首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
通过栽培大麦Karl与Lewis杂交构建的重组自交系F10代60个骨干家系,种植于贵州高海拔地区,并对其F11代籽粒蛋白质含量(GPC)进行测定及其QTL分析后,发现2个单一QTL(GPC1和GPC2),LOD值分别为3.63和2.93,贡献率分别为49%和26%,加性效应分别为+2.9%和+1.9%.在自交系群体中发现极端表现型家系,分别为高GPC的R9、R 15、R32、R7及低GPC的R121、R 34、R 110、R 136,两极端表现型家系GPC相差高达10%.以上结果均为大麦GPC基因研究及品种改良提供了极具价值的依据和材料.  相似文献   

2.
籽粒蛋白质含量是大豆品质性状改良的主要目标之一。笔者介绍了大豆遗传图谱的构建与基因组测序发展历程,从基于分离群体的连锁分析和基于自然群体的关联分析两方面阐述了大豆籽粒蛋白质含量QTL定位研究进展,进而讨论了大豆蛋白质含量MAS育种存在的问题,最后展望了大豆蛋白质含量分子遗传改良的研究趋势。以期为大豆高蛋白育种提供参考。  相似文献   

3.
利用普通玉米自交系8984与高油玉米自交系GY220为亲本构建了284个F2∶3家系群体及含有185个SSR标记的玉米遗传连锁图谱。通过包含母体效应的种子性状QTL作图方法对玉米子粒蛋白质含量进行定位和效应分析,共检测到4个QTL,位于第5和第8染色体上。除qPRO8-2遗传作用方式表现为加性外,其余QTL作用方式均为部分显性。单个QTL贡献率为3.86%~5.17%,累计贡献率为18.54%。所有QTL的增效基因均来自高油亲本GY220。  相似文献   

4.
5.
以甘蓝型黄籽油菜GH06和甘蓝型黑籽油菜P174为亲本,通过单粒法连续自交8代构建重组自交系群体,应用SSR标记绘制31个连锁群(LGs)的遗传连锁图谱,图谱总长1437.1 cM,相邻标记间的平均距离为3.89 cM。对4个不同环境下RIL8群体中每个株系籽粒含油量、蛋白质、纤维素和半纤维素含量进行了近红外分析,性状相关性表明含油量与其他3个性状均表现负相关,蛋白质含量与纤维素和半纤维素分别表现负相关和正相关。结合构建的遗传图谱采用复合区间作图法分析4个性状QTL,共检测到26个QTL,分布在N2、N3、N8、N9、N11、N13、N16和N17连锁群上,其中8个含油量QTL可解释表型变异的4.96%~21.83%;6个蛋白含量QTL,可解释表型变异的3.12%~14.28%;4个纤维素含量QTL,可解释表型变异的4.60%~17.29%;8个半纤维素含量QTL,可解释表型变异率的6.66%~16.68%。在N8上,发现有含油量QTL与半纤维素含量QTL重叠的区段。在N9上,发现有纤维素含量QTL与半纤维素含量QTL重叠的区段,上述2个区段重叠QTL加性效应方向相反。本研究认为油菜种子含油量、蛋白质、纤维素和半纤维素属于典型的数量性状,受环境影响较大,与这些QTL紧密相关的分子标记可为下一步分子标记辅助育种提供一定技术支撑。  相似文献   

6.
水稻糙米蛋白质含量的QTL定位   总被引:1,自引:0,他引:1  
蛋白质含量是评价稻米品质的一项重要指标,控制水稻糙米蛋白质含量的基因位点是数量性状,检测水稻糙米蛋白质含量的QTL并进行遗传效应分析对于水稻品质遗传育种具有重要的意义.本研究以中优早/丰锦重组自交系群体作为定位群体,结合构建的遗传连锁图谱利用Windows QTL Cartogtapher2.0软件,采用复合区间作图法对水稻糙米蛋白质含量进行QTL定位和效应分析.检测到控制糙米蛋白质含量的QTL 6个(qPc-3、qPc-6、qPc-7、qPc-8-1、qPc-8-2和qPc-11),分别位于第3、6、7、8和11连锁群上.单个QTL对群体表型变异的贡献率为3.79%~19.41%,联合贡献率为61.07%.在这些QTL的区间中,第8染色体的口Pc-8-1基因区域对糙米蛋白质含量具有主效作用.进一步分析和比较了相关研究结果,讨论了研究结果对开展稻米品质遗传育种的意义.  相似文献   

