一样表现绿色,移栽后5 d新抽出的叶片包括叶鞘会呈现出与叶脉垂直的黄绿相间的条纹,移栽后30 d抽出的叶片又表现正常绿色,成熟期主要农艺性状与野生型无明显差异。与野生型相比,突变体六叶期斑马叶黄区部位的总叶绿素、叶绿素a、叶绿素b和类胡萝卜素的含量分别下降了55.86%、61.02%、39.34%和47.03%。透射电镜(TEM)观察表明,突变体斑马叶绿区部位叶绿体发育正常;黄区部位叶肉细胞中叶绿体结构异常,类囊体膜退化和分解严重,类囊体基粒片层数量明显减少,片层间距拉大,排列疏松。对zebra1349与正常叶色品种杂交F1、F2代的遗传分析表明该性状受1对隐性核基因调控。利用1192株zebra1349/02428 F2隐性定位群体,最终把ZEBRA1349基因定位在水稻第12染色体In Del标记indel39和indel44之间,其遗传距离分别为0.04 c M和0.17 c M,根据日本晴基因组序列推测,两标记之间的物理距离约为89 kb。本研究为ZEBRA1349基因的图位克隆和功能研究以及分子标记辅助育种奠定了基础。  相似文献   

19.
突变体osles (Oryza sativa leaf early-senescence and salt-sensitive)是利用60Co辐射诱变籼稻品种自选1号后筛选获得的,该突变体从分蘖期开始叶片就出现早衰,主要表现为叶尖和叶边缘变黄,伴有红褐色斑点。此外,盐胁迫下,不仅突变体叶片卷曲枯萎,而且植株高度和生物量显著降低。与野生型相比,突变体除倒一叶外,倒二叶和倒三叶在分蘖期的叶绿素含量均显著降低,而POD活性则在倒一叶、倒二叶和倒三叶中依次显著升高;突变体3片叶片的MDA含量均高于野生型15%左右。除倒一叶外,突变体的SOD活性均显著高于野生型。此外,突变体和野生型3片叶中的可溶性蛋白含量依次下降,但突变体的倒一和倒二叶中的可溶性蛋白含量显著高于野生型,而倒三叶则相反;遗传分析表明,osles突变性状受一隐性基因控制,借助图位克隆技术将控制该性状的基因精细定位于第6染色体长臂的IN6-005769-11/12和RM20547两个标记之间,物理距离为210 kb,为进一步克隆该基因并揭示叶片的早衰分子生理机制奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号