7.
燕麦片蛋白质和含油量是燕麦的主要品质性状。燕麦蛋白质具有较平衡的氨基酸组成,其组成几乎不随着燕麦片蛋白质的含量增加而变化。高蛋白燕麦片在作为家畜饲料和食品工业原材料方面都有价值。因为燕麦籽粒纤维含量高,所以将其整个籽粒作为饲料时能量较低。增加燕麦片含油量可以使燕麦变成高能饲料。另一方面,因为含油量低可以减少酸腐问题,所以,减少含油量,  相似文献   

8.
稻米蛋白质含量是水稻(Oryza sativaL.)营养品质育种的重要内容之一。本研究以华恢3号与中国香稻构建的重组自交系(RILs)群体为材料,构建了含有156个SSR标记的遗传连锁图谱,结合近红外分析仪测定两年(2009年,2010年)的糙米蛋白质含量,进行了QTL定位和遗传基础分析研究。两年共定位到3个控制糙米蛋白含量的QTL和16对上位性互作的位点。其中检测到的3个QTLs,分别位于第4、6、8染色体上,单个QTL解释的表型变异率为3.39%~34.2%,两年解释的总表型变异率分别为41.2%和5.95%,这些QTL中只有位于第8染色体短臂在区间RM310~RM547的qbpc8在2009年和2010年被重复检测到。LOD值分别为22.5和3.5,解释表型变异率分别为34.2%和5.95%。这些QTL的发掘,为分子标记辅助选择改良水稻营养品质奠定了基础。  相似文献   

9.
大豆油分蛋白质含量相关QTL的实用性验证   总被引:1,自引:0,他引:1  
本文利用己发表的一些与油分、蛋白质含量主效QTL相连锁的SSR标记,对72份全国各地高油、高蛋白种质资源进行蛋白质和油分含量的分析。通过对9个SSR位点各等位变异的蛋白质和油份含量的方差分析,检测到4个与油分含量相关的等位变异,以及4个与蛋白质含量相关的等位变异。其中satt193、satt491、satt030和satt331分别在DNA片段长度为210~280bp之间检测出与油分含量相关的等位变异。Satt523、satt321、satt231和satt578在DNA片段长度为170-320bp之间检测出和蛋白质含量相关的等位变异。实验证实了与这些位点相连锁OTL的通用性及实用性。  相似文献   

10.
大豆是重要的粮食作物和经济作物,其籽粒蛋白约为40%,是优质植物蛋白主要来源之一。挖掘控制大豆高蛋白数量性状位点(Quantitativetraitloci,QTL)以及分子标记育种对高蛋白大豆培育具有重要的意义。本研究利用蛋白含量存在明显差异的中黄35 (Zhonghuang 35, ZH35)和中黄13 (Zhonghuang 13, ZH13)杂交构建的包含192个株系的重组自交系群体为供试材料,通过对两亲本及RIL群体重测序,构建了包含4879个bin标记的高密度遗传图谱,总遗传距离为3760.71 cM,相邻标记间的遗传距离为0.77 cM。RIL群体及亲本分别于北京顺义和河南濮阳种植, 2个环境共检测到15个蛋白含量相关QTL位点,分布于5号、12号、15号、17号、18号、19号和20号染色体,贡献率为4.36%~11.39%。其中,北京顺义和河南濮阳检测到qPro-20-1和qPro-20-3, 2个QTL贡献率分别为7.65%和7.58%,重叠区域包括33个基因。本研究有助于精细定位和图位克隆大豆蛋白含量相关基因,并为进一步培育高蛋白大豆品种提供基因资源。  相似文献   

11.
产地及籽粒外观品质对芝麻木酚素含量的影响   总被引:1,自引:0,他引:1  
为了研究产地及籽粒外观对芝麻木酚素含量的影响,为芝麻品质遗传改良及高木酚素芝麻商品生产提供理论依据。从3 800余份芝麻种质资源中选取212份代表性资源,分别在4个不同生态区种植,测定各样品芝麻素和芝麻林素含量;探讨芝麻不同产地、千粒质量及种皮颜色与芝麻素和芝麻林素含量的关系。结果表明,芝麻素和芝麻林素各试点含量均值分别为3.52,3.61,3.11,2.43,1.94,1.93,1.78,1.62 mg/g;芝麻木酚素含量存在随纬度升高而增加的趋势;芝麻籽粒颜色L值与芝麻素含量极显著正相关(r=0.296 6,ɑ=0.01),与芝麻林素含量相关不显著;千粒质量与芝麻素含量极显著负相关(r=-0.260 3,ɑ=0.01),与芝麻林素含量极显著正相关(r=0.227 9,ɑ=0.01)。芝麻素和芝麻林素含量随产地纬度的升高而增加;随着种皮颜色变深,芝麻素含量逐渐降低;随着千粒质量增加,芝麻素含量逐渐降低,芝麻林素含量不断增加。  相似文献   

12.
蛋白质和油分含量是大豆重要的育种目标,蛋白质和油分含量QTL定位和优异等位变异的发掘对大豆分子设计育种具有重要意义。本研究以(垦丰14×垦丰15)×(黑农48×垦丰19)衍生的后代株系为材料,构建含有204个株系的大豆四向重组自交系群体,利用区间作图法,应用前期构建的SSR遗传图谱,对2013、2014和2015年在哈尔滨和克山2地共8个环境下的蛋白质和油分含量进行QTL定位分析。结果表明,8个环境中检测到29个蛋白质含量QTL和39个油分含量QTL。在所定位的蛋白质含量QTL中,有5个能够在2个以上环境被定位到,这些蛋白质含量QTL分布在 A1、D2、J、N和O等6个连锁群上,对表型效应的贡献率为 7.65%~20.08%,其中qPC-A1-1、qPC-D2-1、qPC-J-1和qPC-O-2的贡献率在10%以上。在39个油分含量QTL中,有10个在多环境下被重复检测到,这些QTL分布在8个(A1、A2、B1、D1b、G、I、J、N)连锁群上,对表型效应的贡献率为7.30%~25.68%,其中qOC-A2-1、qOC-B1-1、qOC-G-1和qOC-J-1的贡献率在10%以上。  相似文献   

13.
芝麻素和芝麻林素在芝麻种子萌发阶段变化规律的研究   总被引:1,自引:0,他引:1  
为了明确芝麻种子发芽过程中芝麻素、芝麻林素、水分和干物质量的变化规律,以2个芝麻种质KUUS709和YZH11为材料,研究芝麻种子在21℃发芽条件下芝麻素、芝麻林素、水分和干物质量的变化规律。结果表明,在芝麻种子发芽前期、中期和后期,芝麻素含量和芝麻林素含量呈现出“慢—快”的降解规律,芝麻素和芝麻林素含量变化的转折点在萌发36 h和48 h;水分含量和干物质量呈“S”型曲线,符合“慢—快—慢”的增长规律,其中水分变化的转折点是在萌发24 h和84 h,干物质积累量变化的转折点在萌发36 h和96 h。在芝麻种子发芽过程中,水分与干物质量呈显著正相关,芝麻素含量与芝麻林素含量呈显著正相关;水分、干物质量与芝麻素含量、芝麻林素含量呈显著负相关。本研究将为进一步探讨芝麻素和芝麻林素在种子发芽过程的生理机制奠定基础。  相似文献   

14.
玉米籽粒中花色苷和黑色素含量的QTL分析   总被引:2,自引:0,他引:2  
花色苷和黑色素是黑玉米籽粒中重要而有益的化学成分,深入开展其QTL定位研究,对于色素相关基因的克隆与转化和分子标记辅助育种,具有重要的理论意义和应用价值。本文利用一个黑玉米自交系SDM为共同父本,分别与白玉米自交系木6和黄玉米自交系Mo17杂交,构建2个相关F2:3群体(分别缩写为WD和YD),对玉米籽粒中花色苷含量(ACK)和黑色素含量(MCK)进行QTL分析。结果表明,黑玉米SDM籽粒中的花色苷和黑色素含量均极显著高于木6和Mo17,2种色素含量间呈极显著正相关。2个群体中共检测到17个色素相关的QTL,其中与花色苷含量相关的QTL在2个群体中各4个,分布在第4、第6、第7和第10染色体上,与黑色素含量相关的QTL在WD和YD群体中分别为4个和5个,分布在第1、第2、第6、第7和第10染色体上。2个群体检测到QTL的数量、分布和对表型的贡献率均高度一致,而且解释花色苷含量和黑色素含量变异大的QTL在2个群体中均有成簇分布的现象,主要表现在bin 6.04处的标记区间umc1796~mmc2006内和bin 10.04处的标记区间umc2043~bnlg1028内,分别解释表型变异的12.7%~21.3%和8.6%~21.3%。它们可能是一因多效的同一QTL或者是在该区段内紧密连锁的不同QTL。上位性分析表明,2个群体中检测到的上位性QTL的数量、位置和对表型的贡献率差别均较大,WD群体的上位性效应明显大于YD群体,说明上位性效应对遗传背景更加敏感,需要进一步深入研究贡献率大的上位性QTL及其利用。  相似文献   

15.
对4个不同类型大豆品种的上、中上、中、中下、下、分枝六部分籽粒进行品质分析,各部分蛋白质和脂肪含量差异显著、极显著。蛋白质含量从上至下由高变低(40.010%、38.890%、38.110%、36.428%、35.888%);无限结荚习性大豆脂肪含量(19.983%、20.873%、21.242%、21.797%、21.908%)与蛋白质相反;亚有限结荚大豆脂肪含量上至中下由低变高(21.411%、21.993%、22.113%、22.538%),下部 (22.151%)低于中下部;分枝上籽粒蛋白质、脂肪含量与中上部差异不显著;全株品质平均值(38.024%、21.760%)接近于中部值。  相似文献   

16.
刘仁东 《作物学报》1994,20(1):93-98
本文利用双列杂交设计对玉米籽粒的蛋白质、赖氨酸和油分含量的遗传成分即加性方差和显性方差进行了比较研究。结果表明,蛋白质、赖氨酸和油分含量的基因型差异均显著,表明在这些自交系和杂交组合中进行高蛋白质、高赖氨酸和高油分含量的选择是有效的。赖氨酸和油分含量的加性方差比显性方差重要得多,而蛋白质的显性方差起  相似文献   

17.
大豆脂肪及脂肪酸组分含量的QTL定位   总被引:6,自引:0,他引:6  
脂肪及脂肪酸组分的改良是大豆油脂品质育种的主要方面。本研究旨在构建遗传图谱,定位大豆脂肪及脂肪酸组分的QTL,为大豆油脂品质育种提供参考。以Essex×ZDD2315的114个BC1F1单株为作图群体,构建了250个SSR标记和1个形态标记,具有25个连锁群的遗传图谱,覆盖大豆基因组2 963.5 cM,平均每个连锁群上10.0个标记,标记平均间距11.8 cM。用BC1F3家系3个重复的表型平均值代表相对应的BC1F1单株表型值,采用Win QTL Cartographer 2.5复合区间作图法(CIM)检测到18个控制脂肪及脂肪酸组分含量的QTL,位于9个不同的连锁群上,表型贡献率为9.6%~34.5%;多区间作图法(MIM)检测到与CIM区间相同的7个QTL(fat-1, pal-1, st-1, ole-1, lin-1, lin-4和lio-2),区间相近的2个QTL(ole-4和lin-5),位于6个不同的连锁群上,表型贡献率为8.2%~39.3%。CIM法检测到的其他9个QTL有待进一步验证。大豆脂肪及脂肪酸组分含量的主效QTL数量不多,效应大的不多,可能还受许多未能检测出来的微效基因控制,育种中既要注意主效QTL的利用,又要考虑微效多基因的积聚。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号